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Abstract. In the present study, the dynamic stability of double-walled boron nitride
nanotubes (DWBNNTSs) including surface stress effects, is investigated, based on the
Gurtin-Murdoch continuum theory. Nonlocal piezoelasticity is incorporated into shell
theory to develop a non-classical model for DWBNNT. The effects of van der Waals
(vdW) forces, viscose fluid passes through the inner nanotube and visco-Pasternak medium
are evaluated. Fluid-DWBNNT interaction is evaluated considering the slip boundary
condition and bulk viscosity. Hamilton’s principle is utilized to derive governing equations
with regard to von Karméan geometric nonlinearity. Finally, the Incremental Harmonic
Balance Method (IHBM) indicates the Dynamic Instability Region (DIR) of DWBNNT.
A detailed parametric study is conducted, focusing on the combined effects of the surface
parameters, nonlocality, fluid velocity, Knudsen number, thermal changes, vdW forces and
surrounding medium on the DIR of DWBNNT. Numerical results indicate that considering
surface stress effects shifts the DIR to a higher frequency zone.

© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) and boron nitride nan-
otubes (BNNTSs) have a similar hexagonal structure
and both are produced by rolling corresponding sheets.
BNNTs have more resistance to oxidation at high
temperature than other conventional nanotubes such
as CNTs, so they can be used in equipment with high
thermal resistance. CNTs exhibit metallic or semi-
conducting properties depending on their chirality,
but BNNTs are always considered semi-conducting
materials which are approximately independent of chi-
rality. Unlike CNTs, BNNTs have a strong piezo-

*. Corresponding author. Tel.: +98 3615912450;
Faz: +98 361591242}
E-mail address: aghorban@kashanu.ac.ir (A. Ghorbanpour
Arani)

electric property. This property makes them a novel
choice for producing sensors, actuators and other smart
control applications, such as the reinforcement of smart
nanocomposites. BNNTs possess extraordinary prop-
erties, such as high elastic modulus, high thermal con-
ductivity, low density, constant wide band gap, superb
structural stability and chemical inertness. BNNTSs,
in general, have two highly symmetrical structures:
zigzag and armchair. For uniaxial strain, zigzag tubes
exhibit a longitudinal piezoelectric response, while the
armchair tubes have an electric dipole moment linearly
coupled to torsion [1].

Fluid-conveying structures have attracted a large
number of studies in literature [2-5]. In recent years, a
large amount of research work has been carried out on
the buckling and vibration of nanotubes with conveying
fluid due to the application of nanotubes as fluid
transport, gas storage and drug delivery devices. In
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order to mechanically model these structures, higher-
order continuum theories, such as partial nonlocal elas-
ticity, exact nonlocal elasticity, nonlocal piezoelasticity,
modified couple stress, strain gradient elasticity and
surface elasticity theory have been recently employed.
Khosravian and Rafii-Tabar [6] investigated viscous
fluid through Multi-Walled CNTs (MWCNTs) for the
first time. The dynamic behavior of triple-walled CNT's
is reported by Yan et al. [7] considering the vdW
effect. Lee and Chang [8] reported the linear vibration
of Double-Walled CNTs (DWCNTSs) conveying fluid
based on nonlocal continuum mechanics. The effect
of internal moving fluid and compressive load on the
nonlinear vibration and stability of CNTs is reported
by Rasekh and Khadem [9] based on the method of
multiple scales. Results show that beyond critical
fluid velocity, buckling occurs. Wang and Ni [10]
showed that the effect of viscosity can be ignored
in the vibration analysis of CNTs conveying viscous
fluid. Wang [11] found that the effect of small length
parameters on critical flow velocity can be ignored
in the vibration analysis of DWCNTs. Noncoaxial
vibration of fluid-filled MWCNTSs is studied by Yan
et al. [12]. Ghavanloo et al. [13] studied the effect of
viscoelastic Winkler foundation on the instability of
CNTs conveying fluid. They also obtained the effect
of viscoelastic modulus and damping factors on the
resonance frequency of the CNTs, based on the Finite
Element Method (FEM). The vibration and instability
of DWCNTSs, based on the modified couple stress
theory, which contains a material length parameter,
are investigated by Ke and Wang [14]. Results show
that the imaginary component of the frequency and
critical fluid velocity of the fluid-conveying DWCNTs
increase with an increase in the length scale parameter.
Farshidianfar and Soltani [15] investigated the non-
linear flow-induced vibration of Single-Walled CNTs
(SWCNTs) considering geometrical imperfection based
on the nonlocal continuum theory. The surrounding
medium is assumed as a Pasternak type and the effect
of imperfection on nonlinear frequency is discussed
using the method of multiple scales. Rashidi et al. [16]
reported a novel model for the vibration of nanotubes
conveying nanoflow. The effect of small-size on the
bulk viscosity and slip boundary conditions of nanoflow
through Knudsen number (K,,) is considered in this
paper. They found that incorporating the nanoflow
slip boundary conditions hypothesis changes the results
drastically, as compared to continuum flow models.
Khoddami Maraghi et al. [17] studied the vibration and
instability of DWBNNT conveying viscous fluid using
the nonlocal piezoelasticity theory and the Differential
Quadrature Method (DQM). The nonlinear dynamic
response of embedded fluid-conveyed micro-tube re-
inforced by BNNTSs is investigated by Ghorbanpour
Arani et al. [18]. Results show that electric and

