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Abstract. A theoretical solution of the mechanical behavior of thick piezoelectric
cylinders subjected to dynamic pressures is presented in this paper. The �ve governing
equations in terms of resultant forces and resultant moments with respect to basic
displacement vector components , and are used. The First-order Shear Deformation Theory
(FSDT) is employed to consider the e�ects of shear forces on the shell structure. The
e�ects of transverse shear deformation and rotary inertia are included into the analysis.
The formulation is based on the thick-shell equations. Navier-type solutions are obtained
and used for simply supported circular cylindrical shells. Finally, the Newmark family of
methods is used to numerically time integration of the system of coupled second order
ODEs. Results obtained with the present analysis are found to be in good agreement with
those available in the literature. The results of this paper can serve as a reference for future
study in the design of smart engineering structures
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, piezoelectric cylindrical shells have
attracted signi�cant attention in both academic and
industrial �elds. They are widely used in modern in-
dustries, such as electronics, biotechnology, aerospace,
automotive, and so on.

From a historical point of view, fundamental
theories for the modeling of the piezoelectric struc-
tures were fully developed by Tiersten [1]. Tzou and
Zhong [2] derived system equations for piezoelectric
thin shell vibrations. Hamilton's principle and the
linear piezoelectricity theory were used in this work
to derive the general piezoelastic system equations of
piezoelectric shells. Lee [3] and Tzou [4] gave us
both a piezoelectric plate theory and a piezoelectric
shell theory based on the classical plate and shell
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theory, respectively. The e�ectiveness of piezoelectric
sensors and actuators, laminated on simply supported
rectangular thin plates and circular cylindrical thin
shells, using the Classical Laminate Theory (CLT),
was investigated by Tzou and Fu [5,6] and Tzou et
al. [7,8]. Pinto Correia et al. [9] developed a semi-
analytical piezoelectric shell model for vibration control
of the structure. A mixed �nite element approach
was used, which combined the equivalent single-layer
higher order shear deformation theory, to represent the
mechanical behavior of the shell. Kapuria et al. [10-
12] introduced a 3D piezoelectric solution for simply
supported laminated circular cylindrical shells under
electro-mechanical loads. 3D exact solutions have been
given by Ray et al. [13] and Dube et al. [14] for
piezoelectric simply supported plates under thermo-
electro-mechanical loads. Chen et al. [15] presented an
exact elasticity solution for an orthotropic cylindrical
shell with piezoelectric layers. Stress and displacement
distributions subjected to static mechanical and electri-
cal loading have been given in this paper. An exact 3D
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solution for the static behavior of a simply supported
laminated piezoelectric cylinder can be found in the
work of Heyliger [16]. The Frobenius method has
been used to obtain the elastic and electrical �elds
for each layer. A nonlinear �nite element solution was
proposed by authors and co-workers [17] for multi-layer
piezoelectric structures considering large deformation
e�ects. The virtual work principle and the Lagrangian
Update Method (LUM) were employed in this study.
Shakeri et al. [18] presented the elasticity solution
for an in�nitely long, simply supported, orthotropic,
piezoelectric cylindrical shell panel under dynamic
pressure. Darvizeh et al. [19] carried out a study on the
e�ects of piezoelectric layers on the buckling behavior
of a composite cylinder. Recently, a three dimensional
analysis of orthotropic thick-walled tubes coated with
piezoelectric sensors and actuators was carried out
using analytical methods and numerical modeling [20].
Another theoretical method was developed by authors
and co-authors to determine the dynamic response
of piezoelectric circular cylindrical shells subjected to
internal loading [21]. An approximate solution was
obtained using the Galerkin method.

In recent years, a variety of computational so-
lutions has been presented for piezoelectric shells by
Hong [22], Kumar et al. [23], Klinkel and Wagner [24],
Santos et al. [25,26], Deu et al. [27], etc.

In the present work, particular attention is de-
voted to the modeling of thick circular cylindrical
shells covered with piezoelectric layers under internal
dynamic loading using an analytical solution. The
word \thick" means that the e�ect of factor (1 + z

R ) is
considered in calculating resultant forces and resultant
moments. This factor results from the trapezoid-like
shape of the cross-section of the shell and is usually
neglected in the thin shell theory [28]. Theoretical
formulations, based on FSDT, take into consideration
transverse shear deformation and rotary inertia e�ects.
The formulation is general. Analytical results for
a piezoelectric shell with simply supported boundary
conditions are based on the Navier solution method.
The Newmark family of methods is used for the
numerical time integration of the system of coupled
second order Ordinary Di�erential Equations (ODEs).
In some cases, in order to prove the validity of the
presented method and the solving process, a dynamic
numerical solution for the same example is given.
Comparing the results of the presented method with
those obtained by numerical solutions, shows that the
presented method is e�ective and accurate.

