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Abstract. In this article, the e�ects of unsteady parameters, including mean angle
of attack, oscillation amplitude, reduced frequency, and pitching axis position, on the
aerodynamic coe�cients of a pitching airfoil are studied. This investigation is implemented
for high Reynolds number ows around a dynamic stall condition. The employed numerical
method is a Coarse Grid CFD (CGCFD) method, in which the Euler equations are solved
using a coarse grid with no slip boundary conditions, and a compressible surface vorticity
con�nement technique. The required computational time for this method is signi�cantly
lower compared to that of the full Navier-Stokes equations with a simple one-equation
turbulence model. In addition, a multi zone adaptive spring grid network is applied to
simulate the moving boundary, which further reduces the computational time. Using
the described numerical setup separates the current work from the others. The obtained
numerical predictions are in very good agreement with experimental data for the high
Reynolds number ow. It is found that moving the pitching axis position to the right or
left outside, and distancing it from the trailing edge or leading edge, has an inverse e�ect
on aerodynamic characteristics. Furthermore, increasing reduced frequency results in a
reduction in the lift hysteresis loop slope, and in the maximum lift and drag coe�cients.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

In the past two decades, research into apping airfoils
suitable for Micro Air Vehicles (MAVs) and rotors
dynamics has increased continuously. Rotary-wing
aircraft frequently work in very complex aerodynamic
situations that limit their performance, creating an
extended range of di�cult problems for engineers.
The most serious problems to be considered are those
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related to the main rotor system with pitching motion,
which include shear layers, vortices around body sur-
faces and vortex dominated regions behind the bodies.
At very high speeds and in maneuvering ights, a
rotor can experience the e�ects of transonic ow, ow
reversal, and dynamic stall, due to the strong induced
ow e�ects and interaction with the wake in the custom
operation. Unsteady studies are extremely useful in
understanding ow characteristics and estimating the
dependence of the aerodynamic performance on di�er-
ent parameters, such as the amplitude of oscillation,
reduced frequency, pitching axis position, Re, and kine-
matic patterns. For the same angle of attack, the airfoil
produces higher lift and drag forces during the down-



A. Heydari et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 370{386 371

stroke phase than during the up-stroke. The generation
of hysteresis loops is the result of induced velocities,
which lead to di�erent lift and drag coe�cients between
up-stroke and down-stroke.

In the �rst investigations, McCroskey [1] and
Piziali [2] expressed a perfect experimental review of
pitching airfoils. Tuncer et al. [3] investigated a numer-
ical model for the unsteady ow around airfoils that
pitch sinusoidally, associating this with the dynamic
stall phenomenon. They have also added the algebraic
Baldwin-Lomax turbulence model. The airfoils pitch
between (5�-25�), at reduced frequencies equal to 0.2,
0.3 and 0.5, at a Reynolds number (Re) of 1 �
106. The growth and movement of the leading edge
vortex have been investigated in detail with a fully
viscous ow analysis and high required computational
time. Numerical observations have been compared
with experiments and good agreement has been re-
ported. Akbari and Price [4] solved incompressible
Navier-Stokes equations to simulate ows around a
pitching airfoil with high oscillation amplitudes. A
laminar ow has been modeled at Reynolds number,
Re = 1� 104. They checked the e�ects of parameters,
including reduced frequency, Reynolds number and
mean angle of attack. The pitching angles have been
changed around the static stall angle of attack 15�,
and the reduced frequencies were set at 0.3, 0.5 and
1. Results under these conditions have been compared
with Tuncer's observations [3].

Recently, investigations into unsteady parame-
ter e�ects in pitching motion have been extended.
Sarkar and Venkatraman [5] studied the dynamic stall
of a symmetric airfoil at medium to high reduced
frequencies (beyond 1), as maximum angle of attack
varies from 25� to 45�. They modeled the uid ow
�eld using a discrete vortex technique. The e�ect
of reduced frequencies on the vortex structure and
the aerodynamic load coe�cients is evaluated. They
detected a periodic doubling pattern in the vortex
behavior at higher frequency range, which has not
previously been reported. Martinat et al. [6] provided
2-D and 3-D numerical simulations of the NACA0012
dynamic stall at Reynolds numbers 105 and 106 using
various turbulence models. The turbulent e�ect on the
hysteresis curve of aerodynamic coe�cients was studied
by statistical modeling. The turbulence modeling
performance was checked by comparing classical and
advanced URANS approaches. Also, it has been indi-
cated that the down-stroke phases of pitching motion
are faced with strong three-dimensional turbulence
e�ects along the span, whereas the ow can be assumed
practically two-dimensional during the upward motion.
Amiralaei et al. [7] studied the LRN aerodynamics of
a harmonically pitching NACA0012 airfoil. In their
work, the inuence of unsteady parameters, namely,
oscillation amplitude, reduced frequency, and Reynolds

number, on the aerodynamic performance of the model,
is investigated. This study is conducted to investigate
the e�ect of Re number in the range 555 < Re < 5000,
oscillation amplitude between 2� and 10�, and reduced
frequency in the range of 0:1 < k < 0:25. The
simulation was performed in an OpenFOAM simula-
tor. You and Bromby [8] performed a Large-Eddy
Simulation (LES) of turbulent ow over a pitching
airfoil at realistic Reynolds and Mach numbers. They
employed an unstructured-grid LES technology and
a hybrid implicit-explicit time-integration scheme to
provide a highly e�cient way for treating time-step size
restriction in the separated ow region. It indicated
that characteristics of ow separation and reattach-
ment processes are qualitatively congruent with exper-
imental observation. Ou and Jameson [9] simulated a
low Reynolds ow around plunging and pitching airfoils
with deformation, separately and simultaneously. For
this purpose, a high order Navier-Stokes solver, based
on the spectral di�erence method, was used. They
changed two parameters: the amount and location
of maximum curvature, to deform the shape of the
section. Then, the conditions of maximum thrust
generation were obtained.