thermal loadings are the controlling parameters to im-
prove the stability of the smart composite micro-tube.
Ghorbanpour Arani et al. [19] reported the nonlinear
nonlocal vibration of embedded DWCNT conveying
fluid using a shell model. According to this study,
increasing the circumferential wave number leads to
enhanced nonlinearity. Nonlocal wave propagation in
an embedded DWBNNT conveying fluid via the strain
gradient theory is reported by Ghorbanpour Arani et
al. [20]. They found that the phase velocities predicted
by the strain gradient theory are lower than those
predicted by Eringen’s theory, because strain gradient
and Eringen theories contain three and one material
length scale parameters to capture the size effect,
respectively.

The partial nonlocal elasticity theory derives a
higher-order equation of motion without the corre-
sponding higher-order boundary conditions, but the
exact nonlocal elasticity theory derives a higher-order
governing differential equation with the corresponding
higher-order boundary conditions via the variational
principle. Recently, Lim [21] successfully established
an exact nonlocal elasticity theory and proved that
the stiffness of a nanobeam is strengthened with the
presence of a nonlocal nanoscale.

As discussed above, the dynamic stability of
nanotubes conveying fluid is not reported in literature.
Few studies have been done on the dynamic response of
CNTs. Ansari et al. [22] reported the dynamic stability
of SWCNT, including thermal environment effects,
based on Timoshenko beam and Euler-Bernoulli beam
theories. Results of linear dynamic stability show that
the difference between the instability region of local
and nonlocal beams is significant for nanotubes with
lower aspect ratios. Nomnlinear dynamic instability of
DWCNT under periodic excitation is reported by Fu et
al. [23], based on Euler-Bernoulli beam theory. Results
show that the area of DIR could be reduced by a
stiffness medium and an increment in the aspect ratio
of nanotubes. Recently, Li and Wang [24] reported
the effect of small scale on the dynamic characteristic
of CNTs under axially oscillating loading. Parametric
resonance frequency is observed in the range of oscil-
lating frequencies, even for dynamic oscillating loads
smaller than the static buckling load.

Due to differences between the bulk and surface
properties, Gurtin and Murdoch developed classical
continuum mechanics [25]. The surface layer sur-
rounds the material bulk without slipping. In nano
structures, due to the high surface area to volume
ratio, the effect of the surface is significant [26,27].
The vibration analysis of fluid-conveying nanotubes
considering surface effects is investigated by Wang [28].
The results show that the surface effects with positive
elastic constant or positive tensile residual surface
stress tend to increase the natural frequency and
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critical flow velocity. Wang [29] studied the nonlinear
buckling analysis of nanobeams containing internal
flowing fluid. According to this study, the effect of
surface on buckling amplitude is very strong. Lei et
al. [30] investigated surface effects on the vibration
analysis of DWCNT based on the Timoshenko beam
theory.

As illustrated above, the dynamic stability of
BNNT is not reported in literature. In this article, the
dynamic stability of DWBNNTSs is studied considering
internal viscose flowing fluid. Axial oscillating loading
is applied to the DWBNNT in a thermal environment.
Higher order nonlocal shell theory is used to derive the
nonlinear governing equations of embedded DWBNNT
considering electric-mechanical coupling. Also, the
effects of surface stress, nonlinear vdW forces and
visco-Pasternak medium are studied in this survey.
Galerkin and IHBMs are used to discretize space
and time domains and, finally, an iterative approach
indicates the DIR of DWBNNT.

2. Deriving governing equations

Figure 1 shows a DWBNNT conveying flowing fluid
in a visco-Pasternak medium. This figure shows a
DWBNNT with inner radius, R, outer radius, Rs,
thickness, h, and length, L. The fluid velocity through
the DWBNNT is assumed as V4 in this study.

