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Abstract. In this study, the e�ect of the angle of attack on the aeroelastic characteristics
of high aspect ratio wing models with structural nonlinearities in unsteady subsonic
aerodynamic 
ows is investigated. The studied wing model is a cantilever wing with

ag, lag and torsion vibrations and with large de
ection capability, in accordance with
the Hodges-Dowell wing model. An unsteady low speed incompressible air 
ow is assumed
to include the 
ow time lags. Variations of the limit cycle amplitudes and frequency with
free stream velocity at di�erent angle of attacks are carefully studied. For the considered
model, the angle of attack has little e�ect on 
utter velocity but its e�ect on limit cycle
amplitudes and frequency is considerable. This study shows that the limit cycle amplitudes
are very sensitive to variations in angles of attack.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Helicopter blades and some models of aircraft have
long wings with great 
exibility in which nonlinear
deformations have important roles to play. Great
de
ections of these structures are describable by struc-
tural nonlinear modeling. The presence of nonlinear
structural factors with aerodynamic forces leads to
unsuitable aeroelastic phenomena such as limit cycles.
Therefore, careful review and understanding of these
phenomena in aeroelastic systems are vital.

Modeling of long wings has been undertaken by
several researchers, some of which have been mentioned
here. Hodges and Dowell developed the equations of
motion by two complementary methods; Hamilton's
principle and the Newtonian method [1]. Tang and
Dowell constructed an experimental high-aspect-ratio
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wing aeroelastic model with a slender body at the tip.
They investigated the 
utter and Limit-Cycle Oscilla-
tions (LCO) of a wing in a wind-tunnel test [2]. Tang
and Dowell presented a nonlinear response analysis
of a high-aspect-ratio wing aeroelastic model excited
by gust loads, theoretically, and examined it in a
wind-tunnel [3]. Patil et al. described a formulation
for aeroelastic analysis of aircraft with high-aspect-
ratio wings [4]. Malatkar explored the impact of
kinematic structural nonlinearities on the dynamics of
a highly deformable cantilevered wing [5]. Nichkawde
presented a study of the nonlinear vibrations of metallic
cantilever beams and plates subjected to transverse
harmonic excitations [6]. Tang, Henry and Dowell
studied the e�ects of a steady angle of attack on the
nonlinear aeroelastic response of a delta wing model
to a periodic gust [7]. Gordnier and Visbal perform
relevant aeroelastic analyses for a delta wing at an
angle of attack, and a computational technique capable
of addressing both complex nonlinear aerodynamics
and nonlinear structural features is presented [8]. Tang
and Dowell presented a paper built on previous work
concerned with the development of a comprehensive
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velocity sensitivity model for continuous scanning laser
vibrometry [9]. Soltani et al. [10] have examined the

ow �eld over a swept wing under various conditions.
Ghadimi et al. [11] investigated the thermal 
utter
characteristics of an imperfect cantilever plate under
aerodynamic loads. Davari et al. [12] studied the e�ects
of various wings on the tail 
ow �eld by measuring
the tail pressure distribution. Dardel and Bakhtiari-
nejad [13] presented a static output feedback controller
for aeroelastic control of a cantilevered rectangular
wing in low subsonic 
ow. Jian and Jinwu considered
the nonlinear aeroelastic response of high-aspect-ratio

exible wings [14]. They investigated the dynamic
stall in accordance with the ONERA wing model and
investigated the e�ect of aerodynamics drag on 
utter
and limit cycle amplitudes. Qiang et al. investigated
aeroelastic modeling and calculation for high aspect
ratio composite wings with di�erent forward swept
angles and skin ply orientation [15]. Gordnier et
al. developed a high-order (up to 6th order) Navier-
Stokes solver coupled with a structural solver that de-
composes the equations of three-dimensional elasticity
into cross-sectional (small-deformation and spanwise),
large-deformation analyses for slender wings [16]. The
resulting high-�delity aeroelastic solver is applied to
the investigation of rigid, moderately 
exible and
highly 
exible rectangular wings undergoing a pure
plunging motion. Xie et al. developed a rapid and
e�cient method for static aeroelastic analysis of a 
ex-
ible slender wing when considering structural geometric
nonlinearity [17]. A non-planar vortex lattice method
herein is used to compute the non-planar aerodynamics
of 
exible wings with large deformation. The �nite
element method is introduced for structural nonlinear
statics analysis.

