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Abstract. Within elasticity theory, the reduced form of a displacement �eld is obtained
for general cross-ply composite laminates subjected to a bending moment. The �rst-
order shear deformation theory of plates and Reddy's layerwise theory are then utilized
to determine the global deformation parameters and the local deformation parameters
appearing in the displacement �elds, respectively. For a special set of boundary conditions
an elasticity solution is developed to verify the validity and accuracy of the layerwise theory.
Finally, various numerical results are presented within the layerwise theory for edge-e�ect
problems of several cross-ply laminates under the bending moment. The results indicate
high stress gradients of interlaminar stress near the edges of laminates.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

With the ever-increasing application of laminated com-
posite, especially in aerospace industries, which require
strong, sti� and lightweight structural components, in-
terlaminar stress plays a signi�cant role in the analysis
and design of composite structures, since they can lead
to catastrophic failure modes like delamination. It has
already been shown that the classical lamination theory
is incapable of accurately predicting three-dimensional
stress states in regions near the edges of laminates
known as boundary-layer regions. Because of the
substantial importance of boundary-layer phenomenon
in practical usage, enormous amounts of research have
been undertaken concentrating on the study of inter-
laminar stress at free edges of composite laminates.
Since no exact elasticity solution to this problem is
yet known to exist, various approximate analytical and
numerical methods have been presented over the past
three decades to determine interlaminar stress in the
boundary layer.

The most important methods in this area are
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from the approximate elasticity solutions by Pipes and
Pagano [1], the higher-order plate theory by Pagano [2],
the boundary layer theory by Tang and Levy [3], the
perturbation technique by Hsu and Herakovich [4],
�nite di�erence by Pipes and Pagano [5] and �nite
elements by Wang and Crossman [6] and Whitcomb
et al. [7]. A relatively comprehensive discussion of
the literature on the interlaminar stress problem is
given in a survey paper by Kant and Swaminathan [8].
Investigations into other types of loading have been
relatively rare. Tang [9] examined the interlaminar
stresses in symmetric angle-ply composite laminates
with two simply supported sides and the other two free
sides subjected to a uniform lateral load. Using a global
high-order shear deformation theory, the modeling and
behavior of laminated plates were presented by Lo
et al. [10]. They solved the cylindrical bending of
angle-ply laminates and simply supported symmetric
laminates under pressure on the top surface of the
laminates. Because of global displacement assump-
tions, the transverse strain components are continuous
across the interface between dissimilar materials; there-
fore, transverse stress components are discontinuous
at the layer interfaces. This theory is, thus, most
often unquali�ed to obtain the three-dimensional stress
�eld at the ply level. Murthy and Chamis [11],
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utilizing a three-dimensional �nite element method,
founded interlaminar stresses in composite laminates
subjected to various loadings, such as in-plane and
out-of-plane shear/bending. Employing the principle
of minimum complimentary energy and the force bal-
ance method, the analyzing of general unsymmetric
laminates under combined in-plane and out-of-plane
loads was presented by Kassapoglou [12]. Barbero et
al. [13] developed analytical solutions for displacement
and stresses in simply supported laminates using the
laminate plate theory of Reddy. They supposed con-
stant laminate thickness and neglected the transverse
normal stress component in their analysis. Savoia
and Reddy [14] employed a displacement separation
of variable approaches and the minimization of the
total potential energy, and obtained three-dimensional
elasticity solutions for antisymmetric angle-ply rect-
angular laminates under sinusoidal transverse loading.
Wu and Kuo [15] predicted interlaminar stresses in
composite laminates under cylindrical bending. They
used a local higher-order lamination theory. Wu and
Yen [16] also utilized a stress mixed �nite element
method, based on the local high-order lamination
theory, to analyze unsymmetrical thick laminated
composite plates, which were fully simply supported,
subjected to a sinusoidal distribution of transverse
load. Kim and Atluri [17] using an approximate
method based on equilibrated stress representations
and the principle of minimum complementary energy,
analyzed interlaminar stresses near straight free edges
of beam-type composite laminates under out of planes
shear/bending. They included longitudinal degrees of
freedom in the stress distributions. They obtained that
interlaminar stresses under shear/bending might ex-
hibit substantially di�erent characteristics than those
subjected to uniaxial loading or under pure bending.
Robbins and Reddy [18] developed a layerwise �nite
element model of laminated composite plates. They
exhibited that their model is capable of computing
interlaminar stresses and other localized e�ects with
the same level of accuracy as a conventional three-
dimensional �nite element model. They examined the
bending of simply supported square laminated plates
and free edge e�ects in symmetric angle-ply laminates
subjected to axial displacements on the ends. Lee
and Chen [19] predicted interlaminar shear stresses by
employing a layerwise interlaminar shear stress conti-
nuity theory using a layer reduction technique. They
considered no thickness stretching in their analysis
and obtained only shear transverse stresses. Shu and
Soldatos [20] determined stress distributions in angle-
ply laminated plates, subjected to cylindrical bending
with di�erent sets of edge boundary conditions. Huang
et al. [21], using a partially hybrid stress element
with interlaminar continuity, analyzed the bending of
composite laminated plates. Matsunaga [22] also ob-

tained stress and displacement distributions of simply
supported cross-ply laminated composite and sandwich
plates subjected to lateral pressure using a global
higher-order plate theory. Mittelstedt and Becker [23]
utilized Reddy's layerwise laminate plate theory to
obtain the closed-form analysis of free-edge e�ects in
layered plates of arbitrary non-orthotropic layups. The
approach consists of the subdivision of physical lami-
nate layers into an arbitrary number of mathematical
layers through the plate thickness. Jin Na [24] used
a �nite element model based on the layerwise theory,
and von K�arm�an type nonlinear strains are used to
analyze damage in laminated composite beams. In the
formulation, the Heaviside step function is employed
to express the discontinuous interlaminar displacement
�eld at the delaminated interfaces. Recently, the lay-
erwise theory (LWT) and Improved First-order Shear
Deformation Theory (IFSDT) are employed by Nosier
and Maleki [25] to analyze free-edge stresses in general
composite laminates under extension loads. Kim et
al. [26] analyzed interlaminar stresses near free edges in
composite laminates by considering interface modeling.
This interface modeling provided not only nonsingular
stresses but concentrated �nite interlaminar stresses,
using the principle of complementary virtual work, and
the stresses that satisfy the traction-free conditions not
only at the free edges but also at the top and bottom
surfaces of laminates were obtained. Lee et al. [27]
analyzed the interlaminar stresses of a laminated com-
posite patch using a stress-based equivalent single-layer
model under a bending load. The adhesive stresses
were obtained by solving the equilibrium equations.
The authors found that the stress function-based ap-
proach was suitable for solving the stress prescribed
boundary value problem with accuracy and e�ciency,
compared to a displacement-based approach, such as
the �nite element method. Ahn et al. [28] presented an
e�cient modeling technique using a multi-dimensional
method for prediction of free edge stresses in lami-
nate plates. The results obtained by this proposed
model were compared with those available in literature.
The present models using the p-convergent transition
element are demonstrated to be more practical and
economical than the previous p-version FEM using only
a single element type.