2.1. Nonlinear shell model

DWBNNT is modeled as coaxial cylindrical shells.
According to Donnell’s cylindrical shell theory, the
displacement field can be expressed as:
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{Li(xvavzat):ui(xvavt)_ E) )
X

Winkler modulus
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where u;, ¥; and w; are the total displacements in the
axial (x), circumferential (#) and radial (z) directions
of the inner (i = 1) and outer (i = 2) tubes; u;, v;
and w,; are the corresponding middle surface displace-
ments; and ¢ represents time. The strain-displacement
relationship, according to the von Karman nonlinear
theory, can be expressed as:

Exi = Uz + 5’11)7;7;52 — ZWizx
1 1 z
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1 n N 1 2z 2)
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2.2. Fluid-DWBNNT interaction

The velocity components of the flowing fluid in the
axial, radial and circumferential directions can be
expressed as [3]:

Vz—%—f—vocos( ),
0,
vrza—“;Jrvosm( ),
o
Vo = T (3)

where ¢ represents the attack angle of flow. The above
equations can be simplified by considering cos(¢) = 1

and sin(¢) = 22 [3]. To evaluate the interaction
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Figure 1. DWBNNT conveying fluid embedded in visco-Pasternak medium.
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between DWBNNT and fluid, considering the viscosity
effect, Navier-Stokes equation can be used, as:

DV

P = VP erg+ uVv, (4)

where p, py and p are the viscosity, density and
pressure of the fluid, respectively, and % represents
the material derivative. = The energy of viscosity
terms can be calculated applying an integral on the
fluid area (Ay) to derive governing equations (V; =
[[ prwidedAy) [17]. As described in [16], a modified
Navier-stokes equation should be used to consider the
small-size effects on the flow field. However, the
viscosity of the fluid should be replaced with effective
viscosity (e) in Eq. (4), which is a function of Knudsen
number (K,) as follows:

He = [0 1—|—aKn )

where 1 is the bulk viscosity and « is a coefficient [16].
Eq. (4) should be modified to consider slip boundary
conditions. Hence, the Velocity Correction Factor
(VCF) is calculated as [16]:

VCF = ‘/avg,slip

avg,no slip

= (1+aky,) (4 (2;)%) (1 Jl:;xn) +1) (©6)

where Vg stip and Vayg no slip are average flow velocities
through the nanotube, considering the slip boundary
condition and ignoring it. Also, o, is dependent on the
molecules tangential momentum [16]. The average flow
velocity of no-slip boundary conditions could be used
instead of the average flow velocity of slip-boundary
conditions by applying a velocity correction factor.

2.3. Energy method

Governing dynamic equations of DWBNNT are derived
using an energy method. Different energy components
are calculated in this section. Strain energy can be
expressed as:

1
I, = = /// (0wi€ei + 0oicoi + Onpivani) Ridxdldz.
2
(7)
The kinetic energy of the DWBNNT can be evaluated
as:

K; = % / / / pe (@2 + 0; + ;) Ridadbdz, (8)

where p; denotes the mass density of BNNT and the dot
indicates the time derivation. Also, the kinetic energy

of fluid passing through the inner BNNT is:

1
I‘f:§//0f

. 2 s e
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The Lennard-Jones model is used to evaluate the
vdW interlayer force in DWBNNT, so the work done
regarding the visco-Pasternak medium and vdW effect
can be expressed as:

1 [r 1t 1 r
V., :7/ qlwldx—i-f/ quzdaH—f/ —Fhwadz,
2/, 2 Jo 2 Jo (10)

where g1 and g2 represent the interlayer vdW interac-
tion and F,, is the visco-Pasternak effect:

¢ = c(we —wr) + cn(we — wl)sa
q2 = —C(w2 — 7_[)1) - Cn(w2 - 7_U1)37
Fm = ]{wTUQ + vaQ - KGwQ,am:a (11>

where ¢ and ¢, are the linear and nonlinear vdW
coefficients, K,, and Kg are the spring and shear
constants of the Winkler and Pasternak foundations
and cv is the damping factor of the visco medium. The
electric field energy is:

V.= / DyiEpidV, (12)

where D,; and E,; are the electric displacement and
electric field in the axial direction for the ith tube,
respectively. The relation between the electric field and
the electric potential (¢,) is expressed as:

ox

(13)
2.4. Hamailton’s principle

The governing equations can be derived using Hamil-
ton’s principle:

t
5/ (I + 10y — Ky — Ky — Kf =V,
0

— Vi — Vi — 6V})dt = 0. (14)

Substituting the energy terms into Eq. (14) and setting
the coeflicients of du;, dw;, év; and dp,; to zero results
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where R;; and R;, are the internal and external radius
of the ith tube, and N,; and M,; are the resultant force
and moment per unit length, which are defined as:

Ngi = /Uzidz7 No; = /UQidzv

N:fﬂi = /O-J:Hidzv Mml = /O-xiZdzv (16)

and mg = 0 for 2 = 2 and mp = 1 for i = 1. Also
mqy =0for7i=1and my =1 fori=2.

Neglecting the effects of flowing fluid, nonlinear
vdW force and the damping factor of the medium,
Egs. (15) reduce to the governing equations of Ref. [31].