In this work, the aeroelastic behavior of a Hodges-
Dowell wing model with an incompressible unsteady
aerodynamic model is investigated. A brief descrip-
tion of the Dowell-Hodges beam is given here. The
theory is intended for application to long, straight,
slender, homogeneous, isotropic beams with moderate
displacements, and is accurate to second order, based
on the restriction that squares of bending slopes, twist
t=L, and c=L, are small with respect to unity. Radial
non-uniformities (mass, sti�ness, twist, etc.), chord-
wise o�sets of the mass centroid and tension axes from
the elastic axis, and the warp of the cross section
are included. Other more specialized details are not
considered, such as blade root feathering 
exibility,
torque o�set, blade sweep, and curvature, nor are con-
�gurations considered in which the feathering bearing
is replaced with a torsionally 
exible strap [1]. In in-
compressible unsteady aerodynamic models the e�ects
of wakes, compressibility and viscosity are ignored.
Determination of 
utter and divergence velocities and
clari�cation of limit cycle amplitudes are investigated

in the current study. E�ects of changing mass ratio
and the distance between the elastic axis and center of
mass and other parameters, are carefully examined in
aeroelastic properties. This study is done for di�erent
models of wing section to evaluate the in
uence of
mass and inertia e�ects on limit cycle amplitude and

utter velocity. The e�ects of structural damping are
considered in structural modeling. The e�ect of initial
angle of attack on limit cycle amplitude is speci�ed.

2. Aeroelastic equations

2.1. Structural equations of motions
In this section, a brief description of structural equa-
tions of motion of a wing model, based on the Hodges-
Dowell wing model, is presented. A Hodges-Dowell
wing model presents double bending and torsional
vibrations. Hodges-Dowell wing models are second
order equations which are valid for long, straight and
thin homogeneous isotropic beams. In this study, the
wing cross-section is without twist and initial warping.
In this study, the wing elastic and center of mass axis
are not coincided, and structural damping is included
in the equations of motions.

The considered wing model is a cantilevered wing
model with bending displacements of w and � and
torsion of �, which are shown in Figure 1. The

ap de
ection is denoted by w, positive downward
direction; lag de
ection is denoted by �, positive
stream-wise direction; and pitch angle, �, is positive
nose up. A sketch of the wing section is shown in
Figure 2, where c is the chord, b is the semi-chord
length, ahb is the distance from the wing section mid-
chord to the elastic axis, and xab is the distance from
the elastic axis to the center of mass. The length of the
wing is L .

Hodges-Dowell equations of motion for a uniform
elastic wing, ignoring the wing section warping, are as
follows [18]:

EI1w(4) + (EI2 � EI1)(��00)00 +m �w �mxab��

+ Cww =
dFw
dx

; (1)

Figure 1. Flexible de
ected wing.
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Figure 2. Schematic �gure of the wing section.

�GJ�00 + (EI2 � EI1)w00�00 +mr2
1� �mxabw

+ C� _� =
dMx

dx
; (2)

EI2�(40)+(EI2�EI1)(�w00)00+m��+C� _�=
dF�
dx

; (3)

where m; ra; EI1; EI2; GJ; Cw; C� and C� are mass
per unit length of the wing, radius of gyration about
mass center, chord-wise and span-wise bending sti�-
ness, torsional sti�ness, respectively. dFw=dx; dMx=dx,
and dF�=dx are aerodynamic forces and moments.

2.2. Unsteady aerodynamics model
According to work presented in [2,3,7], aerodynamic
forces and moments for unsteady aerodynamics models
are as follows:

dFw = dL+ �0dD; (4)

dMx = dMxf ; (5)

dF� = �dD + �0dL; (6)

where �0; L(t); M(t), and D(t) are a constant angle
of attack, aerodynamic lift, moment and drag, respec-
tively. Aerodynamic forces on the �xed wing model
in a 
ow, with free 
ow speed, U , and according to
Figure 1, are as follows [19]:

L(�) =� ��U2f(w00 � ahb�00 + b�0)

+ 2
h
b�(0) = h0(0) +

�
1
2
� ah

�
b�0(0)

i
�(�)

+ 2
rZ

0

�(� � �)[b�0(�) + h00(�)
�

1
2
� ah

�
b�0(�)]d�g; (7)

M(�) =2��U2
�

1
2

+ ah
�nh

b�(0) + h0(0)

+
�

1
2
� ah

�
b�0(0)

i
�(�)

