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Abstract. A hybrid continuum-atomistic approach is developed to describe the buckling
behavior of axially loaded chiral boron nitride nanotubes (BNNTs) with di�erent boundary
conditions. The set of the stability equations is established based on the nonlocal elasticity
of Eringen and Donnell shell theory. The molecular mechanics are implemented in
conjunction with the Density Functional Theory (DFT) to obtain the e�ective in-plane and
bending sti�nesses and Poisson's ratio of BNNTs. The problem is analytically solved by
the use of a direct variational method. The in
uences of geometrical parameters, nonlocal
parameters and boundary conditions on the critical buckling loads are thoroughly explored.

c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

BNNTs, as the structural analogues of carbon nan-
otubes (CNTs) [1], since their discovery in the middle
of 1990s [2-4], have attracted increasing interest in
nanoscience and nanotechnology. They possess high
thermal conductivity [5], size-dependent electronic,
magnetic and piezoelectricity properties [6-8], high
temperature resistance to oxygen [9] and demonstrate
a promise for structural reinforcement of matrix ma-
terials [10]. Numerous theoretical studies on the
mechanical properties of BNNTs have been conducted
by a number of researchers [11-18]. Chopra and
Zettl [19], via thermal vibration analysis, indicated
that Young's modulus of multi-walled BNNTs is in
the order of 1 TPa (1:22 � 0:24 TPa). Furthermore,
contrary to CNTs, BNNTs are all semiconductors with
a large band gap (� 5:5 eV), regardless of chirality
and size [3,20]. Also, Golberg et al. [21] showed that
BNNTs buckle in equilibrated structures because of
the di�erent surface energies of boron and nitrogen
atoms.
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To study the mechanical behavior of nanostruc-
tures theoretically, molecular mechanics and contin-
uum mechanics are two promising approaches. Molec-
ular mechanics models have attracted much research
interest in recent years. They have been used to
analytically study the mechanical response of nan-
otubes [18,22-25]. Since classical continuum theory
is size-independent, several attempts have been made
to develop higher-order continuum theories capable
of capturing size e�ects. One way to incorporate
nanoscale size e�ects into continuum mechanics models
is the use of the nonlocal elasticity theory [26,27]. The
application of nonlocal continuum mechanics, allowing
for small scale e�ects, has been recommended by many
researchers [28-37].

The results of continuum models depend on
the applied values of mechanical properties, such as
Young's modulus and Poisson's ratio. In a recent work
by Ansari and Rouhi [37] on the vibrations of CNTs,
based on a nonlocal Flugge shell model, it is revealed
that the variation of Young's modulus signi�cantly
a�ects the value of the nonlocal parameter, so as to get
a close �t with molecular dynamics results. Motivated
by this consideration, in the current work, a hybrid
of continuum and molecular mechanics is applied to
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investigate the axial buckling behavior of single-walled
BNNTs under di�erent end conditions. To this end,
�rst, a nonlocal shell model is developed on the basis
of Eringen's elasticity and the Donnell shell theory. In
the context of calculus of variation, the Rayleigh-Ritz
procedure is implemented in the variational statement
derived from the Donnell-type buckling equations to
analytically solve the problem. Subsequently, in order
to determine the precise values of e�ective in-plane and
bending sti�nesses and Poisson's ratio of BNNTs with
various chiralities, molecular mechanics theory is used
in conjunction with DFT calculations.

