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Abstract. In this paper, the problem of laminar magnetohydrodynamic nanouid ow
in a porous channel is investigated. The Optimal Homotopy Asymptotic Method (OHAM)
is used to solve this problem. In order to lessen CPU time, the Galerkin method is used to
minimize the residual. This investigation was compared with a numerical method (fourth-
order Rungekutte method) and found to be in excellent agreement. The base uid in the
channel is water containing copper as a nanoparticle. The e�ective thermal conductivity
and viscosity of nanouid are calculated by the Maxwell{Garnetts (MG) and Brinkman
models, respectively. The inuence of the three dimensionless numbers: The nanouid
volume fraction, Hartmann number and Reynolds number, are examined. The results
indicate that velocity boundary layer thickness decreases with an increase in Reynolds
number and nanoparticle volume fraction, and increases as Hartmann number increases.

© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Recently, due to the rising demands of modern tech-
nology, including chemical production, power stations,
and microelectronics, there is a need to develop new
types of uid that will be more e�ective in terms of
heat exchange performance. Nanouids are produced
by dispersing the nanometer-scale solid particles into
base liquids with low thermal conductivity, such as
water, Ethylene Glycol (EG), oils, etc. [1]. Khanafer
et al. [2] �rstly conducted a numerical investiga-
tion on heat transfer enhancement by adding nano-
particles in a di�erentially heated enclosure. They
found that the suspended nanoparticles substantially
increase the heat transfer rate at any given Grashof
number. Squeezing unsteady nanouid ow and heat
transfer has been studied by Sheikholeslami et al. [3].
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They showed that for a case in which two plates are
moving together, the Nusselt number increases with
an increase in the nanoparticle volume fraction and
Eckert number, while it decreases with the growth of
the squeeze number. Ashorynejad et al. [4] studied the
ow and heat transfer of a nanouid over a stretching
cylinder in the presence of a magnetic �eld. They found
that choosing copper (for small values of magnetic
parameter) and alumina (for large values of magnetic
parameter) leads to the highest cooling performance
for this problem. The e�ect of a static radial magnetic
�eld on natural convection heat transfer in a horizontal
cylindrical annulus enclosure �lled with nanouid was
investigated numerically by Ashorynejad et al. using
the Lattice Boltzmann method [5]. They found that
the average Nusselt number increases as nanoparticle
volume fraction and Rayleigh number increase, while
it decreases as Hartmann number increases. Sheik-
holeslami et al. [6] used CVFEM to simulate the
e�ect of a magnetic �eld on natural convection in an
inclined half-annulus enclosure �lled with Cu-water
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nanouid. Their results indicated that Hartmann
number and the inclination angle of the enclosure can
be considered control parameters at di�erent Rayleigh
number. Several numerical studies have been published
on the modeling of natural convection heat transfer
using nanouid [7-20].

The ow problem in porous tubes or channels has
received considerable attention in recent years because
of its various applications in biomedical engineering; for
example in the dialysis of blood in arti�cial kidneys, in
the ow of blood in capillaries and blood oxygenators,
as well as in many other engineering areas, such as the
design of �lters in transpiration cooling boundary layer
control and gaseous di�usion. Chandran et al. [21] an-
alyzed the e�ects of a magnetic �eld on thermodynamic
ow past a continuously moving porous plate.

At the heart of di�erent engineering sciences,
most mathematical problems are modeled by ordinary
or partial di�erential equations. There are limitations
using the common perturbation method, as the basis
of this method depends upon the existence of a small
parameter, so, developing this method for di�erent ap-
plications is very di�cult. Recently, di�erent methods
have been introduced to eliminate the small parameter,
including the homotopy perturbation method [22-25],
di�erential transformation method [26-28], homotopy
analysis method [29-32] and adomian decomposition
method [33].

The Optimal Homotopy Asymptotic Method
(OHAM) is a powerful method for solving nonlinear
problems without depending on the small parameter.
Hashemi et al. [34] used OHAM for �nding the
approximate solutions of a class of Volterra integral
equations with weakly singular kernels. They showed
that OHAM is a reliable and e�cient technique for
�nding the solutions of weakly singular Volterra inte-
gral equations. The application of OHAM to other
types of problem was introduced in [35-38]. In order to
reach OHAM's constant parameters, we can use three
methods: Least Square Method (LSM), Collocation
Method (CM) and Galerkin Method (GM). Generally,
authors used LSM in order to reach these constant
parameters. The use of the least Square Method
(LSM) in minimizing the residual of OHAM might
increase the CPU execution time of the algorithm. So,
some authors, like Ganji et al. [39], use the Galerkin
technique for minimizing the residual of OHAM. Re-
cently, several papers were published about applica-
tion of new analytical and numerical methods [40-
45].