Since shear layers and, also, the vortices around
the body surfaces become more important in the
ow around the airfoil undergoing pitching motion,
boundary layer growth and ow separation must be
estimated properly. One way to prevent arti�cial
boundary layer growth due to arti�cial viscosity is to
apply the compressible surface vorticity con�nement
technique. In this method, a body force and the
work done by this force are added as a source term
to the momentum and conservation energy equations,
respectively. A non-di�usive solution of the Euler
equations with a non-slip boundary condition and
coarse grid could be obtained. This technique re-
duces arti�cial viscosity, cancels vortex distribution
and prevents the unrealistic growth of the boundary
layer and separation region in coarse grids. The
vorticity con�nement theory was �rst introduced by
Steinho� [10] and Hu [11]. Further, Steinho� used this
method as a LES turbulent model [12]. It was improved
and employed for di�erent applications by Moulton
and Steinho� [13], Wenren et al. [14] and Dietz [15].
They indicated that by using this method, the vortex
does not spread out over large distances and keeps
its power. Also, the accuracy of the obtained results
is close to RANS computations with less required
computational time. Butsuntorn and Jameson [16]
used this model for the ow around the propellers and
wings of the helicopter and showed that this method
is very e�ective in improving results. Initial works
are �nally completed with an arbitrary factor, called
a con�nement parameter, which must be determined
by the user. This factor could be found, according
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to experimental results. Bagheri-Esfeh and Malek-
Jafarian [17] implemented this method for di�erent
numerical dissipation schemes. They found that for
each scheme, the con�nement parameter could be
estimated systematically instead of by trial and error.
The vorticity con�nement method was initially and
extensively used to preserve vortex convection for long
distances. But, fewer investigations were done in the
�eld of preventing boundary layer growth and arti�cial
boundary layer simulations. Therefore, using the
vorticity con�nement method to thoroughly investigate
turbulent ows around pitching airfoils is one of the
main speci�cations of the present paper.

Further, a particular adaptive grid method is
required to simulate the motion. In the present
work, a spring network analogy is employed with some
re�nements. The origin of this method is presented
by Nakahashi and Deiwert [18] and Murayama et
al. [19]. In this method, each mesh edge is replaced
by a tensional spring, whose sti�ness is inversely
proportional to the edge length. To avoid possible
collapse, they utilized torsional springs for each node.
In the present work, secondary linear springs have been
applied instead of torsional springs to prevent network
collapse; a multi zone adaptive grid is also presented.
This technique leads to a considerable reduction in
computational time and has the ability to take large
steps forward.

Therefore, in the present work, �rstly, the un-
steady two dimensional compressible ow around a
pitching airfoil at a high Reynolds number is conducted
in which oscillation amplitude is varied in the range
of 1� to 11�, and the reduced frequency is changed
between 0.133 and 1. Some of these unsteady pa-
rameters were investigated by other researchers, but
the described method has the ability to calculate the
same results for these parameters in extremely low
computational time. Also, the e�ect of pitching axis
position out of the airfoil section, which has been
considered in this paper, has not yet been investigated
by others. Secondly, Coarse Grid CFD (CGCFD)
is applied to greatly reduce the computational time
for pitching airfoils analysis. In this method, Euler
equations are solved with a coarse grid and no slip
boundary conditions with compressible surface vor-
ticity con�nement. It is well known that the time
step and also the moving step of unsteady moving
airfoils depend directly on the minimum mesh size
in a computational domain. Therefore, to estimate
real unsteady vortex patterns around the airfoils, it
takes much time and cost, due to very �ne grids
adjacent to the airfoil wall required for viscous ow.
Therefore, this numerical setup has the ability to
achieve widespread results for unsteady cases in just
one week, while the RANS computations need at least
several months.

2. Numerical method

For the initial analysis, the general form of governing
equations for 2-D compressible Navier-Stokes equations
with a vorticity con�nement source term is as follows:
@W
@t

+
@Ei
@x

+
@Fi
@y

=
@Ev
@x

+
@Fv
@y

+ S; (1)

where W is the ow components, and Fi; Ei; Fv and
Ev are inviscid and viscous ux vectors, respectively.
Viscous ux vectors are eliminated for Euler equation
solutions. S is also the vorticity con�nement source
term that will be de�ned later. Flow components and
inviscid ux vectors are de�ned as follows:

W =

2664 ��u�v
�e

3775 Fi =

2664 �(v � vm)
�u(v � vm)

�v(v � vm) + P
�e(v � vm) + Pv

3775
Ei =

2664 �(u� um)
�u(u� um) + P
�v(u� um)

�e(u� um) + Pu

3775 (2)

in which, �, E and P are the density, total energy
and pressure, respectively, u and v are the velocity
components in x and y directions, and um and vm
are also mesh velocities. By adding the velocity of
the elements to the governing equations, according to
Eq. (2), the condition of mass conservation will be
satis�ed [20].

In the following equations, H and P are obtained,
in which H is the stagnation enthalpy, c is the sound
velocity and  is the speci�c heat ratio:

H = E +
p
�

=
c2

 � 1
+
u2

2
; c2 =

P
�
;

P = ( � 1)�(E � u2

2
): (3)

Eq. (1) can be expanded in one-dimensional form as
follows:

�x
dWi

dt
+ Fi+1=2 � Fi�1=2 = 0; (4)

Fi+1=2 =
1
2

(Fi+1 + Fi)� di+1=2; (5)

where di+1=2 is the dissipation term added to the gov-
erning equation to prevent oscillations and instabilities.
This is the main reason for arti�cial boundary layer
growth. Some schemes have calculated this term as a
function of ow gradients and conditions. In this work,
the SCalar Dissipation Scheme (SCDS) is applied to
estimate this term. (For more information, see [21].)