2. Nonlocal shell model

Consider an elastic cylindrical shell with radius, R, and
thickness, h, as illustrated in Figure 1. In contrast to
classical elasticity, in nonlocal elasticity, the stress at
reference point, x, in an elastic body not only depends
on the strains at x, but also on the strains at all
other points of the body. The constitutive equations,
based on Eringen's nonlocal elasticity, are expressed
as [26,27]:8>>>><>>>>:
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where E, G and � are Young's modulus, shear modulus
and Poisson's ratio, respectively, and e0a denotes the
nonlocal parameter, which leads to consider the small
scale e�ect. Let ux, uy and uz be the three-dimensional
displacement components in the x, � and z directions,

Figure 1. Schematic of a single-walled BNNT treated as
an elastic cylindrical shell.

respectively. They can be de�ned as:

ux(x; �; z; t) = u(x; �; t) + z x(x; �; t); (2a)

uy(x; �; z; t) = v(x; �; t) + z �(x; �; t); (2b)

uz(x; �; z; t) = w(x; �; z; t); (2c)

where u, v and w are the reference surface displace-
ments and  x and  � are the rotations of transverse
normal about the x-axis and y-axis, respectively. The
mid-surface strains and curvature changes are given by:
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Using Eqs. (1) to (3), the stress and moment resultants
can be given as follows:
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where D is the bending rigidity. The governing
equations for cylindrical shells, in terms of force and
moment resultants, based on the Donnell theory, are
given by [38]:
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where P represents the applied axial load. Eqs. (5) are
multiplied by (1� (e0a)2r2). The left hand side of the
resulting equations can be derived by Eqs. (4) and the
right hand side can be written easily. Thus, the �eld
equations can be expressed as:
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Here, the Rayleigh-Ritz method is used to obtain the
critical axial buckling load of BNNTs. In order to apply
the Rayleigh-Rayleigh-Ritz method, it is �rst necessary
to obtain the variational statement equivalent to the
partial di�erential equations that are governed by
the buckling of BNNTs (Eqs. (6)). The variational
form equivalent to Donnell-type buckling equations is
constructed as follows:
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In order to approximate the buckling mode shapes cor-
responding to various end conditions, one can assume
the functions of the polynomial series as:

u(x; �) = U(x) sin(n�); (8a)

v(x; �) = V (x) cos(n�); (8b)

w(x; �) = W (x) sin(n�); (8c)

 x(x; �) = 	x(x) sin(n�); (8d)
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Table 1. Values of nu, nv, nw, n x and n � for di�erent
boundary conditions.

Boundary conditions nu nv nw n x n �
Simply supported end 0 1 1 0 1
Clamped end 1 1 2 1 1
Free end 0 0 0 0 0
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in which M is the number of terms of the polynomial
series. The values of nu, nv, nw, n x and n x are
given in Table 1, corresponding to di�erent boundary
conditions. The superscripts of the powers, i.e. 0
and L, correspond to the boundary conditions of the
nanotube at x = 0 and x = L, respectively, and A(i)

e ,
B(i)
e , C(i)

e , D(i)
e and E(i)

e are the generalized amplitudes.
Substituting Eqs. (8) into Eq. (7), and then using the
Rayleigh-Ritz technique, one can have:
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Eq. (10) leads to an eigenvalue problem with the
critical buckling load of BNNTs as the eigenvalue
parameter.

3. Mechanical properties of BNNTs

3.1. Molecular mechanics modeling
In the context of molecular mechanics theory, by the
use of Hooke's law to characterize the interactions
between bound atoms in a single-walled BNNT, the
general expression of total potential energy, Vt, can be
given as the sum of several individual energy terms:

Vt =
X 1

2
K�(dr)2 +

X 1
2
C�(d�)2; (11)

where dr and d� are the bond elongation and bond an-
gle variance, respectively. The force constants, K� and
C�, are corresponding to the energies of bond stretching
and bond angle variation, respectively. To obtain
the equilibrium equations using molecular mechanics
theory, the structure of the system can be modeled as
an e�ective \stick-spiral" system. In this system, one
can use an elastic stick with an axial sti�ness of K� to
model the force-stretch relationship of the B-N bond,
and a spiral spring with a sti�ness of C� to model the
twisting moment resulting from an angular distortion of
the bond angle. It should be remarked that the bending
rigidity of the stick is assumed to be in�nite, since the
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chemical bond always remains straight, regardless of
the applied load.