+
rZ

0

�(� � �)
h
b�0(�) + h00(�)

+
�

1
2
� ah

�
d�0(�)

i
d�
o

+ ��U2ahb(w00 � ahb�00)

�
�

1
2
� ah

�
��b2U2�0 � ��b2U2

8
�00: (8)

In these terms, all derivatives signed by (0) are based on
dimensionless time, � , as � = Ut=b. Wagner's function
(�) shows the 
ow is unsteady and is given by:

�(�) = 1�  1e��1t �  2e��2t; (9)

where  1 = 0:165; "1 = 0:041;  1 = 0:355, and "2 =
0:32 [8]. By inserting Eq. (9) into Eqs. (7) and (8)
and using the integrating by parts, lift force L(�) and
moment M(�) will be as follows:

L(�)=��U2fw00�ahb�+[1+(1�2ah)�(0)]�0+2�(0)w0

+2b[�(0) +(0:5� ah)�0(0)]�(�) +2�0(0)w(�)

+ 2b 1�1[1� (0:5� ah)�1]w1+2b 2�2[1

� (0:5� ah)�2]w2 � 2 2�21w3 � 2 2�22w4

� b(1� 2ah)�0(�)�(0)� 2�0(�)w(0)]g; (10)

M(�)=��U2b
n
ahw00�b

�
1
8

+a2
h

�
�00+(1+2ah)�(0)w0

+ (1 + 2ah)�(0)w+b(0:5� ah)[(1 + 2ah)�(0)

� 1]�0+b(1 + 2ah)
�
�(0) + (0:5� ah)�0(0)

�
�

+b(1 + 2ah) 1�1
h
1� (0:5� ah)�1

i
w1

� (1 + 2ah) 1�21w2+b(1 + 2ah) 2�2
h
1

� (0:5�ah)2

i
w2 � (1 + 2ah) 2�22w4�(1

+2ah)�0(�)w(0)�b(0:5� 2a2
h)�0(�)�(0)

o
;
(11)
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which, in accordance with the de�nitions given by Lee
et al [20], w1; w2 w3 and w4 variables are de�ned as
follows:

w1 =
�Z

0

e��1(���)�(�)d�; w2 =
�Z

0

e��2(���)�(�)d�;

w3 =
�Z

0

e��1(���)w(�)d�; w4 =
�Z

0

e��2(���)w(�)d�:
(12)

These variables have been de�ned because of existing
integral terms of the aerodynamics model (unsteady
part of the 
ow). The aerodynamics center of and the
distance between the elastic axis and the wing mid-
chord of xf are de�ned by:

e =
xf
c
� 1

4
; xf =

b
2

+ ahb: (13)

In addition, by ignoring drag force, we can write:

dD = 0: (14)

2.3. Discretizing aeroelastic equations
By substituting aerodynamic forces and moments, in
accordance with Eqs. (7) and (8) in the structural
equations of motion (Eqs. (1)-(3)), complete aeroelastic
equations will be obtained. These equations can
be discretized according to the assumed mode and
Galerkin's method. In these methods, the w; � and
� displacements are explained in terms of multiplying
generalized coordinate and mode shapes, which satisfy
geometric boundary conditions. Then, by substituting
these displacements in equations of motion, multiplying
each equation with an admissible mode function and
integrating along the whole area of the wing, the
equations of motion will be discretized. Hence the

ap, lag and torsion displacements can be described
as follows:

w(x; t) =
X

Wi(t) i(x); �(x; t) =
X

�i(t)�i(x);

�(x; t) =
X

Vi(t)ai(x);

w1 =
X

w1j(�)�j(x); w2 =
X

w2j(�)�j(x);

w3 =
X

w3j(�) i(x); w4 =
X

w4j(�) i(x); (15)

where:

w1j =
�Z

0

e��1(���)�j(�)d�; w2j

�Z
0

e��2(���)�j(�)d�;

w3j=
�Z

0

e��1(���)�j(�)d�; w4j =
�Z

0

e�2(���)�j(�)d�;
(16)

where Wi(t); �i(t) and Vi(t) are generalized coordi-
nates, and  i(x); �i(x) and ai(x) are mode shapes that
satisfy geometric boundary conditions. Appropriate
mode shapes for description of the displacements of w; v
and � are obtained from the beams and rod with equiv-
alent boundary conditions to the wing model. This
aeroelastic model has 
ap, lag and torsion motions.
Flag and lag motions are transverse displacements.
According to the Rayleigh-Ritz method, displacements
can be written in terms of generalized coordinates and
assumed mode functions. These mode functions must
satisfy geometric boundary conditions. Accordingly,

ap and lag displacements are written in terms of mode
functions of the Euler-Bernoulli cantilever beam, and
torsion displacement is expressed in terms of the �xed-
free mode function of the shaft or rod. These mode
shapes are as follows:

For bending modes:

 n=sin�n
x
L
�sinh�n

x
L

+an
�

cos�n
x
L
�cosh�n

x
L

�
;
(17)

that:
�n = 1:8751; 4:6941; 7:8547; 10:9955; 10:9955 + �; � � �
an = (cos�n � cosh�n)=(sin�n = sinh�n);

and, for torsional modes:

�n = sin
�

2n� 1
2

�
x
L

�
: (18)

The following non-dimensional quantities are intro-
duced:

� =
U1t
b
; � =

w
b
; � =

�
b
;

ra =
r

Ia
mb2

; � =
m
��b2

; U� =
U
b!a

;

!� =

vuuuuuut GJ
I�L2

1R
0

��00
�1

�2

dx�

1R
0

��00
�1

�2

dx�

!� =

vuuuuuut EI1
ImL4

1R
0

��00
 1

�2

dx�

1R
0

��
 1

�2

dx�
;

!� =

vuuuuuut EI1
ImL4

1R
0

��00
a1

�2

dx�

1R
0

��
a1

�2

dx�
;
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!�1 =
!�
!a
; !�2 =

!�
!a
; � =

x
L
; (19)

where � and � are dimensionless 
ap and lag de
ec-
tions; !� , !� and !a are the �rst natural frequencies
of uncoupled 
ap, lag and pitching modes; U�, !�i
and � are dimensionless velocity, bending to torsion
frequency ratios and mass ratio, respectively, and
� is dimensionless coordinate along the span of the
wing. These dimensionless parameters are de�ned in
order to select the necessary parameters, in accordance
with the values given in [9], to validate the presented
model, in accordance with the 
utter velocities in this
reference.

By combining structural equations (Eqs. (1)-(3))
with aerodynamic equations (Eqs. (7)-(8)), expressing
displacement variables according to Eq. (15), applying
Galerkin's method and using dimensionless parameters
given in Eq. (19), the original partial di�erential equa-
tions are converted to the following ordinary di�erential
equations:

24M�� M�� M��
M�� M�� M��
M�� M�� M��

35
8>>>>>><>>>>>>:
::
�
::
�
::
�

9>>>>>>=>>>>>>;
+

24C�� C�� C��
C�� C�� C��
C�� C�� C��

35

�
8<:���
9=;+

24K�� K�� K��
K�� K�� K��
K�� K�� K��

358<:���
9=;

+

24K�1 K�2 K�3 K�4
K�1 K�2 K�3 K�4
K�1 K�2 K�3 K�4

35
8>><>>:
w1i
w2i
w3i
w4i

9>>=>>;=

8<:FN�FN�
FN�

9=; :
(20)

Elements of each matrix and nonlinear terms in
Eq. (20) are introduced in Appendix A.

According to the de�nition presented in Eq. (12),
time derivatives of variables w1; w2; w3 and w4 are
de�ned as follows:

d
d�

8>><>>:
w1i
w2i
w3i
w4i

9>>=>>; =

8>><>>:
�j
�j
�j
�j

9>>=>>;�
2664�1 0 0 0

0 �2 0 0
0 0 �1 0
0 0 0 �2

3775
8>><>>:
w1i
w2i
w3i
w4i

9>>=>>; :
(21)

Aeroelastic equations can be obtained by combining
Eqs. (20) and (21). These equations can be written
brie
y as follows:

[Meq] f�qg+[Ceq] f _qg+[Keq] fqg+[KLag]fwLagg=fFNg ;�
dwLag

d�

�
= fug � [K�] fwLagg ; (22)

where [Meq], [Ceq] and [Keq] are mass, damping and
sti�ness matrices and fFNg is a vector of structural
nonlinearity. [KLag] and [K�] show the e�ect of
aerodynamics lag due to unsteadiness of 
ow. The
vectors, fqg and fwLagg, are de�ned as f�T �T �T gT and
fwLagg = fwT1i wT2i wT3i wT4igT , respectively.