From the literature survey, it appears that, when
regarding the failure of structural components because
of bending loads, much more often than in-plane loads,
little work has been dedicated so far to the development
of theoretical or numerical models for predicting the
boundary-layer e�ects of the bending of structural
laminates. For this reason, the present study deals with
the analytical solution of interlaminar stresses near
free edges of a general cross-ply composite laminate
subjected to a bending moment. Beginning from
the general form of the displacement �eld for long
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laminates and making logical hypotheses in joining
with the physical behavior of cross-ply laminates,
the displacement �eld is signi�cantly decreased. A
layerwise theory (LWT) is utilizing to analyze the
bending problem of a general cross-ply laminate with
free edges by employing the simpli�ed displacement
�eld. The �rst-order shear deformation theory is then
employed to determine the unknown coe�cients in the
reduced displacement �eld. Also, an analytical solution
to elasticity equations is developed for a special set
of boundary conditions. This solution is employed to
exhibit the accuracy of the LWT results.

2. Theoretical formulation

It is intended, here, to determine the interlaminar
stresses in a general cross-ply laminate subjected to
the bending moment at x = a and x = �a. Lam-
inate geometry and coordinate systems are shown in
Figure 1. The formulation is limited to linear elastic
material behavior and small strain and displacement.

2.1. Elasticity formulation
Here, it is assumed that the laminate is of thickness h,
width 2b, and considered to be long in the x-direction,
and loaded at x = a and x = �a only, as shown in
Figure 1. Upon integration of the strain-displacement
relation, all strain components are a function of y and
z only,

The most general form of the displacement �eld
within the kth layer can be shown to be [29]:

u(k)
1 (x; y; z)=B(k)

4 xy +B(k)
6 xz +B(k)

2 x+ u(k)(y; z);

u(k)
2 (x; y; z)=�B(k)

1 xz+B(k)
3 x� 1

2
B(k)

4 x2+�(k)(y; z);

u(k)
3 (x; y; z)=B(k)

1 xy+B(k)
2 x� 1

2
B(k)

6 x2+w(k)(y; z);
(1)

where u(k)
1 (x; y; z), u(k)

2 (x; y; z) and u(k)
3 (x; y; z) are

the displacement components in the x�; y�; and z-
directions, respectively, of a material point initially
located at (x; y; z) in the kth ply of the laminate. In
order to ful�ll the continuity of the displacement at

Figure 1. Laminate geometry and coordinate system.

the interface of the layers, it is necessary that the set
of constants appearing in Eqs. (1) be the same for all
layers within the laminate (i.e. B(1)

j = B(2)
j = ::: =

B(N)
j � Bj ; j = 1; 2; :::; 6), that is:

u(k)
1 (x; y; z) = B4xy +B6xz +B2x+ u(k)(y; z);

u(k)
2 (x; y; z) = �B1xz +B3x� 1

2
B4x2 + �(k)(y; z);

u(k)
3 (x; y; z) = B1xy +B5x� 1

2
B6x2 + w(k)(y; z):

(2)

As long as the loading conditions at x = �a and a are
similar, based on physical grounds, it is argued here
that the following conditions must hold:

u(k)
1 (x; y; z) = �u(k)

1 (�x;�y; z);
u(k)

2 (x; y; z) = �u(k)
2 (�x;�y; z);

u(k)
3 (x; y; z) = u(k)

3 (�x;�y; z): (3)

From Eqs. (2) and (3), it is readily concluded that:

u(k)(y; z) = �u(k)(�y; z);
�(k)(y; z) = ��(k)(�y; z);
w(k)(y; z) = w(k)(�y; z); (4)

and B4 = B5 = 0: The displacement in Eq. (2) is,
therefore, simpli�ed to what follows:

u(k)
1 (x; y; z) = B2x+B6xz + u(k)(y; z); (5a)

u(k)
2 (x; y; z) = �B1xz +B3x+ �(k)(y; z); (5b)

u(k)
3 (x; y; z) = B1xy � 1

2
B6x2 + w(k)(y; z): (5c)

Next, by replacing u(k)(y; z) by �B3y + u(k)(y; z) in
Eq. (5a), the terms involving B3 in Eqs. (5a)-(5c) may
be neglected since no strains are yielded by such terms.
In fact, these terms will correspond to an in�nitesimal
rigid-body rotation of the laminate about the z-axis in
Figure 1. The most general form of the displacement
�eld of the kth layer within an arbitrary laminate is,
therefore, reduced to be as:

u(k)
1 (x; y; z) = B2x+B6xz + u(k)(y; z); (6a)

u(k)
2 (x; y; z) = �B1xz + �(k)(y; z); (6b)

u(k)
3 (x; y; z) = B1xy � 1

2
B6x2 + w(k)(y; z): (6c)
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For general cross-ply laminates based on physical
grounds, the following restrictions will, furthermore,
hold (see Figure 1):

u(k)
1 (�x; y; z) = �u(k)

1 (�x; y; z); (7a)

u(k)
2 (x; y; z) = u(k)

2 (�x; y; z): (7b)

Upon imposing Eq. (7a) on Eq. (6a) it is concluded
that u(k)(y; z) = 0. Also, from Eqs. (7b) and (6b), it
is founded that B1 = 0. Thus, for cross-ply laminates,
the most general form of the displacement �eld is given
as:

u(k)
1 (x; y; z) = B6xz +B2x;

u(k)
2 (x; y; z) = �(k)(y; z);

u(k)
3 (x; y; z) = �1

2
B6x2 + w(k)(y; z): (8)

It is next noted that if the loading conditions at x =
a and x = �a are identical, the following conditions
along the line GOH must hold:

u(k)
1 (x = 0; y = 0; z) = 0;

and:

u(k)
2 (x = 0; y = 0; z) = 0: (9)

From these conditions it is concluded from Eqs. (8) that
�(k)(y = 0; z) = 0 and therefore:

u(k)
1 (x; y = 0; z) = B6xz +B2x; (10a)

u(k)
2 (x; y = 0; z) = 0: (10b)

The second parameter in Relation (10a) indicates that
lines, such as AB, EF and DC, within the plan ADCB
will remain straight after deformation and, further-
more, B2 is the uniform axial strain of the laminate in
the x-direction due to the bending moment. Denoting
the axial displacement of the line EF by a�L and that
of MN by -a�L, it is then concluded that B2 = �L. The
�rst parameter in Relation (10a), on the other hand,
indicates that the plane ADCB rotates about the line
cc (in the y direction) and B6 is the angle of bending
 per unit length.