2. Governing equations

2.1. Equations of motion
A three-dimensional elastic body is enclosed by two
neighborhoods or closely curved surfaces called the

\shell". The distance between these two surfaces
de�nes the thickness of the shell. The \mid-surface" of
the shell is a surface passing through the mid-thickness
at each point [29]. It means that, in a circular cylinder
of radius R, the mid-surface is a minimal surface with
the radii of curvature R, and is in�nite along the radial
and axial directions, respectively. If the thickness of
the shell is small, compared with the other dimensions,
then, the shell is considered \thin"; otherwise, the shell
is \thick".

Consider a thick-walled circular cylinder made up
of a linear orthotropic material with surfaces bonded
by piezoelectric layers, with poling in the z direction
(Figure 1). The orthogonal coordinate system (x; #; z)
is �xed at the mid-surface of the tube with length, L,
thickness, H, and radius, R. x is the axial direction,
# is the circumferential direction and z is the radial
direction. The deformations of the tube are de�ned by
u, v, w, which are displacements of the point in x; #; z.

The stress analysis on the sides of an el-
ement of the shell structure is shown in Fig-
ure 2. For the mid-surface, we de�ned the six
force (Nx; N#; Nx#; N#x; Qx; Q#) and four moment
(Mx;M#;Mx#;M#x) resultants, and the distributed
load consisting of three forces (Px; P#; Pz) and two
moments (mx;m#). The governing equations of motion
in the longitudinal, tangential and radial directions,
in terms of force and moment resultants, are as fol-
lows [28]:

Nx;x +
N#x;#
R

+ Px = I0�u0 + I1 �'x;

Nx#;x +
N#;#
R

+
Q#
R

+ P# = I0�v0 + I1 �'#;

Qx;x +
Q#;#
R
� N#

R
+ Pz = I0 �w0;

Figure 1. Circular cylindrical shell with piezoelectric
layers at surfaces. R, Hp and Hh are mid-surface radius,
thickness of the piezoelectric layers and thickness of the
host shell, respectively.
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Figure 2. The forces and moments acting on the sides of an element of the circular cylindrical shell.

Mx;x +
M#x;#

R
�Qx +mx = I1�u0 + I2 �'x;

Mx#;x +
M#;#

R
�Q# +m# = I1�v0 + I2 �'#; (1)

the mass moments of inertia are:

I0 =

H
2Z

�H2
�
�

1 +
z
R

�
dz; I1 =

H
2Z

�H2
�z
�

1 +
z
R

�
dz;

I2 =

H
2Z

�H2
�z2

�
1 +

z
R

�
dz; (2)

and � is the density of the shell.
The force and moment resultants that act on a

shell element are de�ned as the force and moment per
unit length of the shell's mid-surface. The resultants,
which are obtained by integrating the stresses acting
on di�erential area elements of a shell element, have
the following de�nitions:

Nx =

H
2Z

�H2
�x
�

1 +
z
R

�
dz; N# =

H
2Z

�H2
�#dz;

Nx# =

H
2Z

�H2
�x#

�
1 +

z
R

�
dz; N#x =

H
2Z

�H2
�#xdz;

Mx =

H
2Z

�H2
�x
�

1 +
z
R

�
zdz; M# =

H
2Z

�H2
�#zdz;

Mx#=

H
2Z

�H2
�x#

�
1+

z
R

�
zdz; M#x=

H
2Z

�H2
�#xzdz;

Qx=

H
2Z

�H2
�zx

�
1 +

z
R

�
dz; Q# =

H
2Z

�H2
�#zdz; (3)

where �x; �#; �x#; �zx and �#z are the normal and shear
stresses distributed in the shell.

Note that, for a thick shell, the term ( zR ) in the
force and moment resultants is so large that it cannot
be neglected.