The fourth order Runge-Kutta method is used for
time stepping, in order to reach higher accuracy. Also,
the Spalar-Allmaras turbulence model [22] is applied
to the original code for the viscous solution.
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2.1. Vorticity con�nement
Compressible Vorticity Con�nement (CVC) will be
de�ned by adding a body force to the momentum
equations, and its correlated work to the energy
equation, in regions with high velocity gradient, like
vortical zones or surface boundary layers. It results in
reduction or omission of inherent dissipation related to
the governing equations. The source term, S, is added
to the Euler equations as a CVC function (Eq. (1)),
whose components are de�ned as follows [14]:

~S = (0 �~fb :̂i � ~fb:ĵ � ~fb:~V ); (6)

in which ~fb is the body force per unit mass, which
balances the di�usion of the numerical errors and
the conservation of momentum in the high velocity
gradient regions. This force produces a velocity vector
toward the center of the vortex in fully separated
regions or toward the solid walls in regions near body
surfaces.

~fb = �Dcn̂c � ~!: (7)

Ec is the VC parameter that controls the power of
con�nement. VC can be applied in two distinct ways:
�eld and surface con�nements, which depend on the
de�nition of the unit vector, nc. The �eld con�nement
acts upon freely convecting vortical structures. nc
is de�ned as the normalized gradient of the vorticity
vector magnitude. With surface con�nement, nc is
the unit vector normal to the solid surfaces of the
con�guration. In this case, by adjustment of the con-
�nement parameter, ow near a body surface remains
attached against an adverse pressure gradient. As a
result, surface con�nement can be considered a simple
implicit model for a turbulent boundary layer. The
original form of VC in compressible ow solvers can be
found in [10,15].

When numerical dissipation and VC are applied
simultaneously, the right hand side of the Euler equa-
tions will be concluded as Eq. (9):

RHS = di+1=2 + �Ec!z �
@
@x j!zjjrj!zjj
cons tan t

;

!z =
@v
@x
� @u
@y
: (8)

The �rst term of this equation refers to numerical
dissipation, and the second one is due to VC. Since,
within the boundary layer, we have: @v

@x hh@u@y , the VC
term is negative, which leads to a reduction in numer-
ical dissipation and arti�cial viscosity, thus preventing
arti�cial boundary layer growth. In the boundary layer,
VC becomes more important, because @u

@y is large.

3. Multi zone adaptive grid

In this paper, when the airfoil boundary moves or
rotates, the computational ow �eld meshes are re�ned
by using a spring network analogy [18]. An advantage
of using this technique is that the computer time
required for running is reduced signi�cantly. In this
paper, the structured grid edges are replaced with
linear springs, which are balanced in several iterates.
A logical de�nition is assumed for linear spring coe�-
cients and displacement of nodes.

For the �rst step of this analogy, each mesh edge
is replaced by a spring, whose sti�ness is inversely
proportional to the edge length. In this way, longer
edges will be softer, while shorter ones will be sti�er;
this assumption somewhat prevents the collision of
neighboring vertices. If the displacements are large,
the edge spring method cannot prevent the creation of
nearly at elements, and will lead to the collapse of
mesh networks. In order to avoid the possible collapse
of grid networks, secondary linear springs have been
also applied.

However, the �ne grids suitable for the boundary
layer will, most probably, collapse, speci�cally for
meshes adjacent to walls. To avoid this problem, a
multi zone adaptive grid is designed for the computa-
tional domain which is divided into three zones. The
�rst zone, which is adjacent to the body, is rotating
with the boundary and is regenerated in each time step.
The second one includes an adaptive zone in which the
mesh points are adapted for each time step. Finally,
the third zone (outer region) is �xed and does not vary
with time. It causes the grids in the adaptive zone to
become coarser than those near solid walls and prevent
the meshes from collapsing during the motion. These
zones are shown in Figure 1.

4. Dynamic case study

The pitching airfoil is a NACA0015 airfoil with a ow
�eld, with 0.3 Mach number and a Reynolds number
equal to 2e6. Eq. (10) shows the sinusoidal variation of
the passing and e�ective angle of attack as:

�(t) = �m + �0 sin(kt); (9)

�e�(t) = �(t) +
c _�

2U1; (10)

Figure 1. Multi zone adaptive grids.
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Table 1. Mean angle of attack, the oscillation amplitude
and the reduced frequency for validation cases.

Case �m �0 K Xcp

Pitch 1 0.88 4.33 0.133 0.25

Pitch 2 4.02 4.33 0.133 0.25

Pitch 3 8.99 2.08 0.1 0.25

Figure 2. Schematic of the points for pitching axis
position.

in which �m, �0 and k = !c=U1 are the mean angle
of attack, oscillation amplitude and reduced frequency,
respectively, and also, �e�(t) is the e�ective angle of
attack [21]. The validation cases are shown in Table 1,
and the computational results are compared to the
experimental data in [2]. In each case, oscillation
amplitude, reduced frequency and the position of
pitching axis (Xcp) are changed and their e�ect on the
aerodynamic coe�cient is investigated.

Note that, to investigate the e�ect of the pitching
axis position (Xcp), the positions are not limited to
the points inside the airfoil. Some points are selected
in front of the airfoil and some behind. The schematic
of some points for the pitching axis position (Xcp) is
shown in Figure 2. If the airfoil rotates around the
outside points, there will be a speci�c combination
of pitching and plunging motions simultaneously. It
seems that this kind of motion has not been investi-
gated by other researchers yet, whereas, having less
computational time, it, will be considered deeply in
this work.