Denoting the angle of bending of the line EF
about line cc by �, it is, therefore, concluded that
B6 =  = �

a .
From the preceding discussions, it is evident that

either B2 and B6 or M0 must be speci�ed at the ends
of the laminate. These conclusions can be arrived
by the application of the principle of minimum total
potential energy. Substituting the displacement �eld

Eqs. (8) into the linear strain-displacement relations of
elasticity [30], the following results will be obtained:

"(k)
x = B6z +B2; "(k)

y = �(k)
;y;

"(k)
z = w(k)

;z; (k)
yz = �(k)

z;+w(k)
;y;

(k)
xy = 0; (k)

xz = 0; (11)

where a comma followed by a variable indicates partial
di�erentiation, with respect to that variable. The
constitutive relations for the kth orthotropic lamina,
with �ber orientations of 0� and 90� only, are given
by [31]:

f�g(k) = [ �C](k)f"g(k); (12)

where [ �C] is called the transformed (or o�-axis) sti�ness
matrix. The local equilibrium equations of elasticity
are known to be [30]:

�ij;j = 0 i = 1; 2; 3 ; (13)

where body forces are considered to be negligible. Also,
the repeated index in Eq. (13) indicates summation
from one to three. The displacement equilibrium equa-
tions within the kth ply are achieved by substituting
Eqs. (11) into Eq. (12) and the subsequent results into
Eqs. (10). It is to be noted that the displacement
equilibrium equation for i = 1 is identically satis�ed.
Therefore, the results are:

�C(k)
22 �

(k)
;yy + �C(k)

44 �
(k)

;zz + ( �C(k)
23 + �C(k)

44 )w(k)
;yz = 0;

( �C(k)
44 + �C(k)

23 )�(k)
;zy + �C(k)

44 w
(k)

;yy + �C(k)
33 w

(k)
;zz

= � �C(k)
13 B6: (14)

The laminate plate is assumed to have free edges at
y = b and y = �b; solutions of Eq. (14) must satisfy
the following traction-free boundary conditions:

�(k)
y = �(k)

yz = 0; at y = �b: (15)

Unfortunately, however, no analytical solution seems
to exist for such a boundary-value problem. For this
reason, in the present work, attention is devoted to
technical plate theories. It is noted that parameters B2
andB6 in Eqs. (8) correspond to the global deformation
of the laminate and, therefore, the unknown constants,
B2 and B6, may be determined from the simple �rst-
order shear deformation plate theory (FSDT). The
remaining terms (i.e. �(k) and w(k)) in Eqs. (8),
on the other hand, belong to the local deformations
of laminate within the laminate and will be deter-
mined by using a layerwise laminated plate theory
(LWT).
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2.2. First-order shear deformation plate
theory

In addition to their inherent simplicity and low com-
putational cost, ESL theories often provide su�ciently
accurate illustration of global responses for thin to
moderately thick laminates. Among the ESL theories,
FSDT, which is also known as the Mindlin-Reissner
theory, seems to provide the best compromise as
far as solution accuracy and simplicity are involved.
The theory assumes that the displacement component
of any point within the laminate can be suggested
as [32]:

u1(x; yx; z) = u(x; y) + z	x(x; y);

u2(x; y; z) = �(x; y) + z	y(x; y);

u3(x; yx; z) = w(x; y): (16a)

By comparing Eqs. (16a) with the reduced elasticity
displacement �eld in Eqs. (8), it is concluded that the
displacement �eld of FSDT Eqs. (16a) must have the
following simple form:

u1(x; y; z) = B6xz +B2x;

u2(x; yx; z) = �(y) + z	y(y);

u3(x; y; z) = �1
2
B6x2 + w(y): (16b)

By employing the principle of minimum total potential
energy [30] and the displacement �eld in Eqs. (16b),
the equilibrium equations within FSDT can be
obtained to be as:

�� : N 0y = 0; (17a)

�w : Q0y = 0; (17b)

�	y : Qy �M 0y = 0; (17c)

�B2 :
+bZ
�b

Nxdy = 0; (18a)

�B6 :
+bZ
�b

Mxdy �M0 = 0: (18b)

Here, a prime in Eqs. (17) indicates ordinary
di�erentiation, with respect to variable y. Also, at the
free edges of the laminate (i.e. at y = �b), the following
boundary conditions must be imposed at these edges:

Ny = My = Qy = 0; at y = �b: (19)

In Eqs. (17)-(19), the stress and moment resultants
are found to be as follows [32]:

(Mx;My; Nx; Ny; Qy)=

h=2Z
�h=2

(�xz; �yz; �x; �y; �yz)dz:
(20)

Based on the displacement �eld in Eqs. (16b) for
general cross-ply laminates, these stress and moment
resultants are readily found to be:

(Nx; Ny) = (B11; B12)B6 + (A11; A12)B2

+ (A12; A22)V 0 + (B12; B22)	0y;

(Mx;My) = (D11; D12)B6 + (B11; B12)B2

+ (B12; B22)V 0 + (D12; D22)	0y;

Qy = k2
4A44(	y +W 0); (21)

where Aij ; Bij and Dij are the stretching, bending-
stretching coupling and bending sti�ness of composite
laminates within FSDT [32]. Also, in Eqs. (21), k2

4
is the shear correction factor introduced in order to
improve the accuracy of FSDT. The displacement
equilibrium equations are found by substituting
Eqs. (21) into Eqs. (17) and (18). Solving these
equations under the boundary conditions in Eq. (19)
will yield the displacement functions, �(y);	y(y), and
w(y) and the unknown constants, B2 and B6, which
appear in Eq. (16b).

The parameters, B2 and B6, which are needed in
Eqs. (8), are determined to be:

B6 =
�A11

�A11 �D11 � �B2
11

M0

2b
;

B2 = � �B11
�A11 �D11 � �B2

11

M0

2b
: (22)

The constant parameters appearing in Eqs. (22) are
listed in Appendix A.

In the remainder of the present investigation, the
following loading cases will be considered:

Loading case 1:

B2 = � �B11
�A11 �D11 � �B2

11

M0

2b
= �L; and

B6 =
�A11

�A11 �D11 � �B2
11

M0

2b
: (23)

Loading case 2:

B2 = � �B11
�A11 �D11 � �B2

11

M0

2b
= �L; and

B6 = 0: (24)
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In both cases, the specimen is stretched due to the
bending moment. In the �rst loading case, the cross-
ply laminate is allowed to freely rotate about the y-axis,
but, in the second loading case, the rotation about the
y-axis is restricted (consider the specimen whose lower
and upper surfaces parallel to XY are �xed between two
jaws, thus, the specimen can stretch in the x direction,
but cannot freely rotate about the y-axis. In this form,
the specimen is subjected to the bending moment at
its two edges).