In this study, laminar nanouid ow in a semi-
porous channel in the presence of a magnetic �eld is
studied using OHAM. In order to obtain minimum
residual, the Galerkin method is used. E�ects of
nanoparticle volume fraction, Reynolds number and
Hartmann number on ow have been examined.

Figure 1. Schematic diagram of the system.

2. Problem statement and mathematical
formulation

The laminar two-dimensional stationary nanouid ow
in a semi-porous channel, made by a long rectangular
plate with length Lx, in uniform translation in an
x�direction and an in�nite porous plate, is considered.
The distance between the two plates is h. We observe
a normal velocity, q, on the porous wall. A uniform
magnetic �eld, B, is assumed to be applied towards
direction y� (Figure 1). In the case of a short circuit,
to neglect the electrical �eld and perturbations to the
basic normal �eld and without any gravity forces, the
governing equations are:
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The appropriate boundary conditions for the velocity
are:

y� = 0 : u� = u�0; v� = 0; (4)

y� = h : u� = 0; v� = �q: (5)

Calculating mean velocity U by the relation:

y� = 0 : u� = u�0; v� = 0: (6)

We consider the following transformations:

x
x�
Lx

; y =
y�
y
; (7)

u =
u�
U

; v =
v�
q
; Py =

p�
�f :q2 : (8)

Then, we can consider two dimensionless numbers: The
Hartman number, Ha, for the description of magnetic
forces and the Reynolds number, Re, for dynamic
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forces:

Ha = B�h
r �f
�f :�f

; (9)

Re =
hq
�nf

�nf ; (10)

where the e�ective density (�nf ) is de�ned as [2]:

�nf = �f (1� �) + �s�; (11)

where � is the solid volume fraction of nanoparticles.
The dynamic viscosity of the nanouids given by
Brinkman [2] is:

�nf =
�f

(1� �)2:5 ; (12)

the e�ective thermal conductivity of the nanouid
can be approximated by the Maxwell{Garnetts (MG)
model as [2]:

knf
kf

=
ks + 2kf � 2�(ks)

ks + 2kf + �(kf � ks) : (13)

The e�ective electrical conductivity of nanouid was
presented by Maxwell [9] as below:

�nf
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3
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�
�
: (14)

The thermo physical properties of the nanouid are
given in Table 1 [2]. Substituting Eqs. (6) and (10) into
Eqs. (1) and (3) leads to the dimensionless equations:
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where A� and B� are constant parameters:

A� = (1� �) +
�s
�f
�;

B� = 1 +
3
� �s
�f � 1

�
�� �s

�f + 2
�� � �s�f � 1

�
�
: (18)

Table 1. Thermo physical properties of water and
nanoparticles [9].

� (kg/m3) k(W/m.k) �(
�1m�1)

Pure water 997.1 0.613 0.05
Copper (Cu) 8933 401 5:96� 107

The quantity of " is de�ned as the aspect ratio between
distance h and a characteristic length, Lx, of the slider.
This ratio is normally small. Berman's similarity trans-
formation is used to be free from the aspect ratio of ":

v = �V (y); u =
u�
U

= u0U(y) + x
dV
dy

: (19)

Introducing Eq. (19) in the second momentum
equation (Eq. (17)) shows that quantity, @Py=@y,
does not depend on the longitudinal variable, x. With
the �rst momentum equation, we also observe that
@2Py=@x2 is independent of x. We omit asterisks for
simplicity. Then, a separation of variables leads to:

V 02 � V V 00 � 1
Re

1
A�(1� �)2:5V
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UV 0 � V U 0 =
1

Re
1

A�(1� �)2:5 [U 00

�Ha2B�(1� �)2:5U ]: (21)

The right-hand side of Eq. (20) is constant. So, we
derive this equation with respect to x. This gives:

V IV = Ha2B�(1� �)2:5V
00

+ ReA�(1� �)2:5[V 0V 00 � V V 000]; (22)

where primes denote di�erentiation with respect to y,
and asterisks are omitted for simplicity. The dynamic
boundary conditions are:

y = 0 : U = 1; V = 0; V 0 = 0; (23)

y = 1 : U = 0; V = 1; V 0 = 0: (24)

3. Fundamentals of optimal homotopy
asymptotic method

The following di�erential equation is considered:

L(u(t))+N(u(t))+g(t)+g(t)=0; B(u)=0; (25)

where L is a linear operator, � is an independent
variable, u(t) is an unknown function, g(t) is a known
function, N(u(t)) is a nonlinear operator and B is a
boundary operator. By means of OHAM, one �rst
constructs a set of equations:

(1� p)[L(�(�; p)) + g(�)]�H(p)[L(�(�; p))

+ g(�) +N(�(�; p))] = 0;

B(�(�; p)) = 0; (26)

where p 2 [0; 1] is an embedding parameter, H(p)
denotes a nonzero auxiliary function for p 6= 0 and
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H(0) = 0; �(�; p) is an unknown function. Obviously,
when p = 0 and p = 1, it holds that:

�(�; 0) = u0(�); �(�; 1) = u(�): (27)

Thus, as p increases from 0 to 1, the solution �(�; p)
varies from u0(�) to solution u(�), where u0(�) is
obtained from Eq. (26) for p = 0:

L(u0(�)) + g(�) = 0; B(u0) = 0: (28)

We choose the auxiliary function, H(p), in the form:

H(p) = pC1 + p2C2 + :::; (29)

where C1; C2; ::: are constants which can be determined
later.