Now, after presenting all aeroelastic equations,
the validity and results obtained from these equations
will be examined.

3. Aeroelastic results

In this section, the aeroelastic results of the presented
wing model for di�erent cases will be studied. For this
purpose, at �rst, wing structural and aerodynamics
parameters will be selected. Wing sections and 
ight
parameters are shown in Table 1. These parameters

Table 1. Wing model data.

Wing speci�cation Values
Span (L) 0:6299 (m)
Chord (c) 0:1018 (m)
Dimensionless distance from wing section mid-chord to elastic axis (ah) �0:3
Dimensionless distance from elastic axis to center of mass (xa) �0:22
Flap structural modal damping (Cw) 0:02
Chord-wise structural modal damping (Cv) 0:025
Torsional structural modal damping (C�) 0:031
Mass ratio (�) 48
Radius of gyration about elastic axis (r�) 0:558
Natural frequencies in 
ap bending (!�) 26� � � rad

s

�
Natural frequencies in chord-wise bending (!�) 172:6� � � rad

s

�
Natural frequencies in torsion (!�) 210� � � rad

s

�
Flight conditions
Density of air (�) 1:1

� kg
m3

�
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are selected compatible with parameters presented
in [2,21]. These parameters are not selected accurately,
according to parameters given in these references, since,
in [2], the parameters are for a wing which represents
stall phenomenon, and parameters given in [21] are for
a simple wing model with plunge and pitch motions,
with low speed and incompressible, irrotational aero-
dynamic 
ow. Hence, combinations of the parameters
given by these references are given in Table 1.

3.1. Eigenvalue solution of the linear
aeroelastic system at zero angle of attack

At �rst, the eignevalue solution of the linear aeroelastic
system at zero angle of attack, which determines the
stability of the linear part of the system, will be
studied. For this purpose, considering the derivative of
all variables in Eq. (22) equal to zero, the equilibrium
point of the equation of motion will be determined.
Then, by linearization of the nonlinear terms, an equiv-
alent linear system around the equilibrium point will
be obtained, and from this equivalent linear system,
eigenvalue analysis is carried out.

Changes of eigenvalues of the linear aeroelastic
equation with free stream velocity have been shown in
Figures 3-5. The damping and frequency of eigenvalues
are given by the real and imaginary parts of eigenval-
ues, �, of the linear system. Di�erent combinations of
mode shapes are selected and the convergences of the
eigenvalue solution are studied. For these �gures, the
number of the mode functions for 
ap, lag and torsion
displacements are 4, 2 and 2. By increasing the number
of mode shapes above these mentioned mode numbers,
minor changes will occur in the predictions. A sample
convergence of the solution, based on the number of
the mode shapes, will be presented in the next section.

As seen in Figure 3, by increasing the free stream

Figure 3. Real part (damping) of eigenvalues of the
linearized aeroelastic system vs. free stream velocity,
case 1.

Figure 4. Imaginary part (frequency) of eigenvalues of
the linearized aeroelastic system vs. free stream velocity,
case 1.

Figure 5. Imaginary part (frequeny) vs. real part
(damping) of the eigenvalues of the linearized aeroelastic
system, case 1.

velocity, one of the branches of the real part of the
eigenvalues of the linear system will change its sign
and become positive. In this case, the initially stable
system becomes unstable. In 
utter velocity, a branch
of eigenvalues has an intersection with the real axis.
For this intersection, the real part of the corresponding
eigenvalue is zero. When the 
utter velocity is UF =
102:271 m/s (Figure 4), by increasing free stream
velocity, at �rst, all branches move to the left side
of the imaginary axis, which means more stability
of the system, but, at a velocity of 83:75 m/s, two
of these branches move towards the imaginary axis,
which means that the system tends to be unstable.
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After getting the branches to the imaginary boundaries
and passing them, the linear system became unstable.
Moreover, from Figure 5, it is clear that the two
branches of eigenvalues approach each other gradually
and near 
utter velocity, they have less distance from
each other, which shows the bending-torsion 
utter
mode. From Figure 4, the second mode of 
ap bending
with the �rst mode of torsion is the reason for the

utter. In this type of 
utter, increasing the free stream
velocity causes the bending frequency to increase and
the torsion frequency to decrease. Once these frequen-
cies become nearly equal, a 
utter of coupled bending-
torsion occurs, whose e�ect is similar to the internal
resonance phenomenon, and between these branches,
an internal resonance occurs. Flutter is a linear
dynamics phenomenon, in which the aerodynamics
force dominates the dynamics inertial forces. In 
utter,
unstable eigenvalues are in complex conjugate form,
and the amplitude of vibration gradually increases with
time. But, if there is nonlinearity in the system,
the counter e�ects of unstable eigenvalues after 
utter
velocity with nonlinear structural terms, lead to a non-
linear vibration phenomenon, such as limit cycle. Limit
cycle oscillation is a vibration with limited amplitude.