3. Surface elasticity theory

According to the Gurtin-Murdoch theory, the interac-
tion between the surface and bulk material causes in-
plane loads on BNNT [32] as:

= (2,&5 + /\s)gzi + 27—37

0o = (215 + As)egi + 275,

S
rzi

_ s
Opui = T Wi g,

Ties = 700, an)
where us and A, are the surface Lame constants
and 7° is the residual surface stress under an un-
strained condition; all of them having the (N/m)
unit. Also, superscript s refers to the surface layer.
In Eq. (17), o can be replaced by N, according to
Eq. (16). Unlike classical beam theory, stress in a
radial direction is significant, considering the surface
stress effect, and changes linearly through the surface
thickness [25,32,33] (see Eq. (18) in Box I).

4. Nomnlocal piezoelasticity theory

Nonlocal constitutive relations for a Donnell cylindri-
cal shell considering surface effect can be expressed
s [19,31,32,34]:

Eh .
N,i — (e0a)? V2N, = -0 (um + §wfx

Ri 7,0 1 ZR;Z i,0

ERrT (o,
_ (a——i—zvag) — h11Eqih,
1-wv (19a)



A. Ghorbanpour Arani and M. Hashemian/Scientia Iranica, Transactions F: Nanotechnology 20 (2013) 2356-2374 2361

s 1 s S s 1 s S
<O.$z,;r, + ansﬂ -p w) + <0'$z,:n + §00:70 - P w)
at top

at bottom

o, = 5
o, .+ R0, — Sw) — (0,5 R Sw)
( L R702,0 P at top e R702,0 p at bottom
- z. (18)
h
Box I
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1 2\R; " R; the nonlocal parameter, Young’s modulus, thermal
changes, piezoelectric coefficient, dielectric permittiv-
4 1 wio® + vy + Bw_z ) ity, and thermal expansion coefficients in axial and
2R? " R A circumferential directions, respectively. Also (V?)
denotes the Laplace operator [31]. The above equations
_ EAT (o + va) (19D) can be applied to bulk material. Considering Eq. (17),
1—0? ’ nonlocal equations for the surface layer in electric and
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Naoi — (€0a)*V=Nyg;

1—ea2V2N;i:2s+)\S €oi — 0T
B (1 ) ) (1= (e0a)*V7) (2 ) )
=S5 | P U T Ve T 5 WigWis |,

2(1 + U) R—L' RZ (19C) — hilEC” + 27'57 (20&)
M,; — (e0a)* V> M,; (1=(e0a)*V*)Ng; = (215 +X5) (e9i— a3 T) +27°,
(20Db)
__—BRY Y
T 12(1—o2) \ Vb T R (1 — (e0a)*V?)My;
vh? 1 . Rf + R2,
+ m (Tswi,xx + Tsﬁwiﬂ@ - Pswi) ) = _(2/1/S + )‘S) (I'le,zr) ) (2OC>
v i (19d)

272 s
My; — (e0a)* V> My, (1= (e0a)*V?) My,

2 2
—EhR3 ( 1 ) = —(2us + As) (mwi709> ) (20d)

IRy \ R T 2R}
Uh2 s s]‘ 5 - _ 272 s __ s . 1.2_5
+ m (T Wige + T Tz Wieo =P ’LUi) ) (1 —(e0a)"V7)D3; = hiy (“Lz + o Wi azT>
g (19e)
+ CflEziv (206)
Mg — (e0a)* V> Mg, The final governing equations are derived by substitut-
ing Eqgs. (19)-(20) into Eq. (15) as:
—-En? ( 1 )
121 +v) \R; """ (191) [Eh Ll 0 Y s ) < w?
5 | Wie t SWie” + 5 (Vi +wi) + 5w
TN S T 2R?

_Dm' — (ega)ZVZDm-
_ EhT(az +vay)

ou; 1 (ow\" o 1— 2
_h11(8x+2(8x) +23w _azT)

1 .
+ [ (2ps + As) (Ui,x + iwﬁr — oszT)

— M1 Byl

2 L

+ Ci1 Bz, (19g)



2362

0
(1= (e0a)*V?) | (pch + 2p%)
1
+m0ﬂPfR11U1 ) (21a)
. 1
_<]‘ - (eoa)zv2){[Na:iwi,a:] T RZ [NQ'Lw'L 9] 0

A. Ghorbanpour Arani and M. Hashemian/Scientia Iranica, Transactions F: Nanotechnology 20 (2013) 2356-2374

Eh (1
21+ v) \ R;