2.3. Layerwise laminated plate theory of Reddy
Due to the existence of a local high stress gradient
and the three-dimensional nature of the boundary-
layer phenomenon, the interlaminar stresses in the
boundary-layer region cannot be determined accu-
rately by the FSDT theory. Thus, Reddy's layerwise
theory, which is capable of modeling localized three
dimensional e�ects, is employed here to carry out the
bending interlaminar stress analysis in general cross-
ply laminates with free edges. Based on the results
in Eqs. (8), obtained within the elasticity formulation,
the appropriate displacement �eld within LWT will be
simpli�ed to be:

u1(x; y; z) = B6xz +B2x;

u2(x; y; z) = Vk(y)�k(z); k = 1; 2; :::; N + 1;

u3(x; y; z) = �1
2
B6x2 +Wk(y)�k(z): (25)

In Eqs. (25), u1; u2 and u3 represent the displacement
components in the x; y and z directions, respectively,
of a material point initially located at (x; y; z) in the
undeformed laminate. Also, B2x;B6xz and � 1

2B6x2

denote global terms that signify the general behavior of
the laminate, and Vk(y) and Wk(y)(k = 1; 2; :::; N + 1)
represent the local displacement components of all
points located on the kth surface in the undeformed
state [32,33]. In Relation (25), N marks the total
number of numerical layers considered in a laminate.
Furthermore, �k(z) is the global Lagrangian inter-
polation function that is used for discretization of
the displacement through the thickness, and can have
linear, quadratic or higher-order polynomial variations
of the thickness coordinate z [32]. This way, the
displacement components will be continuous through
the laminate, but the transverse strain components
will not be continuous at the interfaces between ad-
joining layers. This leaves the possibility of continuous
transverse stresses at interfaces separating dissimilar
materials. It is to be noted that the accuracy of LWT
can be enhanced by subdividing each physical layer
into a �nite number of numerical layers. Clearly, as
the number of subdivisions through the thickness is
increased, the number of governing equations and the

accuracy of the results are increased. The linear global
interpolation function, �k(z), is de�ned as:

�k(z)=

8>>><>>>:
0 z � zk�1

	2
k�1(z) zk�1 � z � zk

	1
k(z) zk � z � zk+1

0 z � zk+1

(k = 1; 2; :::; N + 1); (26)

where 	j
k(j = 1; 2) are the local Lagrangian linear

interpolation functions within the kth layer, which are
de�ned as:

	1
k(z) =

1
hk

(zk+1 � z);
and:

	2
k(z) =

1
hk

(z � zk); (27)

with, hk being the thickness of the kth layer. Sub-
stituting Eqs. (25) into the linear strain-displacement
relations of elasticity [30], the results are obtained as:

"x = B6z +B2; "y = V 0k�k; "z = Wk�0k;

yz = Vk�0k +W 0k�k; xz = 0; xy = 0: (28)

By utilizing the principle of minimum total potential
energy, the equilibrium equations within LWT are
found. The results are 2(N+1) local equilibrium equa-
tions corresponding to 2(N+1) unknowns, Vk and Wk;
and two global equilibrium equations corresponding to
B2 and B6 can be shown to be:

�Vk : Qky � dMk
y

dy
= 0; k = 1; 2; :::; N + 1; (29a)

�Wk : Qky � dMk
y

dy
= 0 k = 1; 2; :::; N + 1; (29b)

�B2 :
Z b

�b
Nxdy = 0; (29c)

�B6 :
Z b

�b
Mxdy �M0 = 0: (29d)

Also, the boundary conditions at the edges parallel to
the x-axis (i.e., at y = �b; b) involve the speci�cations
of either Vk of Mk

y and Wk of Rky . The generalized
stress resultants in Eqs. (29) are de�ned as:

(Mk
y ; R

k
y) =

Z h=2

�h=2
(�y; �yz)�kdz;

(Nk
z ; Q

k
y) =

Z h=2

�h=2
(�z; �yz)�0kdz;

(Mx; Nx) =
Z h=2

�h=2
(�xz; �x)dz: (30)
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The generalized stress resultants in Eqs. (30) are
expressed in terms of the unknown displacement func-
tions by substituting Eqs. (28) into Eq. (12) and the
subsequent results into Eqs. (30). The results are
obtained, which can be represented as:

(Mk
x ; N

k
x ;M

k
y ; N

k
z ) =(D11; B11; Dk

12; �Bk13)B6

+ (B11; A11; Bk12; A
k
13)B2

(Dk
12; B

k
12; D

kj
22 ; B

jk
23)V 0j

+ ( �Bk13; A
k
13; B

kj
23 ; A

kj
33)Wj ;

(Rky ; Q
k
y) = (Bkj44 ; A

kj
44)Vj + (Dkj

44 ; B
jk
44)W 0j ; (31)

where in Eqs. (31), the laminate rigidities are de�ned
as:

(Akjpq ; B
kj
pq ; D

kj
pq)=

NX
i=1

h=2Z
�h=2

�C(i)
pq (�0k�0j ; �k�0j ; �k�j)dz;

(Akpq;B
k
pq; �Bkpq;D

k
pd)=

NX
i=1

h=2Z
�h=2

�C(i)
pq (�0k;�k; �0kz;�kz)dz;

(k; j = 1; 2; :::; N + 1): (32)

The integrations in Eqs. (32) carry out the �nal
expressions of rigidities, which are for convenience,
and presented in Appendix B. The local equilibrium
equations are expressed in terms of the displacement
functions by substituting Eqs. (31) into Eqs. (29a)
and (29b). The results are:

�Vk : Akj44Vj �Dkj
22V

00
j + (Bjk44 �Bkj23)W 0j = 0

k = 1; 2; :::; N + 1;

�Wk : Akj33Wj �Dkj
44W

00
j + (Bjk23 �Bkj44)V 0j

=� �Bk13B6�Ak13B2 k = 1; 2; :::; N+1: (33)

Finally, by substituting Eq. (12) into Eqs. (29c)
and (29d), the global equilibrium conditions are ex-
pressed in terms of the displacement functions in the
following form:

�B2 :B11B6+A11B2 +
Bk12
b
Vk(b) +

Ak13
2b

bZ
�b
Wkdy=0;

�B6 :D11B6+B11B2 +
Dk

12
b
Vk(b)

+
�Bk13
2b

bZ
�b
Wkdy=

M0

2b
: (34)

3. Analytical solution

In this section, the procedures for solving the dis-
placement equations of equilibrium within LWT and
elasticity theory are debated for the cross-ply laminate
subject to the bending moment, M0.

3.1. LWT solution
The system of equations appearing in Eqs. (33)
presents 2(N+1) coupled second-order ordinary di�er-
ential equations with constant coe�cients, which may
be introduced in a matrix form as:

[M ]f�00g+ [K]f�g = [T ]fBg:y; (35)

where:

f�g =
�
fV gT ; fWgT

�T
;

fV g = fV1; V2; :::; VN+1gT ;
f �Wg = f �W1; �W2; :::; �WN+1gT ;
fBg = fB2; B6gT ; (36a)

and:

W j =
yZ
Wjdy: (36b)

The coe�cient matrices, [M ]; [K] and [T ], are in
Eq. (35) and are listed in Appendix B. The general
solution of Eq. (35) may be written as:

f�g = [	][sinh(�y)]fHg+ [K]�1[T ]fBg:y; (37)

where [sinh(�y)] is a 2(N +1)�2(N +1) diagonal ma-
trix. Also, [	] and (�2

1; �2
2; :::; �2

2(N+1)) are the modal
matrix and eigenvalues of (�[M ]�1[K]), respectively.
In addition, fHg is an unknown vector containing
2(N + 1) integration constants. In the present study,
it is assumed that the boundary conditions of the
laminate at y = b and y = �b are same. Here, the
edges at y = �b are free, the following traction-free
boundary conditions must be imposed within LWT:

Mk
y = Rky = 0 at y = �b: (38)

It is to be noted that the unknown, B2 and B6, may
be found by two di�erent approaches. If B2 and
B6, are assumed available from FSDT, by satisfying
the boundary condition in Eq. (38), the integration
constants being in fHg will be determined and the
problem is solved completely. On the other hand, LWT
analysis may be employed to compute the constants,
B2 and B6. This is readily accomplished with the
boundary conditions in Eq. (38) that are �rst imposed
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to yield vector in terms of the unknown parameters, B2
and B6. These constants are next obtained in terms of
the speci�ed bending moment, M0, by the satisfaction
of the global equilibrium condition in Eqs. (34). It
should be noted that the analysis within LWT will also
be followed for comparing the signi�cance of FSDT in
accurate determination of the unknown parameters, b2
and B6.