It should be considered that ow around apping
airfoils can be simulated in two distinct ways: inlet
ow oscillation with a �xed object or object movement
(oscillation) in a constant ow. The object oscillation
is employed because of high accuracy, low sensitivity,
easy modeling and fast hysteresis curve convergence.

4.1. General algorithm
� Before apping the airfoil, the solver allows the ow

to become steady with the surface velocity and angle
of attack at the middle of the oscillation (t = 0 in
Eq. (12)). In this part of the solution, local time
stepping is employed to speed up the initial steady
solution. This technique leads to quick convergence
of the unsteady aerodynamic coe�cient loops.

� Then, the airfoil begins to pitch with a time accurate
method, in which the time step is selected as the
minimum calculated time step of the domain. In
each step, using the lowest time step leads to

complete data transfer in all elements. It must
be mentioned that time step size can be obtained
from the Courant number formulation. The motion
step size then can be calculated by inserting the
minimum time step of the whole domain in Eq. (10).

� After each time and motion step, the airfoil and its
adjacent grids (rotating zone, Figure 1) are rotated.
Therefore, grids on the intersection of rotating and
adaptive zones will rotate. This results in disturbing
the springs' equilibrium in the adaptive zone. Then,
the grids in the adaptive region will be adapted with
the motion.

� After adaption, data in all grids will be updated.
Since the location of each grid point is changed
in each step, the velocity of the mesh should be
considered. To do this, the mesh velocities are
applied to the governing equations (um and vm
in Eq. (2)). This is required to satisfy the mass
conservation condition.

5. Results and discussion

5.1. Boundary condition
Inlet u and v components of velocity are equal to free
stream velocity, while inlet pressure p and density �
are computed from energy and state equations. Outlet
velocities and density are extrapolated from the ow,
and outlet pressure is assumed equal to free stream
pressure. A no-slip boundary condition is also selected
for the solid wall condition. Therefore, the velocity on
the solid surface is equal to the airfoil velocity and can
be computed from Eq. (11):

u
����y=ys = r sin �

d�
dt

= rK�0Cos(Kt) sin(� � �(t))

v
����y=ys =�r cos �

d�
dt

=�rK�0 cos(Kt) cos(���(t));
(11)

in which ys is related to the points adjacent to the
wall. r and � are distance and angle of the points on
the solid surface to the center of pitching, and �(t) can
be obtained from Eq. (10). The pressure and density
on the solid wall are extrapolated from the inside of
the ow.

5.2. Grid selection
For the investigation of mesh independency and select-
ing grid size, ow around a �xed airfoil at zero angle of
incidence is simulated, and the computed lift coe�cient
is summarized in Table 2.

The grid size is selected 160�90, because �ner
grids do not result in considerable variations in lift
coe�cient, but require much higher computational
cost. The selected mesh is indicated in Figure 3.
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Table 2. Mesh independency in tangential (i) and normal
(j) direction.

Variation of grid
size in j direction

Cl Variation of grid
size in i direction

Cl

100� 70 0.0336 140� 90 0.00732

100� 80 0.0207 160� 90 0.00602

100� 90 0.00951 180� 90 0.00588

100� 100 0.00896 200� 90 0.00555

Figure 3. Computational grid network.

Figure 4. Mesh elements near solid wall for RANS
simulation.

The appropriate grid for viscous simulations is
generated with respect to the following points: Firstly,
the computational grid is produced by solving a two
dimensional Poissan equation. Thus, an approximately
orthogonal grid network is generated for the region
adjacent to the airfoil body surface. The grid mesh
can be observed from Figure 4. Secondly, 20 elements
are added to the selected inviscid grids across the
boundary layer. Thirdly, Y+ keeps less than 5 in
RANS simulation. Therefore, the mesh number along
the surface is the same as the inviscid one (160 grids).
But, the mesh number is equal to 110 elements instead
of 90 in the normal direction.

5.3. Validation
First, the accuracy of the described method (Coarse
Grid CFD) is examined in comparison with the results
of RANS, with a �ne grid, a one-equation Spalart-
Allmaras turbulence model, and also, the experimen-
tal data in [2]. To perform this, the conditions,

Figure 5. Comparing the results of aerodynamic
coe�cients versus Angle of Attack (AoA): (a) Lift
coe�cient; and (b) drag coe�cient (k = 0:133;, �0 = 4:33
and �m = 0:88).

which have been demonstrated in Table 1, are added
to the code, and the results are evaluated as fol-
lows.

As can be seen in Figure 5(a) k = 0:133, �0 = 4:33
and �m = 0:88, the lift coe�cient, obtained using
the CGCFD method, matches well with experiments,
but, a slight deviation at the top and bottom of the
oscillation is perceived. In Figure 5(b), when the
ow encounters the lower surface of the airfoil, the
drag coe�cient is estimated close to the experiments.
By changing the ow incidence direction from the
lower to the upper surface, the results deviate from
experimental data. The changing point of the ow
incidence direction is calculated correctly. The sum-
mary of calculated average lift and drag coe�cients is
illustrated in Table 3.

Figure 6 indicates the results of lift and drag
coe�cients versus angle of attack in comparison with
experiments for k = 0:133, �0 = 4:33 and �m = 4:02.
Lift coe�cients agree well with experiments, but drag



376 A. Heydari et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 370{386

Table 3. Comparison of mean aerodynamic coe�cients
and errors (k = 0:133, �0 = 4:33 and �m = 0:88).

Cl Error
of Cl

Cd Error
of Cd

Time
(hour)

RANS 0.116 21.9% 0.00453 9.7% 168

CGCFD 0.0995 12.5% 0.00943 3

Experiments 0.0884 0.00497

Figure 6. Comparing the results of aerodynamic
coe�cients versus Angle of Attack (AoA): (a) Lift
coe�cient; and (b) drag coe�cient (k = 0:133; �0 = 4:33
and �m = 4:02).

coe�cients deviate a little from experiments at the
bottom of the oscillation. In Table 4, the results of
average lift and drag coe�cients are summarized.