Divergence is static instability, in which aerody-
namic forces dominate structural force (wing sti�ness)
without consideration of inertia forces. Explained
mathematically, this is instability with pure positive
real eigenvalue (eigenvalue without an oscillatory imag-
inary part). For divergence of the wing, it is necessary
for eigenvalues of a linearized system to go to the right
half of the s-plane along the horizontal axis, without
having an imaginary part. From Figure 5, some eigen-
values of the considered linearized aeroelastic system
lie on the negative horizontal axis. These real negative
eigenvalues are due to the lag in aerodynamics force,
i.e. dynamics of the aerodynamic forces through wLag
(Eq. (22)). Also, by varying velocity, two branches
of eigenvalues, according to Figure 5, intersect and
bifurcate, and one branch moves along the negative
real axis, and another moves towards the positive
real axis. For occurring divergent instability, it is
necessary to increase the free stream velocity. For the
case considered here, the required free stream velocity
for divergent instability is beyond the applicability of
the considered aerodynamics model. Hence, the free
stream velocity is limited to the domain shown in these
�gures. As shown in Figure 5, the eigenvalues on
real axes are on the left half plane. Similar forms of
behavior are presented in [9,10].

3.2. Solution convergence study
Here, the e�ect of di�erent numbers of mode shape on
the convergence of the solution will be studied. This
convergence study is brie
y described in Figures 6-
8. These �gures show the displacement at the tip

Figure 6. Flap displacement of the nonlinear aeroelastic
wing model at angle of attack 1 deg in U1 = 102:271 m/s
for di�erent combinations of mode shapes (tip of the
wing).

Figure 7. Torsional displacement of the nonlinear
aeroelastic wing model at angle of attack 1 deg in
U1 = 102:271 m/s for di�erent combinations of mode
shapes (tip of the wing).

of the wing. As seen from these �gures, there are
minor changes of predictions based on the 3-2-2 and
4-2-2 number of mode shapes. Hence, selection of
the 4, 2 and 2 mode shapes for 
ap, torsion and lag
displacements are very justi�ed.

3.3. E�ect of the free stream velocity of limit
cycle amplitudes

After examination of the linear stability of the aeroelas-
tic model and selection of the correct number of mode
shapes, the time response of the nonlinear aeroelastic
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Figure 8. Lag displacement of the nonlinear aeroelastic
wing model at angle of attack 1 deg in U1 = 102:271 m/s
for di�erent combinations of mode shapes (tip of the
wing).

model in di�erent velocities will be examined. The
limit cycle oscillation amplitudes for two di�erent
velocities are shown in Figures 9 and 10.

As seen from Figure 9, in velocity less than the
linear 
utter velocity, vibration amplitudes decreases
with time and �nally becomes damp. In this velocity,

all eigenvalues of the linear system have a negative real
part, and the linear system is stable. Hence, the am-
plitude of the oscillation gradually moves to zero. As
seen from Figure 10, by increasing the free 
ow velocity
above the 
utter boundary, limit cycle oscillations will
occur. The reason is that in a velocity greater than
linear 
utter, the linear system has complex conjugate
positive real part eigenvalues, which tend to increase
the amplitude of the vibrations. In the absence of
the structurally nonlinear term, the amplitude of the
oscillations tends to in�nity, while by increasing the
amplitude of the oscillations, the nonlinear structural
terms become su�ciently large and prevent further
increase in the vibration amplitude. Hence, �nally,
the oscillation will settle down in a nonlinear absorber,
which is the limit cycle, in this case.

The e�ects of the di�erent free stream velocity
in the time response of nonlinear aeroelastic model are
shown in Figures 11-13. These displacements are shown
for the tip of the wing. From Figure 13, by increasing
velocity beyond linear 
utter velocity, the amplitude of
the tip 
ap displacements increases at �rst, and then,
decreases. Similar forms of behavior are presented for
torsion and lag displacements.