Expanding �(�; p) in a series, with respect to p,
one has:

�(�; p; Ci) = u0(�) +
X
k�1

uk(�; Ci)pk; i = 1; 2; ::::
(30)

Substituting Eq. (30) into Eq. (26), collecting the
same powers of p, and equating each coe�cient of p
to zero, we obtain a set of di�erential equations with
boundary conditions. By solving di�erential equations
by boundary conditions, u0(�); u1(�; C1); u2(�; C2); :::
are obtained. Generally speaking, the solution of
Eq. (25) can be determined approximately in the form:

~u(m) = u0(�) +
mX
k=1

uk(�; Ci): (31)

Note that the last coe�cient, Cm, can be a function of
� . Substituting Eq. (28) into Eq. (25), results in the
following residual:

R(�; Ci) = L(~u(m)(�; Ci)) + g(�) +N(~u(m)(�; Ci)):
(32)

If R(�; Ci) = 0; then ~u(m)(�; Ci) happens to be the
exact solution. Generally, such a case will not arise for
nonlinear problems, but we can minimize the functional
by the Galerkin Method (GM):

wi =
@R(�; C1; C2; :::; Cm)

@Ci
; i = 1; 2; :::;m: (33)

The unknown constants, Ci(i = 1; 2; :::;m), can be
identi�ed from the conditions:

J(C1; C2) =
bZ
a

wi:R(�; C1; C2; :::; Cm)d� = 0; (34)

where a and b are two values, depending on the
given problem. With these constants, the approximate
solution (of order m) (Eq. (31)) is well determined. It
can be observed that the method proposed in this work
generalizes these two methods using the special (more
general) auxiliary function H(p).

4. Solution with optimal homotopy asymptotic
method

In this section, OHAM is applied to nonlinear ordinary
di�erential Eqs. (21) and (22). According to the
OHAM, applying Eq. (36) to Eqs. (21) and (22) gives:

V IV = Ha2B�(1� �)2:5V
00

+ ReA�(1� �)2:5

[V 0V 00 � V V 000];

UV 0 � V U 0 =
1

Re
1

A�(1� �)2:5

[U 00 �Ha2B�(1� �)2:5U ]: (35)

We consider V;U;H1(p) and H2(p) as follows:

V = V0 + pV1 + p2V2; U = U0 + pU1 + p2U2;

H1(p)= pC11 +p2C12; H2(p) =pC21+ p2C22: (36)

Substituting V;U;H1(p) and H2(p) from Eq. (36) into
Eq. (35), and some simpli�cation and rearranging
based on the powers of p-terms, we have:

p0 : V IV = 0;

U 00 = 0;

V0(0) = 0; V 00(0) = 0; V0(1) = 0; V 00(1) = 0;

U0(0) = 1; U0(1) = 0: (37)

p1 :

V IV1 + C11V IV0 � C11 ReA�(1� �)2:5V 000 V 00

+ C11ReA�(1� �)2:5V 0000 V0

� C11Ha2B�(1� �)2:5V 000 � V IV0 = 0;

U 001 � C21ReA�(1� �)2:5V 00U0 + C22U 000 � U 000
+ C21ReA�(1� �)2:5U 00V0;

� C21Ha2B�(1� �)2:5U0 = 0;

V1(0) = 0; V 01(0) = 0; V1(1) = 0; V 01(1) = 0

U1(0) = 0; U1(1) = 0:
...

(38)

Solving Eqs. (37) and (38) with boundary conditions
gives:

V0(y) = �2y3 + 3y2; U0(y) = �y + 1; (39)
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V1(y) = C11(0:05714285714 ReA�(1� �)2:5y7 � 0:2y6

�0:1Ha2B�(1��)2:5y5+0:25Ha2B�(1��)2:5y4

� 0:3857142857ReA�(1��)2:5y3� 0:2Ha2B�

(1� �)2:5y3 + (0:22855714286ReA�

(1� �)2:5 + 0:05)y2);

U(y) =C21(0:2 Rey5 � 0:75 ReA�(1� �)2:5y4

+ReA�(1��)2:5y3�0:1667Ha2B�(1��)2:5y3

+0:5Ha2B�(1��)2:5y2�0:45 ReA�(1��)2:5y

� 0:3333 Ha2B�(1� �)2:5y): (40)