2 1 1
+ R1 Nz@zwl z0 + Rz Nx@z Wi,z + &Nx0i7xwi79}

—EhR3 wi
12(1—1}2) 1,T RZ 1,00

K

N vh? s 4 T° s
271 A\ T Wige T 53Wiee — P Wi
6(1— ) wr T tli00 =P

T

R% + R2,
+ [ (21s + As) (;wlm)] — 270
Ll Br (0 w1
— S| p et 5 + 5w
R|1-v2\R, """ R, "2R2

v EhT (ag + vay)
+ VU, + 271)123:) - Tﬂ

1 1 1
+ 7 (21 + As) (Ri(vi,o +w;) + ﬁw 0
1 —ER3 1
- ST 2 ° s Y 7
o ) LI B 2 TRy (ng .89

vh? s T°
+ VWi zx + T Wiax + -2 Wi,00

6(1 —v) R?
—Psll')i>

—27°

1 R%+R2
R2 (2ps+As )(;szi,ea
,00 ¢ ,00

2 [ EW (1
12(1 1 v) \R; Ve

1
R*?wi,oe + E

,x0

= (1 - (epa)?V?) R,

R}, .
He 7777/0 wl,zz

1 1

+ VCFVanmo slipW1,zzx + RZ wl 06 — R2
17 17

—5 W1

1
+ VCFVavg,no slip RTwl,xQG
11

2 .
R2 (VCF) avg,no slipWi,z — _R2U179>‘|
17

I
Ry,
- (=1) Rl (c(wz — wr) + cn(wa —w1)?)
RQO - . -~ 2
—my i (I&wwg + cvwe — KgV wg) , (21b)
iEih i +%+L(.)2
Ri|1—v2\R"™ TR T2z

2

v . EhT (g +va
1—wv ;

)

7

— | Cps + As) ( (];('Ui,e +w;)

1
2R2 (wi)? a§T> - oziT) +27°

0

)

Eh (1 o1
2(1+U) Riuzﬁ Ui,z Riwlﬁwl,z

» L

. R}, .
:(1—(€OG)QV2)((Pth'i'QPS)UH'monQéIUl) )
1
(21¢)

1
[hllh (ui,x + §wi,x - axT> - Cllh@ri,x‘|

3T

1
hil <u7, zt+ 2’LU1 x —Q T) - Cfl‘paoi,r‘|
,T

=0, (21d)

It should be noted that a combination of electro-
thermo-mechanical loading is exerted on the surface
and bulk material of DWBNNT in the axial and
circumferential directions, which are:

Nyi=NY 4 NL + NE 4+ N5T 4 N3E 4 o7,

Ng; = NL + NgE +27°, (22)
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where superscript M, T and E indicate the mechanical,
thermal and electric components of the load as:

NT - —EhaT
1 1—U )
Noj; — M7
1—wv
NiT = =20 + X)aiT,

NiT = =205 + X)) T,

N:P = ~hiy Eui,

NI = —hi1Eyih,

NM = N, (23)
and torsional loading is neglected (N g; = 0).

The following dimensionless parameters are de-
fined to simplify the governing equations:
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tn 5L’ Roir T R T ( )

Substituting the above dimensionless relations to
Eqgs. (21), yields the dimensionless motion equations.

5. Solution method

5.1. Galerkin approach

The Galerkin method is used to convert the govern-
ing equations to ordinary differential equations. So,
dimensionless mechanical displacements and electric
potential are assumed as:

U,(X,7) = wi(X)Ui(r),
Wi(X, 1) = wi(X)Wi(r),
Vi(X, 1) = vi(X)Vi(r),

wni(XvT) = Xi(X)Hi(T)v (25>

where Ui(7), Wi(r), Vi(r) and ki(r) are related to
dynamical response and ui(X), vi(X), wi(X), xi(X)
should satisfy the boundary conditions resulted from
the variational process:

wi(X) = wi(X) = 0i(X) = xi(X) = sin(x X),
at X =0,1. (26)

Time dependent equations are derived as follows, after
substituting Eqgs. (25) and (26) into a dimensionless
form of Eq. (21) and applying the Galerkin method.
It should be noted that through this process, electric
and mechanical fields will be decoupled, considering
Eq. (21d).

5, (Y (7)) ~d(Y (7))

w M = + wC e

+ (K +Knr—(No+ N cos(27))K,)Y =0,
(27)

where 7 = w7 is a new parameter containing the non-
dimensional frequency of excitation (2w) and:

Ny = No + N cos(27), (28)

is substituted in Eq. (27), where Ny is the static
component of dimensionless harmonic axial load (Ny)
and N, is its dynamic component [23]. Also, M, C, Ky,
Ky and K, are the mass, damping, linear stiffness,
nonlinear stiffness and geometric stiffness matrices,
respectively, and Y is the displacement vector as:

mi1 0 0 0 0 0
0 Moo 0 0 0 0
_ 0 0 ms3 0 0 0
M= 0 0 0 a4 0 0 ’
0 0 0 0 M55 0
0 0 0 0 0 Mee
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khk O 0 0 0 0
0 kyw O 0 0 0
Ky — 0 0 ks3 kg O O
0 0 kg3 kag O 0|
0 0 0 0 ks O
0 0 0 0 0 ke
00 0 0 00
00 0 0 00
c_ |00 & 0 00
0 0 0 &4 0 Of
00 0 0 00
00 0 0 00
00 0 0 0 0
00 0 0 0 0
Ky = 0 0 KNs3 KN3z 0 0
0 0 KNy KNy 0 0f°
00 0 0 0 0
00 0 0 0 0
00 0 0 0 0
00 0 0 0 0
g o~ |00 kg 0 00
g 0 0 0 kg44 0 0|’
00 0 0 0 0
00 0 0 0 0
Y = [UL,U2,W1,W2,V1, V2. (29)

The components of the above matrices have been stated
in Appendix A.