3.2. Elasticity solution
As previously mentioned, no analytical solution seems
to exist for Eq. (14) subject to the traction-free bound-
ary conditions in Eq. (15). It is, however, noted here
that if the bending rotation is impeded by the end grips
(i.e., B6 = 0), while the laminate is being extended
in the x-direction, then it is possible to determine
an analytical solution for Eq. (14) for the following
boundary conditions:

�(k)
y = u(k)

3 = 0; at y = �b: (39)

Such an analytical solution is developed here only to
appraise the accuracy of the layerwise theory. With
B6 = 0, the displacement �eld in Eqs. (8) is reduced
to:

u(k)
1 (x; y; z) = � �B11

�A11 �D11 � �B2
11

M0

2b
x � �Lx;

u(k)
2 (x; y; z) = �(k)(y; z);

u(k)
3 (x; y; a) = w(k)(y; z): (40)

Also, the elasticity equilibrium equations in Eqs. (14)
are simpli�ed into what follows:

�C(k)
22 �

(k)
;yy + �C(k)

44 �
(k)

;zz+ ( �C(k)
23 + �C(k)

44 )w(k)
;yz = 0;

( �C(k)
44 + �C(k)

23 )v(k)
;yz + �C(k)

44 w
(k)

;yy+ �C(k)
33 w

(k)
;zz = 0:

(41)

In terms of the displacement functions appearing in
Eqs. (40), the following conditions in Eq. (39) will be
given as:

w(k)(y; z) = 0;

�C(k)
12 L+ �C(k)

22 �
(k)

;y + �C(k)
23 w

(k)
;z = 0 at y = �b:

(42)

Next, within any layer, it is assumed that:

�(k)(y; z) = V (k)(y; z) + ��(k)(y);

w(k)(y; z) = W (k)(y; z) + �w(k)(y): (43)

Upon substituting Eq. (43) into the governing equa-
tions of equilibrium (41), two set of equations will be
obtained. The �rst contains ��(k) and �w(k), as follows:

�C(k)
22 ��(k)

;yy = 0;

�C(k)
44 �w(k)

;yy = 0: (44)

The second set of equations contains V (k) and W (k) as:

�C(k)
22 V

(k)
;yy + �C(k)

44
�V (k)
;zz + ( �C(k)

23 + �C(k)
44 )W (k)

;yz = 0;

( �C(k)
44 + �C(k)

23 )V (k)
;yz+ �C(k)

44 W
(k)
;yy + �C(k)

33 W
(k)

;zz = 0:
(45)

Similarly, substitution of Eq. (43) into the relevant
boundary conditions, Eq. (42), at y = �b and y = b,
yields:

�w(k)(y) = 0;

�C(k)
22 ��(k)

;y + �C(k)
12

�L = 0; (46)

and:

W (k)(y) = 0;

�C(k)
22 V

(k)
;y + �C(k)

23 W
(k)

;z = 0: (47)

Next, it is noted, from the solutions of the ordinary
di�erential equations in Eqs. (44) and the boundary
conditions in Eqs. (46), that it can be concluded:

��(k) = � �C(k)
12

�C(k)
22

�Ly =
�C(k)

12
�C(k)

22

�B11
�A11 �D11 � �B2

11

M0

2b
y;

�w(k) = 0: (48)

It remains to solve Eqs. (45) with the boundary condi-
tions in (47). It is noted that the boundary conditions
in Eqs. (47) are identically satis�ed by assuming the
following solution representations:

V (k)(y; z) =
1X
m=0

V (k)
m (z) sin(�my) + V (k)

0 (z);

W (k)(y; z) =
1X
m=0

W (k)
m (z) cos(�my); (49)

where �m = (2m+ 1) �2b .
Next, upon substitution of Eqs. (49) into

Eqs. (45), two sets of ordinary di�erential equations
are obtained as:

V (k)00
0 (z) = 0; (50)
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and:

��2
m

�C(k)
22 V

(k)
m (z) + �C(k)

44 V
(k)00
m (z)� �m( �C(k)

23

+ �C(k)
44 )W (k)0

m = 0;

�m( �C(k)
44 + �C(k)

23 )V (k)0
m (z)� �2

m( �C(k)
44 W

(k)
m

+ �C(k)
33 W

(k)00
m = 0: (51)

Eq. (50) has the following solution:

V (k)
0 (z) = Ekz + Fk; (52)

where Ek and Fk are unknown constants introduced in
the remainder of the present work. Next, in order to
solve Eqs. (51), it is assumed that:

V (k)
m (z) = Bkme�kmz;

W (k)
m (z) = Ckme�kmz: (53)

This upon substitution into Eqs. (51) yields the follow-
ing algebraic equations:" ��2

m
�C(k)

22 + �2
km

�C(k)
44 ��m�km( �C(k)

23 + �C(k)
44 )

��m�km( �C(k)
44 + �C(k)

23 ) �2
m

�C(k)
44 + �2

km
�C(k)

33

#
�
Bkm
Ckm

�
=
�

0
0

�
: (54)

For a nontrivial solution, the determinant of the co-
e�cient matrix in Eq. (54) must vanish. This way, a
4th-order polynomial equation in �km is obtained as
follows:�

�C(k)
33

�C(k)
44

�
�4
km + �2

m

�
( �C(k)

44 + �C(k)2)
44 � �C(k)2

22

� �C(k)
33

�C(k)
33 �

2
km+�4

m
�C(k)

22 � �C(k)
44 = 0:

(55)

Eq. (55) has four distinct roots, which may, in gen-
eral, be complex. Therefore, the general solutions of
Eqs. (51) may be presented as:

V (k)
m (z) =

4X
i=1

Bkmie�kmiz;

W (k)
m (z) =

4X
i=1

�CkmiBkmie�kmiz: (56)

Moreover, the coe�cient �Ckmi appearing in Eqs. (56)
is determined from the following relation:

�Ckmi =
�C(k)

44 �2
km � �2

m
�C(k)

22

�m�km( �C(k)
23 + �C(k)

44 )
: (57)

Next, with �m = (2m+1) �2b , the following Fourier sine
expansion for y is used in Eqs. (48):

y =
1X
m=0

am sin(�my); (58a)

and:

am =
8b
�2

(�1)m

(2m+ 1)2 : (58b)