In Figure 7, obtained lift and drag coe�cients
are compared with experiments for k = 0:1, �0 =
2:03 and �m = 8:99. Lift and drag coe�cients are
approximately close to the experiments, except at the
top of the oscillation. The results of average lift and
drag coe�cients are compared in Table 5.

According to the preceding consequences, the
RANS solution, with a �ne grid and a one-equation

Table 4. Comparison of mean aerodynamic coe�cients
(k = 0:133, �0 = 4:33 and �m = 4:02).

Cl Error
of Cl

Cd Error
of Cd

Time
(hour)

RANS 0.386 10.9% 0.00403 41.01% 168

CGCFD 0.385 10.6% 0.01018 49.7% 3

Experiments 0.348 0.00684

Figure 7. Comparing the results of aerodynamic
coe�cients versus Angle of Attack (AoA): (a) Lift
coe�cient; and (b) drag coe�cient (k = 0:1; �0 = 2:03 and
�m = 8:99).

Spalart-Allmaras turbulence model, computes the hys-
teresis loops and average coe�cients accurately, but,
high computational time is required. Results of the
Coarse Grid CFD method are acceptable for lift and
drag coe�cients, particularly at low and moderate
angles of attack. However, in passing low angles of
attack, a little di�erence can be perceived in drag
coe�cient. As can be observed, although the CGCFD
method calculates the mean drag coe�cient inaccu-
rately, especially for low mean angles, the trend of the
obtained hysteresis loop is close to experiments.
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Table 5. Comparison of mean aerodynamic coe�cients
(k = 0:1, �0 = 2:03 and �m = 8:99).

Cl Error
of Cl

Cd Error
of Cd

Time
(hour)

RANS 0.8993 3.7% 0.0271 53.78% 168

CGCFD 0.9192 1.6% 0.0278 62.5% 3

Experiments 0.9342 0.0171

However, because of very low required computa-
tional time, the CGCFD method has a major advan-
tage to be employed. To investigate the inuence of
unsteady parameters, this method assists in performing
more runs in the lowest possible time. Since, it takes
only three hours for one loop oscillation in each run,
with a Corei5 Cpu and 4 Gigabite Ram computer
system, three to four days are enough to do all the
runs needed in this paper. While, if the RANS
computation with a conventional �ne grid is used with
the same computer system, it will take about one
week for one loop of oscillation in each run. Thus, to
obtain these results, the computational time will take
at least several months. Therefore, the Coarse Grid
CFD method can be applied as a quick and acceptable
technique to estimate the approximate aerodynamic
behavior of unsteady apping airfoils under greatly
varying conditions.

Although the results of lift and ow patterns
are estimated well with this method, considerable
deviations from experiments are observed for drag and
boundary layer calculations. Therefore, the results
show that using CGCFD to �nd lift coe�cient is more
reasonable, while it is not appropriate for accurately
calculating drag forces. The main reason is related
to predicting the pressure distribution well with the
CGCFD method, which can be observed from Figure 8.
However, it is possible to reliably predict the trend
and variation of drag forces by applying the CGCFD
method.

The pressure coe�cient of a �xed airfoil at a 6�
angle of attack and pitching airfoil passing this angle in
a downward and upward motion is shown in Figure 8.
This �gure shows that the pressure distribution along
the airfoil is estimated well.

5.4. E�ects of unsteady parameters for
�m = 0:88�

In the �rst case, for the mean angle of attack equal
to 0.88�, oscillation amplitude is set at 4� to 11�.
Reduced frequency is varied between 0.133 and 1, and
the position of the pitching axis is varied between -1.25
to +3.

5.4.1. Variation of oscillation amplitude (�0)
Figure 9(a) points out that the hysteresis loop of
lift coe�cient versus angle of attack becomes slightly

Figure 8. Comparison of pressure coe�cient on �xed and
pitching airfoil at 6� angle of attack.

Figure 9. E�ect of oscillation amplitude on aerodynamic
coe�cients versus angle of attack: (a) Lift coe�cient; and
(b) drag coe�cient (k = 0:133;Xcp = 0:25 and
�m = 0:88�).
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broadened by increasing the oscillation amplitude.
But, the slope of the loop does not change. The
main reason for these behaviors is the coe�cient �0
in Eq. (12). It leads to increasing the wall velocity
and e�ective angle of attack (�e�), except at the
top and bottom of the cycle. Since the upper line
of the curve is related to the down-stroke and the
lower line refers to the upward phase of motion, the
variation of lift coe�cient with oscillation amplitude
at the down-stroke stage is more than at the up-stroke
stage. From Figure 9(b), it can be seen that up
and down-stroke curves intersect each other at a point
that refers to the e�ective angle of attack, in which
the ow incidence direction changes from the lower to
the upper surface. It results in a bow tie shape for
the hysteresis drag curve. Increasing the oscillation
amplitude is ine�ective on the position (angle) of the
intersection point. In high oscillation amplitudes,
for example, �0 = 11�, some uctuations in drag
coe�cient can be detected at the top and bottom of
the oscillation cycle. The reason is the interaction of
the low pressure zones moving on the upper surface
of the airfoil in the up-stroke stage and also of those
zones existing on the lower surface in the downward
motion.

It can be seen that by enhancing the oscillation
amplitude, the maximum of the lift coe�cient is
increased and the minimum comes down. This �gure
indicates that variations in maximum drag coe�cient
are negligible in comparison with changes in, the lowest
one. Increasing the oscillation amplitude leads to a
reduction in minimum drag coe�cient.