5.2. IHBM

THBM represents high precision in dynamic stability
analysis [22,35,36]. In this approach, (NJ,w*) are
considered as known instability boundary points cor-
responding to the solution of Eq. (27), i.e. Y*(7), a
neighboring instability point, is assumed as:

Y(7) =Y*(F) + AY (7),

Ny =N'+AN,, w=uw"+Aw. (30)

Linear incremental equations can be obtained by sub-
stituting Eq. (30) into Eq. (27) and neglecting higher

order terms as:
PAY() | dAY ()

2 M
iz dr

+ (K + Ky = (No + NJ cos(7)) Ky )AY (T)
& (Y*(7))

O

=R- <2w*M

+ cos(7) K, Y™ (T)ANs, (31)

where:
_ d*(Y*(7)) ~d(Y*(7))
R=—|w* M P +w e
+(Kr+ Ky —(No+N; cos(T)) K )Y (T)],

(32)

is the corrective term and will be zero on the exact
instability boundary points [22]. Ky equals Ki [
when Y'(7) is Y*(7), and K}, is:

0 0

0 0
knss  knag
knas  knag

0 0

0 0

=

N =

|
cocoocooco
cocoocooco
coocoooo
cococooco

K1 K3
3
Rnl

kngs = — [~6R,. W2 W1*.R?,

+ 3R, R2,(W2")? 4 3R3 (W1*)?],

[6Rn1W2* W1*.R2,

— 3R, R2, (W1%)? — 3R3,(W2*)%,

KK .
ks = [~6Rn W2' W1 R,

n2

+ 3R, 1 R2,(W2*)? + 3R3 (W1%)],

182183

g [6R W2 W1 R,
n2

k77/34 =

— 3R R (W1)? — 3R3,(W2")7], (33)

nl

where K1, Ky and K3 are defined in Appendix A.

The principal region of instability can be de-
termined by considering Y*(7) and AY(7) as the
harmonic functions with period 27. So, Fourier series
expansion is used in this method as:

Np,

Y;(f) = Z{an(%l) COS [(27’ - 1)7_-]

i=1
+ bn(Zi—l) Sin [(22 — ].)T]} = ’I7An,

n:1727"' 767
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Np,
AY,(7) = Z{Aan(%_l) cos [(2i — 1)7]
i=1
+ Abn(Zi—l) SlH[(zZ - 1)T]} = ’I]AAn,
(34)
where N}, is a large integer, and:
n = [cos(T),cos(37), -, cos[(2N}, — 1)7],
sin(7), sin(37), - - - ,sin[(2N), — 1)7]],
An - [an17an3a e 7a/n(2Nhfl)7 bn17 bn37 Tty
bn(QN;L—l)]Ta
Af4n = [Aanlv Aan37 T 7Aan(2N7,71)7
Abnlv Abn37 e 7Abn(2Nh—1)]T7
n=12,--,6. (35)
On the other hand:
=Q.A, AY = Q.AA, (36)
where:
(77 0 0 0 0 O
0 n 0 0 0 O
0= 0 0n 0 O O
100 0 5 0 Of”
0 0 00On O
LO 0 0 0 0 n
-Al A*’41
A2 A142
| A3 _ |AA;
A= ME AA= AA, (37)
As AAs
| Ag AAg

Inserting Eq. (36) into Eq. (31) and applying the
Galerkin method results in:

Yy LAY (FE) | LAY (7))
/(5 AY [ de +w CT
+ (KL + Ky — (No + NJ cos(T)) K )AY (T) | dT
/é(AY(%)) R— <2w*Md2(§;(T))
; T
+(7d(Y;_(T))) Aw + cos(T) K, Y*(T)AN, | d
T “9)

A linear system of equations containing AA, Aw and
AN, can be obtained as:

S1.AA = RR + 52Aw + S3AN,, (39)

where:
S1=w*?H, +w*Hy + H3 + Hs + Hg,

S2 = —(QW*Hl + HQ).A,

S3 = 1{7.147
RR = — (w*2H1 +w*Hy + Hs + Hy + H5> A,
27 2
d*Q
H, = QTMd —-dr,
0

Hy = / QTc@d-
0
27 _ _
= [ Q'K
0

27
H, :/ QT K3, Qdr,
0

27
Hs=— [ Q"(No+ N; cos(7))K,Qdr,

0
27 B B
He = / QT K3 Qdr,
0

27
H; =— Q" cos(7)K,Qdr. (40)
0
The following procedure should be done to derive

dynamic instability regions.