From Figure 12, the torsion displacement is sym-
metric, but the 
ap and lag displacements of Figures 11
and 13 are not symmetric. The 
ap and lag displace-
ments have a static deformation in the direction of
the 
ow, and the whole of the wing will oscillate in

Figure 9. Wing tip (a), 
ap (b), torsion (c), and lag de
ections in U1 = 0:9UF and angle of attack 1 deg.

Figure 10. Wing tip (a) 
ap (b), torsion (c), and lag de
ections in U1 = 1:1UF and angle of attack 1 deg.
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Figure 11. Flap displacement of the nonlinear aeroelastic wing model in di�erent free stream velocity at angle of attack
1 deg.

Figure 12. Torsion displacement of the nonlinear aeroelastic wing model in di�erent free stream velocity at angle of
attack 1 deg.

Figure 13. Lag displacement of the nonlinear aeroelastic wing model in di�erent free stream velocity at angle of attack
1 deg.

the vicinity of this static displacement. According to
these �gures, in velocities greater than 
utter velocity,
the aerodynamics force is divided into two sections.
Some parts of the aerodynamics and structural forces
counteract each other without inclusion of the iner-
tial forces and produce a static displacement of the

wing. Remaining parts of the aerodynamics forces will
counteract structural and inertial forces and produce
oscillations around this static state. Hence, the limit
cycle amplitudes decrease with increasing velocity.

The maximum amplitudes of 
ap, torsion and lag
displacements along the span of the wing are shown in
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Figure 14. The 
ap displacement amplitude along the
span of the wing for di�erent velocities at angle of attack
1 deg.

Figure 15. The torsion displacement amplitude along the
span of the wing for di�erent velocities at angle of attack
1 deg.

Figures 14-16, respectively. According to Figure 14,
for velocities greater than 
utter velocity, the 
ap
displacement at the tip of the wing is nearly constant.
By increasing free stream velocity up from 1:01 UF ,
the torsion displacement decreases (Figure 15). For the
lag displacement according to Figure 16, the maximum
amplitude at the tip of the wing decreased with an
increase in free stream velocity up to 1:15 UF . At
mid wing, the amplitude of the limit cycle oscillation
decreased.

As shown in Figure 11, there is a certain static
displacement in 
ap displacements. This static dis-
placement has been shown in Figure 17 for the whole
span of the wing. According to Figure 17, up to
U1 = 1:05 � UF by increasing velocity, static dis-
placement amplitude increases, and by increasing free
stream velocity up from 1:06 UF , the static amplitude

Figure 16. The lag displacement amplitude along the
span of the wing for di�erent velocities at angle of attack
1 deg.

Figure 17. The 
ap static displacement along the span of
the wing for di�erent velocities at angle of attack 1 deg.

displacement decreases. There is a similar situation
for torsion and lag static displacements, as shown in
Figures 18 and 19.

Maximum limit cycle amplitudes along the wing
span, at angle of attack, are shown in Figures 20-25.

According to Figures 21 and 22, in this angle
of attack, by increasing free stream velocity, the lag
and torsion amplitudes at the end of the wing, at
�rst, increase and then decrease, while there are not
important changes for 
ap amplitudes. By comparing
the results presented in Figures 14-19 with Figures 20-
25, it is seen that by increasing the angle of attack
from to, the lag displacements at the end of the wing
are increased, while 
ap and torsion displacement has
little change.

Also, by comparing Figures 17-19 and Figures 23-
25, it is seen that the static displacements of the wing
increase by increasing the angles of attack.
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Figure 18. The torsion static displacement along the
span of the wing for di�erent velocities at angle of attack
1 deg.

Figure 19. The lag static displacement along the span of
the wing for di�erent velocities at angle of attack 1 deg.

Figure 20. The 
ap displacement amplitude along the
span of the wing for di�erent velocities at angle of attack
5 deg.

Figure 21. The torsion displacement amplitude along the
span of the wing for di�erent velocities at angle of attack
5 deg.

Figure 22. The lag displacement amplitude along the
span of the wing for di�erent velocities at angle of attack
5 deg.

Figure 23. The 
ap static displacement along the span of
the wing for di�erent velocities at angle of attack 5 deg.
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Figure 24. The torsion static displacement along the
span of the wing for di�erent velocities at angle of attack
5 deg.

Figure 25. The lag static displacement along the span of
the wing for di�erent velocities at angle of attack 5 deg.