Thus, the displacement components within the kth
layer of the laminate are given by:

u(k)
1 (x; y; z) = � �B11

�A11 �D11 � �B2
11

M0

2b
x;

u(k)
2 (x; y; z) =

1X
m=1

Bkm sin(�my) + Ekz + Fk

+
1X
m=0

4X
i=1

Bkmie�kmiz sin(�my);

u(k)
3 (x; y; z) =

1X
m=0

+
4X
i=1

�CkmiBkmie�kmiz cos(�my);
(59)

where:

Bkm =
�C(k)

12
�C(k)

22

�B11
�A11 �D11 � �B2

11

M0

2b
am: (60)

It is to be noted that the constant Fk being in
Eqs. (59) is a part of the rigid body translations and
can, therefore, be ignored. The remaining unknown
constants in Eqs. (59) (i.e., Bkmi and Ek) are obtained
by imposing the traction-free boundary conditions at
the top and bottom surface of the laminate, and the
displacement continuity conditions and the stress equi-
librium conditions at the interfaces. For completeness,
these conditions are listed here:

The traction-free conditions at the top surface of the
�rst layer (i.e. �(1)

z = �(1)
yz = 0):

�C(1)
23 u

(1)
2;y + �C(1)

33 u
(1)
3;z = �C(1)

13
�L;

�C(1)
44 (u(1)

2;z + u(1)
3;y) = 0: (61a)

The traction-free conditions at the bottom surface of
the Nth layer (i.e. �(N)

z = �(N)
yz = 0):

�C(N)
23 u(N)

2;y + �C(N)
33 u(N)

3;z = � �C(N)
13

�L;

�C(N)
44 (u(N)

2;z + u(N)
3;y ) = 0: (61b)
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The displacement continuity conditions at the kth
interface:

u(k)
2 = u(k+1)

2 ; and u(k)
3 = u(k+1)

3 : (61c)

The stress equilibrium conditions at the kth interface
( i.e. �(k)

z = �(k+1)
z and �(k)

yz = �(k+1)
yz ):

�C(k)
23 u

(k)
2;y + �C(k)

33 u
(k)
3;z + �C(k)

13
�L = �C(k)

23 u
(k+1)
2;y

+ �C(k+1)
33 u(k+1)

3;z
�L;

�C(k)
44 (u(k)

2;z + u(k)
3;y) = �C(k+1)

44 (u(k+1)
2;z + u(k+1)

3;y ): (61d)

In order to be able to impose the conditions stated
before, the parameter, �L, appearing in Eqs. (61) can
be expended in the Fourier cosine series as:

�L =
1X
M=0

�Lbm cos(�my); (62a)

where �m = (2m+ 1) �2b and:

bm =
4
�

(�1)m

2m+ 1
: (62b)

For a general cross-ply laminate with N layers, sub-
stituting Eqs. (59) and (62a) into Eqs. (61) generates
4N algebraic equations, which, upon solving, will
produce the 4N unknown constants of integrations,
Bkmi, appearing in Eqs. (59) for each Fourier integer,
m. The remaining unknown constant (i.e., Ek) will be
obtained to be equal to zero. As a result, the strain
and stress components will readily be determined from
the strain-displacement relations in Eqs. (11) and the
Hooke law in Eq. (12), respectively.

It is noted that the elasticity solution presented
here is an analytical solution and not an exact solution
because of the Gibbs phenomenon in the Fourier
expansions introduced in Eqs. (58a) and (62a). In fact,
according to the solution found here, the interlaminar
normal stress, �z, will vanish at points located on the
edges of the laminate at y = �b. This is, of course,
not a correct result, since an exact elasticity solution
would yield nonzero values for �z on theses edges. The
exact value of �z on these edges, however, is determined
by considering the following three-dimensional Hooke's
law [31]:

"(k)
x = �S(k)

11 �
(k)
x + �S(k)

12 �
(k)
y + �S(k)

13 �
(k)
z ;

"(k)
z = �S(k)

13 �
(k)
x + �S(k)

23 �
(k)
y + �S(k)

33 �
(k)
z ; (63)

where �S(k)
ij 's are the transformed compliances of the kth

layer. At the edges of the laminate, u(k)
3 is speci�ed to

vanish (see Eq. (39)). Therefore, at all points on these

edges (expect for points located at the intersections of
these edges with interfaces, bottom surface, and top
surface of the laminate), the following result can be
concluded:

"z =
@u(k)

3
@z

= 0 at y = �b: (64)

Next, it is noted that the substitution of Eqs. (38)
and (64) into Eqs. (63) results in:

�L = �S(k)
11 �

(k)
x + �S(k)

13 �
(k)
z ; (65a)

0 = �S(k)
13 �

(k)
x + �S(k)

33 �
(k)
z : (65b)

Solving Eqs. (65) yields the exact value of �(k)
z , found

to be as:

�(k)
z =

�S(k)
13

�L
�S(k)2

13 � �S(k)
11

�S(k)
33

; (66)

where �L = � �B11
�A11 �D11� �B2

11

M0
2b . This relation marks that

the interlaminar normal stress has a constant value
at the edges of each lamina and that, furthermore,
this constant value becomes di�erent from one layer
to another (adjacent) layer because of changes in �ber
direction.

4. Numerical results and discussions

In this section, several numerical examples are accessi-
ble for general cross-ply laminates under the bending
moment, M0. The on-axis mechanical properties of
each ply are taken to be those of graphite/epoxy
T300/5208, as given in [31]:

E1 = 132GPa; E2 = E3 = 10:8GPa;

G12 = G13 = 5:65GPa; G23 = 3:38GPa;

�12 = �13 = 0:24; �23 = 0:59: (67)

In addition, the thickness of each ply is assumed to
be 0.5 mm and the value 5/6 is used for the shear
correction factor, k2

4, in the FSDT. All the numerical
results shown in what follows are presented by means
of the following normalized:

�Bj =
Bj
M0

(j = 2:6); (68)

��ij =
�ij
�0
; (69)

where �0 = M0
bh2 . Also, for obtaining accurate results

within LWT, each physical lamina is divided into,
unless otherwise mentioned, 12 sublayers (i.e., p = 12).
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Table 1. Numerical values of �B6 for various laminates according to FSDT and LWT.
Laminate Theory 2b=h = 5 2b=h = 10 2b=h = 20

[90�=90�=90�=0�] FSDT
LWT

0.9725
0.9172

0.4863
0.4590

0.2431
0.2292

[0�=0�=0�=90�] FSDT
LWT

0.6744
0.6494

0.3372
0.3250

0.1668
0.1625

[90�=90�=0�=0�] FSDT
LWT

0.8514
0.8110

0.4257
0.4056

0.2129
0.2027

[90�=0�=90�=90�] FSDT
LWT

1.2196
1.1553

0.6098
0.5775

0.3049
0.2884

To closely study the accuracy of FSDT in estimating
B6, numerical results for ratio �B6, according to FSDT
and LWT, are obtained and presented in Table 1
for di�erent width to thickness ratios and various
general cross-ply laminates. Close agreements are
seen to exist between the results of the two theories,
particularly for thin to moderately thick laminates.
Numerical study indicates that the terms involving B6
in Eqs. (25) have unimportant e�ects on distribution
of interlaminar stress within various laminates, even
for thick laminate. It is, therefore, concluded here
that the formula obtained for B6, according to FSDT,
may always be utilized for various cross-ply laminates
under bending within other theories, such as LWT and
elasticity theory (see Eq. (14)).