5.4.2. Variation of pitching axis position (Xcp)
Figure 10 investigates the e�ect of pitching axis po-
sition on the lift and drag coe�cient for k = 0:133,
�0 = 4:33� and �m = 0:88. As can be seen in Fig-
ure 10(a), by displacing the pitching center to the right
hand side (positive positions) and distancing from the
trailing edge (its schematic is illustrated in Figure 2),
the counter clockwise hysteresis loop of lift coe�cient
versus angle of attack is considerably broadened. Ac-
cording to Eq. (12), by increasing the distance of the
pitching axis position from the surface (increasing in r),
the wall velocity is increased. Since the surface and in-
coming ow velocities relatively strengthen each other
in a downward motion, the e�ective angle of attack and
lift coe�cient are increased. In the upward motion,
they stepped down from each other and the e�ective
angle of attack and lift coe�cient are reduced. Thus,
the loop is widened. The maximum lift coe�cient is
slightly increased and the minimum one is �xed. In
Figure 10(a), by moving the pitching axis position to
the left side (negative positions) and distancing from
the leading edge, the inverse of the above observations
is occurred. The e�ective angle of attack and lift

Figure 10. E�ect of pitching axis position on
aerodynamic coe�cients: (a) Lift coe�cient; and (b) drag
Coe�cient ((k = 0:133; �0 = 4:33� and �m = 0:88�).

coe�cient are decreased in the downward motion, but
enhanced in the upstroke, leading to a narrower loop.
In Xcp = �0:75, up-stroke and down-stroke curves
coincide by further increasing the distance from the
leading edge. Then, in Xcp = �1:25, the up-stroke
curve, which was further down, ascends to the top of
the down-stroke curve and the hysteresis loop direction
changes to clockwise.

In Figure 10(b), the e�ect of pitching axis position
on drag coe�cient for k = 0:133, �0 = 4:33� and
�m = 0:88 is investigated. Figure 10(b) shows that
by changing the position of the pitching center to the
right hand side (positive positions), and displacing
from the trailing edge, the hysteresis loop of drag
coe�cient moves up and the intersect point inclines
to lower angles of attack. In this case, the maximum
drag coe�cient is increased, whereas the minimum one
is �xed. In Figure 10(b), by moving the pitching
axis position to the left hand side (negative positions)
and going far from the leading edge, the maximum
drag coe�cient is reduced, while the minimum one
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is still �xed. In positive positions, both parts of the
curve related to the ow incidence to lower and upper
surfaces are inuenced. But, in negative places, just
the curve part related to the ow incidence to the lower
surface is a�ected. Changing the drag hysteresis loop
direction can be observed at position Xcp = �0:75.
From Figure 10, the lift and drag coe�cients related
to the top and bottom of the cycle are not a�ected by
moving the pitching axis position. Because, in these
points, cos(Kt) is equal to zero (Eq. (12)), the surface
velocities vanish.

5.4.3. Variation of reduced frequency (k)
Figure 11 shows the e�ect of reduced frequency (k)
on mean aerodynamic coe�cients for Xcp = 0:25,
�0 = 4:33� and �m = 0:88. Variation of k to less than
0.2, approximately, does not a�ect the aerodynamic
coe�cients. In Figure 11(a), increasing oscillation
frequency causes a reduction in the slope of the lift
coe�cient hysteresis curve. At �rst, this curve is
broadened, and then become narrow. This behavior

Figure 11. E�ect of reduced frequency on aerodynamic
coe�cients: (a) Lift coe�cient; and (b) drag coe�cient
(Xcp = 0:25, �0 = 4:33� and �m = 0:88�).

is the consequence of the term k�Cos(kt) in Eq. (12).
Figure 11(b) shows that large reduced frequencies lead
to moving up and expansion of the drag bow tie shape.
The intersection point of curves inclines to lower angles
at low frequencies.

Note that, further increasing the reduced fre-
quency from k = 1 ensures that the hysteresis loops
of oscillations do not coincide with each other. The
reason is the inuence of the last previous period of
oscillation loop on the present one at high frequen-
cies.

From Figure 11, it can be also realized that
increasing the reduced frequency results in decreasing
the maximum and enhancing the minimum lift coe�-
cient. Therefore, the di�erence between highest and
lowest lift coe�cients is decreased. Also, it eliminates
minus lift coe�cients and produces positive ones. This
�gure shows that enlarging the reduced frequency
leads to increasing the maximum and minimum drag
coe�cients.

5.5. E�ects of unsteady parameters for
�m = 4:02�

In the second case, for mean angle of attack equal to
4.02�, oscillation amplitude is set at 1� to 11�. Then,
in the condition of ow attachment to the surface at
�0 = 4�, reduced frequency is varied between 0.133
and 1, and the position of the pitching axis is changed
from -1.25 to +3.

5.5.1. Variation of oscillation amplitude (�0)
According to Figure 12, by increasing the amplitude
of oscillation, the same results as �m = 0:88� are
obtained, until �0 = 11�, where a deep reduction in lift
and an increase in drag coe�cient are observed. This
intense variation is caused by the large ow separation
and vortex shedding from the backside of the airfoil at
the top of the cycle (Figure 13). From Figure 12(b), it
can be seen that the bow tie shape of the drag hysteresis
loop is wiped out, and no intersection point occurs
in low and moderate oscillation amplitudes. A poor
intersection point can be observed in an angle near
the bottom of the cycle by increasing the oscillation
amplitude.

Figure 12 also indicates that the maximum of lift
and drag coe�cients are increased while the minimum
ones are reduced by enhancing the oscillation ampli-
tude. For �0 = 11�, intense reduction in lift and an
increase in drag coe�cients are observed at the top of
the cycle.