2.2. Constitutive equations
2.2.1. Host shell
Plates and shells with complex shapes made of or-
thotropic materials are widely used for the construction
of structure elements in modern engineering [30]. The
mechanical constitutive equations, which relate the
stresses to the strains, for this kind of material, can
be written as:0BBBBBB@

�x
��
�z
��z
�xz
�x�

1CCCCCCA =

0BBBBBB@
Q11 Q12 Q13 0 0 0
Q21 Q22 Q23 0 0 0
Q31 Q32 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

1CCCCCCA
0BBBBBB@
"x
"�
"z

�z

xz

x�

1CCCCCCA : (4)
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Q is the sti�ness matrix and its elements are:

Q11 =
E11

D0
(1� v23v32);

Q12 =
E11

D0
(v21 + v23v31);

Q13 =
E11

D0
(v21v32 + v31);

Q22 =
E22

D0
(1� v13v31);

Q23 =
E22

D0
(v32 + v12v31);

Q33 =
E33

D0
(1� v12v21);

Q21 = Q12; Q31 = Q13;

Q32 = Q23; Q44 = G23;

Q55 = G13; Q66 = G12: (5)

D0 may be written as:

D0 =1� v12v21 � v13v31 � v23v32

� v12v23v31 � v13v21v32: (6)

In the above equations, Eii is referred to as Young's
modulus, Gij as the elastic shear modulus and vij as
Poisson's ratio.

2.2.2. Piezoelectric layers
The linear constitutive equations of a linear piezoelec-
tric material in the general case of an arbitrary state
of stress are given by Ikeda [31]:0BBBBBB@
�x
��
�z
��z
�xz
�x�

1CCCCCCA=

0BBBBBB@
C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

1CCCCCCA
0BBBBBB@
"x
"#
"z

#z

xz

x#

1CCCCCCA

�

0BBBBBB@
0 0 e31
0 0 e32
0 0 e33
0 e24 0
e15 0 0
0 0 0

1CCCCCCA
0@ExE#
Ez

1A ;
(7)

0@Dx
D#
Dz

1A =

0@ 0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 0

1A
0BBBBBB@
"x
"#
"z

#z

xz

x#

1CCCCCCA
+

0@�11 0 0
0 �22 0
0 0 �33

1A0@ExE#
Ez

1A ; (8)

where the matrices, C, e and �, respectively, denote
the elastic sti�ness, and the piezoelectric and dielectric
constants of the piezoelectric layers. Also, D and E are
the electric displacement and the electric �eld vectors,
respectively.

Piezoelectric layers are polarized along the radial
direction. Then:

Ex = 0; (9)

E# = 0 : (10)

Ez can be expressed as summation of two parameters:

Ez = E0z + E00z ; (11)

where E0z is the electric �eld, due to applied actuation
potentials, and E00z is the electric �eld due to direct
piezoelectric e�ects. Using Eq. (8), for electric displace-
ment along the radial direction, we have:

Dz = (e31"x + e32"# + e33"z + �33E00z ) + �33E0z: (12)

In the bracket, the expression can be constrained to
be zero because its value is small compared to the last
term [32]. Hence:

E00z = � 1
�33

(e31"x + e32"# + e33"z): (13)

Then, using Eqs. (11) and (13), we can write:

Ez = E0z � 1
�33

(e31"x + e32"# + e33"z): (14)

In this investigation, it is assumed that the interface
between the piezoelectric layer and the host structure
are perfectly bonded. As we know, in application, if
a piezoelectric material is selected to be an actuator,
due to its signi�cantly large rigidity, the length of the
actuator should be small enough to conform to the
perfect bond assumption [33]. The assumption may
cause an error of up to 8% in the predicted de
ection
compared to the experimental results [34].
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2.3. Compatibility equations
The strain-displacement equations for a thick cylindri-
cal shell are given by Eqs. (15):

"x = u;x;

"# = (v;# + w) =(R+ z);

"z = w;z;


#z = (w;# � v)=(R+ z) + '#;


xz = 'x + w;x;


x# = u;#=(R+ z) + v;x: (15)

As mentioned before, u, v, w are the displacements
along x, # and z axes, respectively; 'x and '# are
angles of rotation of the cross-sections that were normal
to the mid-surface of the unformed shell.

2.4. FSDT
The �rst-order shear deformation theory is used to deal
with the in
uence of shear forces on the deformation
of the shell. In the �rst-order shear deformation, the
Kirchho� hypothesis is relaxed by not constraining
the transverse normals to remain perpendicular to the
mid-surface after deformation [35]. This amounts to
including transverse shear strains in the theory. The
inextensibility of transverse normals requires that w
be independent of the thickness coordinate.