Next, in order to assess the accuracy of LWT,
the results of LWT are compared here with those of
elasticity solutions as developed in the present study
for loading case 2 (see Eq. (24) and the boundary
conditions in Eq. (39)). The boundary conditions used
in LWT, equivalent to those in the elasticity solution
(see Eq. (39)), are as:

Mk
y = Wk = 0 at y = �b: (70)

The interlaminar stresses, �(k)
z and �(k)

yz , are calculated
in LWT by integrating the local elasticity equations of
equilibrium. In order to �nd the correct value of inter-
laminar normal stress within LWT at exactly y = �b,
a procedure similar to that undertaken here within the
elasticity solution is employed. Toward this goal, it is
noted that by using the boundary conditions (Eq. (70))
in the laminate constitutive relations (Eqs. (31)), the
following relation is achieved:

Dkj
22V

0
j = �Bk12

�L at y = �b: (71)

Quantity Vj at y = �b is obtained from Eq. (71).
Next, upon substitution of this quantity into the strain-
displacement relations in Eqs. (28) and the subsequent
results into Eq. (12), interlaminar normal stress, �z, is
obtained within LWT at the edges of the laminate.

In what follows, numerical results are devel-
oped for various general cross-ply laminates with free
edges only, and with width to thickness ratio (i.e.,

2b/h) equal to 5, according to LWT. Both loading
cases de�ned in Eqs. (23) and (24) will be con-
sidered. Figures 2 to 4 show the distribution of
interlaminar normal and shear stresses along the
width of [0�= 90�= 0�= 90�]; [90�= 90�= 90�= 0�] and
[90�= 0�= 90�= 0�] laminates, respectively.

Figure 2. Distribution of interlaminar stresses along the
middle plane of [0�= 90�= 0�= 90�] laminate.

Figure 3. Distribution of interlaminar stresses along the
90�/ 90� interface and middle plane of [90�=90�=90�=0�]
laminate.
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Excellent agreement between the layerwise solu-
tion and the elasticity solution is seen. This close
agreement veri�es the accuracy of the LWT. It is
reminded that these results are obtained for loading
case 2. To study the convergence of the stresses near
free edges, two simple laminates, [0�= 90�= 0�= 90�] and
[0�= 90�= 90�= 0�], subjected to the bending moment,
M0, are considered. Since, except exactly at y = b,
the di�erence in �z with various p at the laminate
interfaces and through the thickness in the boundary-
layer region is small, the value of �x at y = b is
used in the convergence study. Figure 5 shows the
numerical value of �z at exactly y = b versus p
for both [0�= 90�= 90�= 0�] and [0�= 90�= 90�= 0�]
laminates for loading case 1. At the unsymmetric
laminate, [0�= 90�= 90�= 0�], (the grid line in Figure 5),

Figure 4. Interlaminar stresses along the 90�/ 0�
interface and middle plane of [90�=0�=90�=0�] laminate.

Figure 5. Convergence of interlaminar normal stress �z
at y = b at middle plane in [0�= 90�= 0�= 90�] and
[0�= 90�= 90�= 0�] laminates under the bending moment
versus the number of layer subdivisions (p).

it is seen that the numerical value of �z is more
noticeably dependent on the number of subdivisions,
p, than the symmetric laminate, [0�= 90�= 90�= 0�].
At the symmetric laminate the numerical value of
�z is seen to remain constant with the increasing
number of numerical layers (for p > 9) but at the
unsymmetric laminate it is seen to remain constant
(for p > 12). The distribution of interlaminar normal
stress, �z, along the lower interfaces (0�= 90� and
90�= 0�), of [0�= 0�= 0�= 90�], and [90�= 90�= 90�= 0�],
laminates, respectively, for loading case 1, is exhibited
in Figure 6. The �gure demonstrates that in the
boundary-layer region, �z �rst becomes negative and
then positive for [0�= 0�= 0�= 90�] laminate, and for
[90�= 90�= 90�= 0�] laminate, �z is negative totally.
However, the magnitude of �z becomes quite large for
two laminates. Figure 7 displays the distribution of

Figure 6. Distribution of interlaminar normal stress ��z
along the 0�/ 90�and 90�/ 0� interfaces of
[0�= 0�= 0�= 90�] and [90�= 90�= 90�= 0�] laminates,
respectively.

Figure 7. Interlaminar stresses along the 90�/ 0�
interface of [90�= 90�= 90�= 0�] laminate.
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the interlaminar stresses along the 90�= 0� interface of
[90�= 90�= 90�= 0�] laminate for loading case 1. It
is observed that the interlaminar normal stress, �z,
grows rapidly in the vicinity of the free edges, while
is zero in the interior region of the laminate. On the
other hand, �yz rises toward the free edge and decreases
rather abruptly to zero at the free edge. It is also seen
that the magnitude of the maximum of the transverse
normal stress, �yz, is greater than that of transverse
shear stress. By raising the number of numerical layers
in each lamina, �yz becomes slightly closer to zero, but,
may never become zero.

This is, most likely, due to the fact that within
LWT, the generalized stress resultant, Rky , rather
than �yz, is forced to disappear at the free edge
(see Eqs. (38)). The distribution of the interlami-
nar stresses, �z and �yz, along the upper (0�= 0�),
middle (0�= 90�) and lower (90�= 90�) interfaces of
unsymmetric cross-ply [0�= 0�= 90�= 90�] laminate are
demonstrated in Figure 8 for loading case 2. Both
stresses are seen to grow rapidly near to the free edge,
while being zero in the interior region of the laminate.
It is to be noted that the interlaminar shear stress, �xz,
is identically zero everywhere in cross-ply laminates.
The distribution of interlaminar normal stress along
the (90�= 90�) interface of [0�= 0�= 90�= 90�] laminate
for loading case 1 is displayed in Figure 9. It is
observed that increasing the number of layer subdi-
visions, p, has no signi�cant e�ect on the numerical
value of interlaminar stress, �z, within the boundary-
layer region of the laminate, especially at the free edge
(i.e., y = b) because of the interface-edge junction
of similar layers (i.e. 90�= 0�). It is signi�cant
to note that increasing the number of subdivisions
results in no convergence for �z at the interface-edge
junction of two unalike layers, such as (0�= 90�), and

Figure 8. Distribution of interlaminar stresses along the
0�/ 0�/ 0�/ 90� and 90�/ 90� interfaces of
[0�= 0�= 90�= 90�] laminate.

the numerical value of this component continues to
grow as the number of sublayers is increased. On
the contrary, at the interface-edge junction of similar
layers, such as (90�= 90�), the numerical value of �z
remains constant as the number of numerical layers
within each physical layer is increased. Through the
thickness distribution of the interlaminar normal stress,
�z, for [90�= 90�= 0�= 0�], the laminate is displayed
in Figure 10 for loading case 1. It is seen that the
maximum negative value of �z happens within the

bottom 90� layer, and the maximum positive value of
�z occurs within the top 0� layer both near the middle
surface of the laminate at the free edge (i.e., y = b). It
is also seen that �z diminishes away from the free edge
as the interior region of the laminate is approached.