In Figure 13, vorticity contours (a) and velocity
contours (b) near the surface are shown at the top
of the cycle for oscillation amplitude equal to 11�.
As can be observed, the main reason for the intense
reduction in lift and increase in drag coe�cient is
the vorticity production and the separation zone near
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the solid wall. The vortices are produced and de-
tached because of the high e�ective angle of attack
(�e�) when the airfoil reaches the top of the cycle
and begins to move downward. After ow reattach-
ment to the airfoil surface, drag and lift coe�cients

Figure 12. E�ect of oscillation amplitude on
aerodynamic coe�cients versus angle of attack: (a) Lift
coe�cient; and (b) drag coe�cient ( k = 0:133, Xcp = 0:25
and �m = 4:02�).

are increased and returned to the hysteresis loop
path.

5.5.2. Variation of pitching axis position (Xcp)
Figure 14(a) shows that, by comparing the results of
�m = 4:02� and �m = 0:88�, the same consequences
are obtained for lift coe�cient. Positive positions and
distancing from the trailing edge leads to broadening
the lift hysteresis loop. But, negative positions and
displacing from the leading edge results in a contraction
of the lift hysteresis curve, inasmuch as the loop
direction changes to clockwise.

In Figure 14(b), it can be observed that the con-
sequences are the same as observations for �m = 0:88�
for drag coe�cient. A little di�erence in the shape of
the hysteresis loop and the intersection point can be
seen. Positive places and distancing from the trailing
edge leads to increasing maximum drag coe�cient with
no variation in minimum drag. Negative locations and
going far from the leading edge result in decreasing the
highest drag coe�cient with no change in the lowest
drag.

5.5.3. Variation of reduced frequency (k)
The e�ect of reduced frequency on aerodynamic coef-
�cients for Xcp = 0:25, �0 = 4:33� and �m = 4:02�
is indicated in Figure 15. Because of the increase
in reduced frequency, the slope of the lift coe�cient
hysteresis curve is reduced, and the loop is broad-
ened. The reason for this behavior is k � Cos(kt)
in Eq. (12). Changing the values of k to less than
0.2, approximately, does not a�ect the aerodynamic
coe�cients. For higher values than 0.2, increasing the
reduced frequency leads to decreasing the maximum
and enhancing the minimum lift coe�cient. It also
increases the highest and lowest drag coe�cient. In
Figure 15(b), for k = 1, the maximum drag coe�cient
is reduced, and an intersection point is formed near
� =1.5� (bow tie shape). At high frequencies, the
highest and lowest lift coe�cients do not occur at
the top and bottom of the oscillation, respectively.
The main reason is the inuence of the ow �eld

Figure 13. (a) Vorticity and (b) velocity contours near the surface in the top of the oscillation (k = 0:133, Xcp = 0:25,
�m = 4:02� and �0 = 11�).
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Figure 14. E�ect of pitching axis position on
aerodynamic coe�cients versus angle of attack: (a) Lift
coe�cient; and (b) drag coe�cient ( k = 0:133, �0 = 4:33�
and �m = 4:02�).

related to the last oscillation period on the present
one.

5.6. E�ect of unsteady parameters for
�m = 8:99�

In this case, for mean angle of attack equal to 8.99�,
oscillation amplitude is varied from 1� to 11�. Then,
under the condition of ow attachment to the surface
at �0 = 4�, reduced frequency is set between 0.133 and
1, and the position of the pitching axis is changed from
-1.25 to +3.

5.6.1. Variation of oscillation amplitude (�0)
In Figure 16, before �0 = 6�, the shape of lift and
drag hysteresis loops are regular with no uctuations.
By increasing the amplitude of oscillation from 6� to
11�, and vortex shedding from the airfoil back side
(Figure 17), some uctuations and intense variations
at the top of the stroke can be observed. When
the oscillation amplitude is set at �0 = 6�, at the

Figure 15. E�ect of reduced frequency on aerodynamic
coe�cients versus angle of attack: (a) Lift coe�cient; and
(b) drag coe�cient (Xcp = 0:25, �0 = 4:33� and
�m = 4:02�).

top of the motion (when sin(kt) = 1 in Eq. (10)),
when the angle of attack reaches 15�, the back side
vortex detaches from the surface, and the low pressure
region is replaced with a high pressure one. Then,
a deep reduction in lift coe�cient and an intense
increase in drag coe�cient occur. In low passing
angles, when the ow reattaches to the surface, the
curves approach the main hysteresis loops. This
event takes place in the case of �m = 4:02�, with
�0 = 11� (Figure 12(a)), where the passing angle
of attack at the top of the oscillation was equal
to 15�, as well. Higher oscillation amplitudes lead
to more powerful vortex shedding and more intense
uctuations in lift and drag coe�cients at the top of
the stroke.

Vorticity contours around the airfoil at the top of
the stroke, while it passes the total angle of attack equal
to 15�, is shown in Figure 17. As can be perceived,
a strong vortex shedding occurs, which is the basis



382 A. Heydari et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 370{386

Figure 16. E�ect of oscillation amplitude on aerodynamic coe�cients versus angle of attack: (a) Lift coe�cient; and (b)
drag coe�cient (k = 0:133, Xcp = 0:25 and �m = 8:99�).

Figure 17. Vorticity contours around the airfoil in the top of the oscillation (k = 0:133, Xcp = 0:25, �m = 8:99� and
�0 = 11�).

Figure 18. E�ect of pitching axis position on aerodynamic coe�cient versus angle of attack: (a) Lift coe�cient; and (b)
drag coe�cient (k = 0:133, �0 = 4� and �m = 8:99�).

of uctuations and intense variations in aerodynamic
coe�cients at the top of the motion.