According to the �rst-order shear deformation
theory, the displacements are of the form:

u(x; #; z; t) = u0(x; #; t) + z'x(x; #; t);

v(x; #; z; t) = v0(x; #; t) + z'#(x; #; t);

w(x; #; z; t) = w0(x; #; t); (16)

where u0, v0, w0, 'x and '# are unknowns to be
determined.

In fact, u0, v0, w0, 'x and '# are the displace-
ments of a point on the surface, z = 0, and the
rotations of transverse normal about its # and x axes,
respectively.

Substituting Eqs. (16) into Eqs. (15) yields:

"x = u0;x + z'x;x;

"# = (v0;# + z'#;# + w0)=(R+ z);

"z = 0;


#z = (w0;# � v0 � z'#)=(R+ z) + '#;


xz = 'x + w0;x;


x# = (u0;# + z'x;#)=(R+ z) + v0;x + z'#;x: (17)

Substituting Eqs. (17) into Eqs. (4) and (7), using the
obtained equations in Eqs. (3), results:

Nx =
�
A11 +

B11

R

�
u0;x +

�
A12

R

�
v0;#

+
�
A12

R

�
w0 +

�
B11 +

C11

R

�
'x;x

+
�
B12

R

�
'#;# +N�x ;

N# =(A12)u0;x +
�
A22

R
� B22

R2 +
C22

R3

�
v0;#

+
�
A22

R
� B22

R2 +
C22

R3

�
w0 + (B12)'x;x

+
�
B22

R
� C22

R2 +
D22

R3

�
'#;# +N�# ;

Nx# =
�
A66

R

�
u0;# +

�
A66 +

B66

R

�
v0;x

+
�
B66

R

�
'x;# +

�
B66 +

C66

R

�
'#;x;

N#x =
�
A66

R
� B66

R2 +
C66

R3

�
u0;#

+ (A66)v0;x +
�
B66

R
� C66

R2 +
D66

R3

�
'x;#

+ (B66)'#;x;

Mx =
�
B11+

C11

R

�
u0;x+

�
B12

R

�
v0;#+

�
B12

R

�
w0

+
�
C11 +

D11

R

�
'x;x +

�
C12

R

�
'#;# +M�x ;

M# =(B12)u0;x +
�
B22

R
� C22

R2 +
D22

R3

�
v0;#

+
�
B22

R
� C22

R2 +
D22

R3

�
w0 + (C12)'x;x

+
�
C22

R
� D22

R2 +
E22

R3

�
'#;# +M�# ;

Mx# =
�
B66

R

�
u0;# +

�
B66 +

C66

R

�
v0;x

+
�
C66

R

�
'x;# +

�
C66 +

D66

R

�
'#;x;
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M#x =
�
B66

R
� C66

R2 +
D66

R3

�
u0;# + (B66)v0;x

+
�
C66

R
� D66

R2 +
E66

R3

�
'x;# + (C66)'#;x;

Qx =
�
A55 +

B55

R

�
w0;x +

�
A55 +

B55

R

�
'x +Q�x;

Q# =�
�
A44

R
� B44

R2 +
C44

R3

�
v0

+
�
A44

R
� B44

R2 +
C44

R3

�
w0;#

+
�
A44 � B44

R
+
C44

R2

�
'# +Q�#; (18)

where N�x , N�# , M�x , M�# , Q�x and Q�# are related to the
piezoelectric layers bonded on the host shell. Then, we
can write:

N�x =�
�Hh2Z
�H2

e31Ez
�

1+
z
R

�
dz �

H
2Z

Hh
2

e31Ez
�

1+
z
R

�
dz;

N�# = �
�Hh2Z
�H2

e32Ezdz �
H
2Z

Hh
2

e32Ezdz;

M�x =�
�Hh2Z
�H2

e31Ezz
�

1+
z
R

�
dz �

H
2Z

Hh
2

e31Ezz
�

1+
z
R

�
dz;

M�# = �
�Hh2Z
�H2

e32Ezzdz �
H
2Z

Hh
2

e32Ezzdz;

Q�x =�
�Hh2Z
�H2

K55e15Ex
�

1 +
z
R

�
dz

�
H
2Z

Hh
2

K55e15Ex
�

1 +
z
R

�
dz;