Step 1: Linear free vibration analysis. After

neglecting the nonlinear stiffness matrix and dynamic

axial load, Eq. (27) will be reduced to:

Y (7)) AdY (7))

_— ¢ i Y =0. 41
gz YT (41)

This equation is a generalized eigenvalue problem

and could be changed into the standard form [17,37].
Eq. (41) can be written in state-space representation:

WM

Z =BZ, (42)
in which B and Z are defined as:
0 I Y
B = _M—lk'L _M—IC:| ) Z= {Y} ) (43>
where 0 and [ represent zero and unitary matrices,
respectively.

The fundamental frequency and corresponding
eigenvector in a linear problem will be considered as
primary values of w* and vector A in Eq. (39).
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Step 2: Static buckling analysis. By neglecting
inertia terms, the dynamic component of axial load
(Ns), and assuming Ny = P.,., Eq. (27) will be reduced
to:

(K, + Ky, — Py K,)Y =0, (44)

where P,, stands for dimensionless static critical buck-
ling load and can be determined by solving the above
eigenvalue problem. Ny and N; will be considered as:

Nog :a1PCT7 N, :aZPCT7 (45)

where a1 and as are the static and dynamic load
factors.

Step 3: Dynamic instability analysis. Eq. (39)
denotes a linear system with 2N equations and 2N + 2
unknowns (AA, Aw, AN;). One of the components
of vector A is chosen as a reference constant, with its
corresponding increment set to zero (in this analysis
az1 = 1 and Aaz; = 0) and AN, (or Aw) is specified as
an active increment. Other unknowns can be derived
from Eq. (39) considering initial values described in
previous steps. New values for A and w can be
calculated as a; + Aaq,b; + Aby, -+ ,w" + Aw. This
procedure will be continued until the value of RR is
small enough, then a new iterative step begins, giving
an active increment AN, to N;.

Finally, the first boundary of DIR will be deter-
mined. The other boundary of DIR can be specified
considering b3; as a reference constant (bs; = asi,
Abz; = 0) and repeating Step 3.

6. Results and discussion

In this paper, the dynamic stability of DWBNNT con-
veying viscose fluid is investigated considering surface
stregs effects. DWBNNT is under periodic excitation
in a thermal environment and embedded in a visco-
Pasternak medium. Hamilton’s principle is used to
derive nonlinear governing equations based on nonlocal
shell theory. THBM is utilized to derive dynamic
instability regions. The results of this study are based
on the following geometric and mechanical data for the
bulk material [17,38,39]:

Ry =11.43 nm, Ry = 12.31 nm,

L

A =10, h = 0.075 nm,

1
a, =1.2x107% —

oC7

1
ag =0.6x10"% —,

T =20°C
oC ?

k
E=18Tpa,  p = 3487 -3
m

— 1000 X8
P = m37
po = 0.653 x 1072 Pa.s,

N
K, =8.9995035 x 10'" —;,
m

N
Kg = 2.071273 —,
m

N.
v = 4.491989398 x 107 7,5
m
19 N
¢ =9.91866693 x 10" —.,
m
N
¢, = 2.201667 x 10°" —,
m

hi1 = 0.95 % Ci1 =0.9824 x 1078 E.

m m
In Figure 2, the results of this study are compared with
the results of [24] for DIR of SWCNT. The effects of
surface stress, vdW force, fluid flowing, shear and the
damping constant of the medium are neglected in this
figure. As can be seen, the two analyses agree well and
show similar results.

In Figures 3 to 12, DIRs of DWBNNT are shown
and the effects of various parameters on them are
discussed. The vertical axis indicates 2, which is the
ratio of nonlinear to linear frequency (2 = wnr /wr),
and the horizontal axis represents the dynamic load
factor (a2).

Figure 3 depicts the effect of the nonlocal param-
eter on DIR of DWBNNT. As can be seen, increasing
the nonlocal parameter shifts the DIR to the lower
frequency zone. Increasing the nonlocal parameter in-
creases the length of the b— N bond and, subsequently,
the stiffness of DWBNNT decreases.

In Figure 4, the DIR of DWBNNT is shown for
different dimensionless flow velocities. Increasing the

0.557 L I I 1 I
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Dimensionless excitation frequency

Figure 2. Comparison between the results of present
study and the results of [24] for SWCNT.
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Figure 3. The effect of nonlocality on DIR of a
DWBNNT.
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Figure 4. The effect of fluid velocity on DIR of a
DWBNNT.

fluid velocity through the inner nanotube decreases the
frequency. Shifting the DIRs is more obvious in higher
flow velocities. Flowing fluid through the DWBNNT
exerts compressive axial load, and for higher velocities,
the magnitude of this load increases. So, increasing
flow velocity results in a decrease in frequency.

Figure 5 indicates the effect of Knudsen number
on DIR of DWBNNT. As shown in this figure, con-
tinuum fluid (K,, = 0) predicts the highest frequency
zone. Counsidering fluid with higher Knudsen number
results in shifting the DIR to the lower frequency zone
very slowly. In dynamic stability analysis, the small-
size effect of liquid nanoflow can be ignored because the
Knudsen number has small values. As the Knudsen
number increases, the mean free path of the liquid
molecules increases and results in lower stiffness.