3.4. E�ect of the attack angle on the limit
cycle amplitude and frequency of
nonlinear aeroelastic system

Now, the e�ect of the angle of the attack on limit cycle
amplitudes will be examined. The 
ap, lag and torsion
displacements at di�erent velocities and di�erent angles
of attack are shown in Figures 26-28. According to
these �gures, by increasing the angle of attack from
0 to 10, lag amplitude increases gradually, while the
changes of 
ap and torsion displacements are very
small.

The variation of the 
ap static displacement with
angle of attack is shown in Figure 29. According
to this �gure, by increasing angle of attack, the

ap static amplitudes are increased by increasing free
stream velocity. From these �gures, it is clear that
the amplitude of the oscillations in 
utter velocity
is very sensitive to the changes in the angle of at-
tack.

Figure 26. The 
ap displacement amplitude of the wing
tip for di�erent angle of attack.

Figure 27. The torsion displacement amplitude of the
wing tip for di�erent angle of attack.

The changes of the limit cycle oscillation fre-
quency in di�erent velocity and di�erent angles of
attack are shown in Figure 30. According to this
�gure, changes in angle of attack do not have any
important e�ect on limit cycle frequency. The limit
cycle frequencies decrease by increasing free stream
velocity.

The wing tip cross section oscillations at the angle
of attack of 1 deg are shown in Figure 31. According
to Figure 31, in the extremum of motion, i.e., in
the upper and lower part of the wing displacement,
the main displacement is due to torsion, and sharp
changes in the wing torsion occur. While between
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Figure 28. The lag displacement amplitude of the wing
tip for di�erent angle of attack.

Figure 29. The 
ap static displacement amplitude of the
wing tip for di�erent angle of attack.

these extrema, motion mainly due to bending dis-
placements and torsion displacements gradually oc-
curs.

Wing cross section oscillation at position has been
shown in Figure 31. As seen from this �gure, there is a
node at the leading edge of the wing. The positions of
this nodal line vary with free stream velocity and angle
of attack.

4. Conclusion

In this study, the e�ect of the angle of attack on

Figure 30. The frequency of the limit cycle oscillations
at di�erent angle of attacks.

Figure 31. Wing cross section oscillations at position of
0:542 m at angle of attack 1 deg for velocity of
102:271� 1:06 m/s.

the nonlinear behavior of high aspect ratio wings
in unsteady low speed aerodynamic 
ow is carefully
examined. The studied wing models have 
ap, lag and
torsion displacements. According to this study, the
limit cycle amplitudes are very sensitive to variations
in angle of attack. With variation of the angle of
attack, wings undergo a static displacement in each
displacement. The frequency of limit cycle oscillations
at di�erent angles of attack and free stream veloc-
ities is obtained. There are minor changes in the
frequency of the limit cycle with variations in angle
of attack.
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Nomenclature

ah Dimensionless distance from wing
section mid-chord to elastic axis

b Wing section semi-chord
Cv; Cw Structural chord-wise and vertical

bending damping coe�cents
C� Structural twist damping
c; �c Wing chord and dimensionless chord,

c=L
dD; dL Section drag and lift forces
dFv; dFw Chord-wise and vertical aerodynamic

forces
dMx Aerodynamic pitch moment about

elastic axis
dMxf aerodynamic pitch moment about

elastic axis
E Modulus of elasticity of wing
e Section mass center distance from

elastic axis
G Shear modulus of elasticity
h Plunge displacement
I1; I2 Vertical, chord-wise area moments of

inertia
J Torsional sti�ness constant
L Wing span
m Mass per unit length of the wing
r� Radius of gyration about elastic axis
t Time
U;U� Free-stream velocity and dimensionless

velocity
UF Flutter velocity
vi;Wi Generalized coordinates for 
ap lag

bending
� Chord-wise or edgewise bending

de
ection
w Vertical or 
apwise bending de
ection
x Position coordinate along wing span
xf Position of 
exural axis
x� Dimensionless distance from elastic

axis to center of mass
� Pitch angle of wing section
�i Generalized coordinates for torsion
�0 Steady angle of attack at root section
� Mass ratio
�; � Dimensionless 
ap and lag

displacements
� Air density
� Dimensionless time
! Frequency of limit cycle oscillations

!� ; !�; !� Natural frequencies in 
ap lag and
pitch

!�1 ; !�2 Frequency ratio

()0 d()=dx
(:) d()/dt
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Aeroelastic matrices coe�cients:
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