Q�# = �
�Hh2Z
�H2

K44e24E#dz �
H
2Z

Hh
2

K44e24E#dz: (19)

In the above equations, the �rst and second integra-
tions correspond to the internal and external piezoelec-
tric layers, respectively. Also, we have:

Aij =

�Hh2Z
�H2

K2
ijCijdz +

Hh
2Z

�Hh2

K2
ijQijdz

+

H
2Z

Hh
2

K2
ijCijdz;

Bij =

�Hh2Z
�H2

K2
ijCijzdz +

Hh
2Z

�Hh2

K2
ijQijzdz

+

H
2Z

Hh
2

K2
ijCijzdz;

Cij =

�Hh2Z
�H2

K2
ijCijz

2dz +

Hh
2Z

�Hh2

K2
ijQijz

2dz

+

H
2Z

Hh
2

K2
ijCijz

2dz;

Dij =

�Hh2Z
�H2

K2
ijCijz

3dz +

Hh
2Z

�Hh2

K2
ijQijz

3dz

+

H
2Z

Hh
2

K2
ijCijz

3dz;

Eij =

�Hh2Z
�H2

K2
ijCijz

4dz +

Hh
2Z

�Hh2

K2
ijQijz

4dz

+

H
2Z

Hh
2

K2
ijCijz

4dz; (20)

and Kij = 1, except for K44 and K55. The shear
correction factors are taken as K44 = K55 =

q
5
6 [36].

Substituting Eqs. (18) into the motion equations
(Eqs. (1)) gives us the following partial di�erential
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equations in terms of the displacements:�
A11 +

B11

R
+
e2

31
�33

(2Hp)
�
u0;xx

+
�
A66

R2 � B66

R3 +
C66

R4

�
u0;##

+
�
A12

R
+
A66

R
+
e31e32

�33

�
2Hp

R

��
v0;x#

+
�
A12

R
+
e31e32

�33

�
2Hp

R

��
w0;x

+
�
B11 +

C11

R
+
e2

31
�33

2
3R

��
H
2

�3

�
�
H
2
�Hp

�3��
'x;xx+

�
B66

R2 �C66

R3 +
D66

R4

�
'x;##

+
�
B12

R
+
B66

R
+
e31e32

�33

2
3R2

��
H
2

�3

�
�
H
2
�Hp

�3��
'#;x# + P 0x = I0�u0 + I1 �'x;�

A12

R
+
A66

R
+
e31e32

�33

�
2Hp

R

��
u0;x#

�
�
A44

R2 � B44

R3 +
C44

R4

�
v0

+
�
A66 +

B66

R

�
v0;xx

+
�
A22

R2 � B22

R3 +
C22

R4 +
e2

32
�33

�
2Hp

R2

��
v0;##

+
�
A22

R2 +
A44

R2 � B22

R3 � B44

R3

+
C22

R4 +
C44

R4 +
e2

32
�33

�
2Hp

R2

��
w0;#

+
�
B12

R
+
B66

R

�
'x;x#

+
�
A44

R
� B44

R2 +
C44

R3

�
'#

+
�
B66 +

C66

R

�
'#;xx

+
�
B22

R2 � C22

R3 +
D22

R4

�
'#;## + P 0#=I0�v0+I1 �'#;

�
A12

R
+
e31e32

�33

�
2Hp

R

��
u0;x +

�
A22

R2 +
A44

R2

� B22

R3 � B44

R3 +
C22

R4 +
C44

R4 +
e2

32
�33

�
2Hp

R2

��
v0;#

+
�
A22

R2 � B22

R3 +
C22

R4 +
e2

32
�33

�
2Hp

R2

��
w0

�
�
A55+

B55

R

�
w0;xx�

�
A44

R2 �B44

R3 +
C44

R4

�
w0;##

�
�
A55 � B12

R
+
B55

R

�
'x;x

�
�
A44

R
�B22

R2 �B44

R2 +
C22

R3 +
C44

R3 � D22

R4

�
'#;#

+ P 0z = I0 �w0; 
B11 +

C11

R
+
e2

31
�33

2
3R

 �
H
2

�3

�
�
H
2
�Hp

�3
!!

u0;xx

+
�
B66

R2 � C66

R3 +
D66

R4

�
u0;##

+

 
B12

R
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+m0# = I1�v0 + I2 �'#; (21)

where:

P 0x = Px +N 0x;x; P 0# = P# +
N 0#;#
R

;

P 0z = Pz � N 0#
R
; m0x = mx +M 0x;x;

m0# = m# +
M 0#;#
R

: (22)

2.5. Navier solution method
The Navier-type solutions which satisfy the simply
supported boundary conditions are in the form of the
following series:

(u0;'x; Qx; Px;mx) =
1X

m;n=1

(u0; 'x; Qx; Px;mx)mn(t) cos�x cos�#;

(v0;'#; Q#; P#;m#) =
1X

m;n=1

(v0; '#; Q#; P#;m#)mn(t) sin�x sin�#;

(w0;Nx; N#;Mx;M#; Pz) =
1X

m;n=1

(w0; Nx; N#;Mx;M#; Pz)mn(t) sin�x cos�#;

(Nx#;N#x;Mx#;M#x) =
1X

m;n=1

(Nx#; N#x;Mx#;M#x)mn(t) cos�x sin�#; (23)

where:

� =
m�
L
; � =

n�
'
:

And now, by substituting Eqs. (23) into Eqs. (21), we
obtain the following matrix equation:

[M ]

8>>>><>>>>:
�u0mn
�v0mn
�w0mn
�'xmn
�'#mn

9>>>>=>>>>;+ [K]

8>>>><>>>>:
u0mn
v0mn
w0mn
'xmn
'#mn

9>>>>=>>>>; =

8>>>><>>>>:
p1mn
p2mn
p3mn
p4mn
p5mn

9>>>>=>>>>; ; (24)

where [M ], [K] are the inertia and sti�ness matrices,
and f �Ug, fUg, fPg are the acceleration, displacement
and load vectors. The coe�cients of matrix K are
very complicated. They are computed using Maple
software and not presented here.

3. Time integration

The Newmark family of methods is used in the present
study to numerically time integrate the system of �ve
coupled second order ODEs. The recursive relation
among displacements, and velocities t+ �t, are:

ut+�t=ut + �t _ut +
�t2

2
�
(1� 2�)�ut + 2��ut+�t� ;

(25)

_ut+�t = _ut + �t
�
(1� 
)�ut + 
�ut+�t� : (26)

The Newmark's parameters are chosen to be � =
1
4 and 
 = 1

2 . By setting these parameters, it
results in the constant acceleration scheme, which is
desirable because of its second order accuracy and non-
dissipative nature.

4. Results and discussion

4.1. Example 1
Consider a three-layered circular cylinder made of a
two-layered cross ply graphite{epoxy laminate [0�=90�]
and a PZT-4 layer bonded to its outer surface. All
layers have equal thickness. In this example, the radius
and length of the shell are R = 1 m and L = 4 m,
respectively. The value of the thickness is S = R=H =
10. The material properties of the graphite-epoxy and
the piezoelectric layers are listed in Tables 1 and 2.

The forcing function is chosen as:

Pz = P0(1� e�13100t); �1 = �2 = 0: (27)
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Table 1. Material properties of the unidirectional �ber reinforced graphite/epoxy.

Young modulus (GPa) Shear modulus (GPa) Poisson's ratio

EL ET GLT GTT �LT �TT
172.5 6.9 3.45 1.38 0.25 0.25

Table 2. Material properties of piezoelectric layers.

Elastic constants (GPa)

Material C11 C12 C13 C22 C23 C33 C44 C55 C66

PZT 139.0 77.8 74.3 139.0 74.3 115.0 25.6 25.6 30.6

Piezoelectric constants (C/m2) Permittivity
(C2/Nm2 �10�9)

Density
(kg/m3)

Material e31 e32 e33 e24 e15 �11 �22 �33 �

PZT-4 15.7 -5.3 -5.3 12.7 12.7 6.46 6.46 5.62 7600

Table 3. Material properties of host shells.

Material Mass density
(kg/m3)

Young's modulus
(GPa)

Poisson's ratio

Aluminum 2:80� 103 70 0.33

Copper 8:86� 103 115 0.31

Mild steel 7:86� 103 199.5 0.29

Figure 3. Variation of non-dimensional radial
displacement versus time.

In order to compare with the results of the other stud-
ies, the maximum non-dimensional radial displacement
is described in the following form:

w� =
100YT
HS4P0

w: (28)

The time history of the non-dimensional radial dis-
placement in the inner surface of the shell is presented
in Figure 3. Comparison of the results with those
obtained from the three-dimensional elasticity solu-
tion [37,38] shows very good agreement.