Figure 11 shows the variations of the interlaminar
stress, �z, at y = b through the thickness in the
[0�= 0�= 0�= 90�] laminate for loading case 2. It is seen

Figure 9. Distribution of interlaminar normal stress ��z
along the 90�/ 90� interface of [0�= 0�= 90�= 90�] laminate
as a function of layer subdivision number p.

Figure 10. Interlaminar normal stress ��z through the
thickness of [90�= 90�= 0�= 0�] laminate.
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Figure 11. Distribution of interlaminar normal stress ��z
through the thickness of [0�= 0�= 0�= 90�] laminate.

Figure 12. Interlaminar stress along the middle plane of
[0�= 90�= 90�= 0�] laminate for various width-to-thickness
ratios.

that by increasing the number of layer subdivisions, p,
the magnitude of �z becomes larger, especially at the
interfaces.

The e�ect of the laminate width to thickness ratio
on the interlaminar stress due to loading case 1 is ex-
amined in Figure 12 in the [0�= 90�= 90�= 0�] laminate.
It is seen that the width of the boundary-layer regions
always remains almost equal to the thickness of the
laminate. That is, a thickness away from the edges of
the laminate, the interlaminar stresses approach zero.

5. Conclusions

An elasticity formulation is developed for the dis-
placement �eld of a long cross-ply laminate under the

bending moment. The First-order Shear Deformation
Theory (FSDT) is then employed to determine the
unknown constant coe�cients appearing in the relevant
displacement �elds when the laminate is subjected
to bending. Next, Reddy's layerwise theory (LWT)
is utilized to examine the edge-e�ect interlaminar
stresses. Analytical solutions to the LWT equations are
obtained using the state space approach. The unknown
constants, B2 and B6, appearing in the displacement
�eld are also determined within LWT, and it is found
that FSDT is very adequate in predicting these con-
stants. For special boundary conditions (see Eqs. (38)),
an analytical elasticity solution is developed to verify
the accuracy of the layerwise theory in describing
interlaminar stresses. Excellent agreement is seen to
exist between the results of the LWT and those of the
elasticity theory. Several numerical results according to
LWT are then developed for the interlaminar stresses
through the thickness and across the interfaces of the
di�erent cross-ply laminates. A convergence study is
performed to determine suitable subdivisions to be
used within each lamina for accurate results in LWT. It
is revealed that a moderately large number of numerical
layers must be employed within the laminate and, in
general, this number is dependent on �ber directions
and the stacking sequences of the plies within the
laminate.
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Appendix A

The constants coe�cients appearing in Eq. (22) are
de�ned as:

�A11 = A11 �A12�a1 �B12�b2;

�B11 = B11 �A12�b1 �B12�a2;

�D11 = D11 �B12�b1 �D12�a2; (A.1)

where:

(�a1; �a2;�b1;�b2) =
1

A22D22 �B2
22

[(A12D22 �B12B22);

(A22D12�B12B22);(B12D22�B22D12);

(A22B12 �A12B22)]; (A.2)
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also:

(Aij ; Bij ; Dij) =
Z h= 2

�h= 2

�Q(k)
ij (1; z; z2)dz; (A.3)

are the rigidities in the �rst-order shear deformation
theory and �Q(k)

ij 's are the transformed (i.e., o�-axis)
reduced sti�nesses of the kth layer.

Appendix B

The laminate rigidities, being in Eqs. (32), upon
integration, are presented in the following form:

(Akjpq ; B
kj
pq ; D

kj
pq) =8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

�
� �C(k�1)

pq
hk�1

;!
�C(k�1)
pq

2 ;hk�1 �C(k�1)
pq

6

�
if j = k � 1�

�C(k�1)
pq
hk�1

;+
�C(k)
pq
hk ;

�C(k�1)
pq

2 � �C(k)
pq
2 ;

hk�1 �C(k�1)
pq

3 ;+hk �C(k)
pq

3

�
if j = k�

� �C(k)
pq
hk ;

�C(k)
pq
2 ; hk

�C(k)
pq

6

�
if j = k + 1

(0; 0; 0) if j<k�1 or j>k+1

(B.1)

and:

(Akpq; B
k
pq; �Bkpq; D

k
pq) =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�
� �C(1)

pq ;
h1 �C(1)

pq
2 ; �C(1)

pq
z2
1�z2

2
2h1

;

�C(1)
pq
h1

�
z3
1�z3

2
3 � z2

z2
1�z2

2
2

��
if k = 1�

� �C(k�1)
pq ; hk�1 �C(k�1)

pq
2 ;

�C(k�1)
pq

z2
k�z2

k�1
2hk�1

;
�C(k�1)
pq
hk�1�

z3
k�z3

k�1
3 � zk�1

z2
k�z2

k�1
2

��
if k = N + 1�

�C(k�1)
pq � �C(k)

pq ;
hk�1 �C(k�1)

pq
2 + hk �C(k)

pq
2 ;

�C(k�1)
pq

z2
k�z2

k�1
2hk�1

+ �C(k)
pq

z2
k�z2

k�1
2hk ;

�C(k�1)
pq
hk�1

�
z3
k�z3

k�1
3 � zk�1

z2
k�z2

k�1
2

�
+

�C(k)
pq
hk

�
z3
k�z3

k+1
3 �zk�1

z2
k�z2

k+1
2

��
if 1 < k < N + 1

(B.2)

also:

(Apq; Bpq; Dpq) =
NX
i=1

�C(i)
pq

�
�

[Zi+1 � Zi];
�
z2
i+1 � Z2

i

2

�
;�

Z3
i+1 � Z3

i

3

��
:

(B.3)

The coe�cient matrices [M ]; [K]; and [T ] appearing in
Eq. (35) are given as:

[M ] =
�
[D22] [B23]� [B]T44

[0] [D44]

�
;

[K] =
��([A44] + [�]) [0]
[B44]� [B23]T �([A33] + [�])

�
;

[T ] =
� f0g f0g
fA13g fB13g

�
; (B.4)

where [Apq]; [Bpq] and [Dpq] are (N+1)�(N+1) square
matrices containing Akjpq ; B

kj
Pq, and Dkj

pq respectively,
and the vectors, fApqg; fBpqg, and f �Bpqg, are (N +
1) � 1 column matrices containing Akpq; Bkpq, and �Bkpq
respectively. Also, [0] is (N + 1)� (N + 1) square zero
and f0g is a zero vector with N +1 rows. The arti�cial
matrix, [�], is also a (N + 1)� (N + 1) square matrix,
whose elements are given by:

�kj = �

h= 2Z
�h= 2

�k�jdz; (B.5)

with � being a relatively small parameter in compar-
ison with the rigidity constants, Akjpq(pq = 33; 44; 55):
It is to be noted that the inclusion of [�] in matrix
[K] makes the eigenvalues of matrix (�[M ]�1[K]) be
all distinct.
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