According to Figure 18(a), it can be observed
that positive pitching axis positions lead to broad-
ening the lift hysteresis loop, as before. It can be
concluded that at high mean angles of attack (like
�m = 8:99�), expansion of the hysteresis loop is only
due to variations of lift coe�cient in the down stroke.

Changing lift coe�cients in the upstroke is worthless in
comparison with downward motion. Figure 18(a) also
indicates that negative pitching axis positions result in
a contraction of the lift hysteresis loop and a change in
direction, as previous observations. The curve related
to the upward movement does not change, due to
displacement of the pitching center. But, the down-
stroke curve is moved from the upside of the loop
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Figure 19. E�ect of reduced frequency on aerodynamic coe�cients versus angle of attack: (a) Lift coe�cient; and (b)
drag coe�cient (Xcp = 0:25, �0 = 4� and �m = 8:99�).

Figure 20. E�ect of pitching axis position on mean aerodynamic coe�cients: (a) Average lift coe�cient; and (b) average
drag coe�cient (k = 0:133, �0 = 4�).

in Xcp = 0 to underneath in Xcp = -1.5. It leads
to a change in the direction of the hysteresis loop to
clockwise.

Figure 18(b) indicates that positive pitching axis
positions result in increasing the maximum drag coef-
�cient, while the lowest point is approximately �xed.
Also, the highest drag points incline to the lower angles.
For negative positions, also, the trend is the same, as
when the axis point centers at points too far in front of
the leading edge, the di�erence between up-stroke and
down-stroke stages diminishes.

It can be perceived from Figure 19(a), by en-
larging the reduced frequency, the hysteresis lift loop
is widened, and the slope of the loop is decreased.
Also, maximum lift is reduced and the minimum one
is increased. Figure 19(b) illustrates that while the
reduced frequency is enlarged, the highest drag is
enhanced. Then, it is decreased in k = 1 and the lowest
one is increased. Comparing this �gure with Figure 15,
it can be deduced that at lower mean angles, changing
the reduced frequency a�ects the hysteresis loop of the
aerodynamic coe�cients considerably.

5.7. Unsteady parameters e�ects on average
aerodynamic coe�cients

According to Figure 20, using positive position centers
and distancing from the trailing edge into the back of
the airfoil, average drag coe�cient can be increased
slightly. However, it will be reduced, due to negative
places and displacing from the leading edge in front
of the airfoil. Also, the same results can be observed
for average lift coe�cient at �m = 8:99� . Variations
of pitching axis position do not a�ect the average
lift coe�cient in lower mean angles (�m = 0:88�
and �m = 4:02�). It is interesting that for low
mean angles of amplitude, the mean drag coe�cient
is nearly constant and is not a function of pitching axis
position.

From Figure 21(a), it can be observed that varia-
tion of reduced frequency has a slight e�ect on average
lift coe�cient. Figure 21(b) shows that the minimum
average drag coe�cient can be achieved in low reduced
frequencies (less than k = 0:2). Reduced frequencies
above k = 0:4 lead to too high mean drag coe�cients
and are not recommended.
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Figure 21. E�ect of reduced frequency on mean aerodynamic coe�cients: (a) Average lift coe�cient; and (b) average
drag coe�cient (Xcp = 0:25, �0 = 4�).

Figure 22. E�ect of pitching axis position on average lift
to drag ratio (k = 0:133, �0 = 4�).

Figure 22 shows the e�ect of pitching axis position
on average lift to drag ratio for k = 0:133, �0 = 4�. It
is obvious that pitching axis position is not e�ective on
average lift to drag ratio for �m = 0:88�. However, for
higher mean angles, positive positions and distancing
from the trailing edge lead to a reduction in average lift
to drag ratio. Inversely, negative values and displacing
from the leading edge in front of the airfoil bring about
very high values of this ratio. Further, in negative
positions, it can be observed that if mean angle of
attack is selected at high value, average lift to drag
ratio will become maximum.

It can be seen from Figure 23 that very low
reduced frequencies (less than k = 0:2) result in high
average lift to drag ratio for high mean angles. Thus,
to maximize the ratio or to improve the ight e�ciency
in high Reynolds ows, it is required that a high mean
angle of amplitude with a low reduced frequency is
selected.

Figure 23. E�ect of reduced frequency on average lift to
drag ratio (Xcp = 0:25, �0 = 4�).

6. Conclusions

In this article, the unsteady ow around a pitching
airfoil at high Reynolds number is investigated. Using
the Coarse Grid CFD method, surface vorticity con�ne-
ment and a multi zone adaptive grid, simultaneously,
leads to a high-speed scheme that greatly reduces the
required computational time, while the accuracy of the
results is acceptable. Therefore, we have been able to
explore the e�ects of di�erent unsteady parameters on
pitching airfoil aerodynamic coe�cients.

According to the results, moving the pitching
center location to the left or right sides has di�erent
consequences. Firstly, positive pitching axis positions
or distancing from the trailing edge in back of the
airfoil, results in enhancing the maximum and average
lift and drag coe�cients, while the minimum coe�cient
is not changed. Also, this reduces the average lift
to drag ratio mainly at high mean angles. Thus, in
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some practical situations, in which only lift force is
important, it is appropriate that the pitching center
be placed in positive positions far from the trailing
edge. Secondly, if the purpose is increasing the lift and
simultaneously decreasing the drag, it is necessary that
the pitching axis position be situated in front of the
airfoil far from the leading edge. This also results in the
increasing of average lift to drag ratio. Furthermore,
the enlarging oscillation amplitude at high Reynolds
ow, generally, has no considerable inuence on the
lift to drag ratio or e�ciency of the ight. In addition,
to maximize the average lift to drag ratio at high
Reynolds ows, lower frequencies are desired. Finally,
it should be stated that at lower mean angles of attack,
unsteady parameters have no inuence on the average
lift coe�cient.
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