4.2. Example 2
In this example, the displacements of a circular cylin-
drical shell covered with piezoelectric layers, with
simply supported edges, are calculated. The material
properties of piezoelectric layers and the host shell of
steel are listed in Tables 2 and 3.

The value of the thickness is S = R=H = 4. The
radius of the shell is 60 mm. The ratios of the thickness
of the piezoelectric layers to the thickness of the host
shell structure are chosen to be Hp=HH = 0:2. The
variation of the radial strains versus time for each case
of loading is presented in Figure 4.

In order to validate the obtained results, a dy-
namic �nite element solution for the same example is
given by the authors. As shown in Figure 4, it can be
seen that good agreement stands between the results,
and deviations are negligible.

4.3. Example 3
In this example, the radial displacements of three sim-
ply supported cylinders covered with two piezoelectric
layers on the inner and outer surfaces are calculated.
The material properties of the host shells of aluminum,
copper and steel are listed in Table 3. The material
properties of the piezoelectric layers in this example are
the same as in the previous one. The shells are under
direct piezoelectric e�ects and there are no external
applied voltages. The length and radius of the shell are
equal to 8:25�10�2 m and 2:46�10�2 m, respectively.
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Figure 4. (a)-(d) Pressure-time graphs. (e)-(h) Strain-time graphs for each pressure.

Moreover, the values of the thickness, de�ned as S =
R=H, are 2, 4 and 10.

The pressure acting on the shell surface is an
electro-magnetic pressure, which is plotted in Figure 5.
It can be seen that the duration of the applied pressure
is about 80 ms. The non-dimensional radial displace-

ment is de�ned as follows:

w� =
E
HP0

w; (29)

where P0 is the amplitude of the external pressure act-
ing on the shell. Figures 6-8 show the non-dimensional
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Figure 5. Variation of radial pressure versus time.

Figure 6. Non-dimensional radial displacement versus
time for aluminum cylinder with S = 2, 4, 10 at (0, 0,
L=2).

Figure 7. Non-dimensional radial displacement versus
time for copper cylinder with S = 2, 4, 10 at (0, 0, L=2).

radial displacement versus time for aluminum, copper
and steel cylinders with di�erent thickness ratios.
These �gures represent the vibration behavior of the
cylinders under the given dynamic load.

The results indicate that, under this loading

Figure 8. Non-dimensional radial displacement versus
time for steel cylinder with S = 2, 4, 10 at (0, 0, L=2).

Figure 9. Non-dimensional radial displacement versus
time for aluminum cylinder with S = 4, excited by
di�erent applied voltages.

condition, until t = 80 ms, the dynamic de
ection
of the cylinders goes up and down across the average
magnitude of the pressure variations. When the
pressure vanishes, there is a steady harmonic curve
which moves up and down on the time axis.

Figure 9 illustrates the e�ects of the applied volt-
ages on the vibration damping of an aluminum cylinder
with surfaces bonded by PZT-4 layers. The plotted
curves in this �gure exhibit the direct piezoelectric
e�ect and the mechanical response to the symmetric
applied voltages (75 V and 150 V). It can be seen that
with the decrease in magnitude of the external load,
the e�ect of the applied actuation potential will be
increased during the time period. These e�ects will
be more apparent when the pressure vanishes.

5. Conclusion

In this paper, an investigation of the dynamic behavior
of thick piezoelectric cylinders under di�erent types
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of dynamic loading was presented. Five governing
equations, in terms of resultant forces and resultant
moments, were used in this investigation. The FSDT
was developed, including the inertia, rotary inertia,
sti�ness and piezoelectric e�ects of the piezoelectric
layers. The Navier solution was used for simply sup-
ported cylinders. The Newmark method was employed
for time integration.

Three examples are provided in detail by the
authors to illustrate the e�ectiveness of the presented
method. Comparing the results of the presented
method with those available in the literature shows
satisfactory agreement. Also, di�erent boundary condi-
tions, host shell materials (which may be isotropic and
orthotropic), ratios of the thickness of the host shell
and piezoelectric layers, order of shear deformation
theories and even forms of assumed solutions can be
easily accommodated into the analysis. The results of
this paper can serve as a reference for future study in
the design of smart engineering structures.
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