Figure 6 represents the effect of viscosity on the
DIR of DWBNNT. When viscosity is neglected, the
DIR of DWBNNT consists of two different boundaries,
but considering viscosity results in one integrated path
with a U-turn portion. This result can be seen in [36],
as the damping coefficient effect on DIR is studied.

Figure 7 shows that DWBNNT’s DIR shifts to a

1.0025 T T T T T T
i Kn=0
1.0020} [— K, =0=0.0002
-—— K, =0=0.0004
1.0015L |~ =+ Kn=0=0.0006 i
’ K,=0=0.0008 00
_K.—0-0 1.0014
10010 K, =0=0.0010 |
1.0014
1.0005 E
©1.0014
=]
1.0000 1.0014 ‘ b
0.9995 1.0014 1
0.9990}
0.99851
0.9980 ‘ . s . s s s ‘ s
00 0.1 02 03 04 05 06 07 08 09 1.0
az
Figure 5. The effect of Knudsen number on DIR of a
DWBNNT.
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Figure 6. The effect of viscosity on DIR of a DWBNNT.
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Figure 7. The effect of surrounding medium on DIR of a
DWBNNT.

higher frequency zone as the medium becomes stronger.
Considering the Winkler medium leads to a higher
frequency zone, very drastically, because of the Winkler
coefficient’s large value. Also, by considering the
Pasternak medium, DIR acts in the same manner with
slower changes.
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Figure 8. The effect of vdW forces on DIR of a
DWBNNT.
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Figure 9. The effect of high temperature environment on

DIR of a DWBNNT.

In Figure 8, the vdW effect is represented. This
figure shows that considering vdW effects results in a
higher frequency zone. Also, considering the nonlinear
term of vdW forces has an important role in DIRs. As
shown in this figure, considering this effect moves the
origin of DIR towards the higher frequency zone.

Figure 9 illustrates the effect of temperature
change on the DIR of DWBNNT considering high
temperature environments. At high temperatures (o,
ap = 0), an increase in temperature change leads the
DIR to the lower frequency zone. As shown in this
figure, the effect of temperature change on DIR is very
negligible. Drastic thermal changes result in reducing
the strength of the b — N bond, so, limited thermal
changes should be applied. According to Eq. (23),
increasing temperature induces compressive load in
DWBNNT and, subsequently, a decrease in frequency
is not unexpected.

The effect of static load factor (a;) on the DIR
of DWBNNT is shown in Figure 10. It is found that
increasing the static load factor shifts the DIR towards

1.005 T T T
e a1=0.0
1.004+ a;=0.2 ]
———a1=0.3 s
1.003L -a1=0.4 R

1.002]
G 1.001 -
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Figure 10. The effect of static load factor on DIR of a
DWBNNT.
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Figure 11. The effect of residual surface stress on DIR of
a DWBNNT.
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Figure 12. The effect of surface modulus on DIR of a
DWBNNT.

the origin. Considering Eq. (45), axial loading with a
higher static load factor is relevant to a higher static
compressive load, so, this result is reasonable.

Finally, the effect of surface parameters on the
DIR of DWBNNT is shown in Figures 11 and 12.
According to Figure 11, a higher frequency zone refers
to higher residual surface stress. Based on [25], positive
values of 7° make DWBNNT stiffer, due to applying
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tensile loading. The effect of surface modulus on the
DIR of DWBNNT is presented in Figure 12. As the
surface modulus increases, the DIR moves to a higher
frequency zone due to stiffness increasing.

7. Conclusion

By applying THBM and considering the charge equa-
tion, the dynamic stability of embedded DWBNNT
conveying viscous fluid was investigated using a nonlo-
cal shell model. The effects of the surrounding elastic
medium and nonlinear vdW forces between the inner
and outer nanotubes were taken into account. Also,
the effect of fluid-DWBNNT interaction was studied
considering slip boundary conditions. The following
conclusions may be made from the results:

e Considering surface effects in DWBNNT is very
significant; increasing residual surface stress and
surface modulus shift DIR to a higher frequency
zone.

e Increasing the nonlocal parameter shifts the DIR to
the lower frequency zone.

e Considering fluid velocity and Knudsen number
results in shifting the DIR to the lower frequency
zone, and, for liquid fluid, the effect of Knudsen
number can be vanished.

e Considering viscosity results in one integrated path
for DIR instead of different boundaries.

e Considering the surrounding medium results in a
higher frequency zone.

e Considering vdW effects results in a higher fre-
quency zone.

e At high temperatures, an increase in temperature
change shifts the DIR to the lower frequency zone.

e It is obvious that increasing the static load factor
shifts DIR to a higher frequency zone.
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