The terms of V2(y) and U2(y) are too large to show
graphically. Therefore, the �nal expression for V (y)
and U(y) is:

V (y) = V0(y) + V1(y) + V2(y);

U(y) = U0(y) + U1(y) + U2(y): (41)

By Substituting V (y) and U(y) and into Eq. (35),

R1(�; C11; C12) and R2(�; C21; C22) are obtained.
Then, J1 and J2 are obtained in the following manner:

J(C11; C12) =
bZ
a

wi:R1d� = 0; (42)

J(C21; C22) =
bZ
a

wi:R2d� = 0: (43)

Constants C11; C12; C21 and C22 are obtained from Eqs.
(42) and (43). By substituting these constants into Eq.
(41), an expression for V (y) and U(y) is obtained.

5. Results and discussion

In this paper, laminar nanouid ow in a permeable
channel in the presence of a uniform magnetic �eld is
studied (Figure 1). The Optimal Homotopy Asymp-
totic Method (using the Galerkin method to minimize
the residual) is used in order to solve this problem.
The results obtained by this method were well matched
with solutions obtained using a numerical method;
the fourth-order Runge-kutte method, as shown in
Figure 2.

The e�ect of the nanoparticle volume fraction
on U(y) is shown in Figure 3. For both cases, in

Figure 2. Comparison between the numerical results and GOHAM solution for di�erent values of active parameters when
� = 0:06.

Figure 3. E�ect of nanoparticle volume fraction (�) on U(y), when Re = 1 .
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the presence and absence of a magnetic �eld, velocity
boundary layer thickness decreases with an increase
in nanoparticle volume fraction. Also, it can be seen
that increasing nanoparticle volume fraction leads to
a decrease in the values of U(y) and this decrement
is more sensible in the absence of a magnetic �eld.
Figure 4 shows the e�ects of various values of Hart-
mann number on V (y) and U(y). Generally, when

the magnetic �eld is imposed on the enclosure, the
velocity �eld is suppressed owing to the retarding e�ect
of the Lorenz force. For low Reynolds number, as
Hartmann number increases V (y) decreases for y > ym,
but, the opposite trend is observed for y < ym; ym
is a meeting point at which all curves join together.
When Reynolds number increases, this meeting point
shifts to the solid wall and it can be seen that V (y)

Figure 4. E�ect of various values of Hartmann numbers (Ha) on V (y) and U(y) when � = 0:06.
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decreases with an increase in Hartmann number. As
Hartmann number increases, U(y) decreases for all
values of Reynolds number. Besides, this �gure shows
that this change is more pronounced for low Reynolds
numbers.

Figure 5 shows the e�ects of various values of
Reynolds number (Re) on V (y) and U(y). It is worth
mentioning that the Reynolds number indicates the

relative signi�cance of the inertia e�ect compared to
the viscous e�ect. Thus, the velocity pro�le decreases
as Re increases, and in turn, increasing Re leads
to an increase in the magnitude of the skin friction
coe�cient. With increasing Reynolds number, V (y)
and U(y) increase. These e�ects become less at higher
Hartmann numbers because of the retarding ow owing
to Lorenz forces. Also, it shows that increasing

Figure 5. E�ects of various values of Reynolds numbers (Re) on V (y) and U(y), when� = 0:06 .
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Hartmann number leads to an increase in the curve
of the velocity pro�le.

6. Conclusion

In this paper, laminar MHD nanouid ow in a semi-
porous channel is studied. The Optimal Homotopy
Asymptotic Method is used to solve governing equa-
tions. In order to lessen CPU time, the Galerkin
method is used to minimize the residual. It can be
found that this method is a powerful approach to
solving this problem. The e�ects of active parameters
on ow are examined. The results indicate that velocity
boundary layer thickness decreases with an increase
in Reynolds number and nanoparticle volume fraction,
and it increases as Hartmann number increases. Also,
it is discovered that the e�ect of Reynolds number
on ow becomes less for higher values of Hartmann
number.

Nomenclature

A�; B� Constant parameter
P Fluid pressure
q Normal velocity of porous wall
xk General coordinates
f Velocity function
�k Fluid thermal conductivity
n Power law index in temperature

distribution
Re Reynolds number
Ha Hartmann number
u; v Dimensionless components velocity in

x and y directions, respectively
u�; v� Velocity components in x and y

directions respectively
x; y Dimensionless horizontal, vertical

coordinates respectively
x�; y� Distance in x; y directions parallel to

the plates

Greek symbols

� Kinematic viscosity
� Electrical conductivity
" Aspect ratio (h/Lx)
� Dynamic viscosity
� Fluid density

Subscripts

1 Condition at in�nity
nf Nanouid
f Base uid
s Nano-solid-particles
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