Following the treatment in [25] and making use of
the molecular mechanics conceptions by manipulating
the resulting relations, the following analytical expres-
sions for e�ective in-plane sti�ness and Poisson's ratio
of an (n;m) nanotube can be obtained:
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Here, � is the chiral angle, and r1 and �2 are �3
bond length and bond angles (see Figure 2). It should
be noted that the foregoing formulas reduce to those
obtained in [22] for armchair and zigzag nanotubes by
setting n = m and m = 0, respectively.

3.2. DFT calculations
To determine the mechanical properties of BNNTs via
Eqs. (12) and (13) in an accurate way, it is necessary to

Figure 2. Three bond lengths and three bond angles in a
boron nitride nanotube.

Figure 3. Di�erent bond structures of an h-BN cell
corresponding to each energy term.

apply the proper force constants (K� and C�), whose
values can be quanti�ed by establishing a link between
the several individual energy terms from molecular
mechanics modeling, as illustrated in Figure 3, and the
strain energy of a nanotube calculated, based on the
density functional theory. The reader is referred to [25]
regarding the basic equations of the density functional
theory and further details on this approach.

Within the framework of the generalized gradient
approximation (GGA), the exchange correlation of
Perdew-Burke-Ernzerhof (PBE) [39,40] is adopted to
perform the DFT calculations in this work. The
Quantum-Espresso code [41] is applied to perform
simulations of the analysis. The previous �rst principle
study demonstrated that the results are insensitive
to the increasing of the unit cell dimension [42].
Therefore, for convenience, the unit cell used in the
calculations performed herein is assumed to be the
smallest hexagonal one. Brillouin zone integration is
implemented with a Monkhorst-Pack [43] k-point mesh
of 20 � 20 � 1, and the cut-o� energy for plane wave
expansion is selected to be 80 Ry.

From the present DFT calculations, the force
constants, K� and C�, are evaluated to be 620.47
nN/nm and 1.05 nN nm, respectively. Also, the value
of the e�ective bending sti�ness, D, of BNNT, obtained
from the DFT calculations, is 0.64 eV.

4. Numerical results and discussion

Table 2 provides a comparison between the calculated
in-plane sti�ness in this study with those reported in
previous work by di�erent methods. It is observed
that the prediction of the present approach is in good
agreement with other studies. Furthermore, Table 3
shows the elastic properties of achiral (armchair and
zigzag) BNNTs obtained by the present study and
Hernandez et al. [11]. The agreement between the
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Table 2. Comparison of the average calculated in-plane sti�ness of BNNTs by the present work and previous studies.

Reference Method (Eh)e� (TPa nm)

Present study Molecular mechanics 0.280
Griebel et al. [10] Molecular dynamics 0.248-0.292
Hernandez et al. [11] Tight-binding 0.3
Kudin et al. [13] Ab initio 0.271
Baumeier et al. [16] Ab initio 0.279
Oh [17] Continuum lattice approach 0.322
Jiang and Guo [18] Molecular mechanics 0.26-0.269

Table 3. In-plane sti�ness and Poisson's ratio of achiral BNNTs obtained from the present work and those of [11].

(n;m) (Eh)e�

(TPa nm)
Di�erence
percentage

� Di�erence
percentage

(10,0) 0.284a
2.25% 0.232a

3.00%
0.27761b 0.22503b

(6,6) 0.296a
5.92% 0.268a

22.83%
0.27917b 0.22070b

(15,0) 0.298a
5.93% 0.246a

11.58%
0.28032b 0.21749b

(10,10) 0.306a
8.06% 0.263a

18.38%
0.28133b 0.21465b

(20,0) 0.301a
6.54% 0.254a

15.45%
0.28130b 0.21475b

(15,15) 0.310a
9.02% 0.263a

19.11%
0.28202b 0.21272b

a: [11]; b: Present.

Table 4. In-plane sti�ness and Poisson's ratio of chiral
BNNTs.

(n;m) (Eh)e�

(TPa nm)
�

(15,3) 0.28071 0.21617
(18,3) 0.28122 0.21482
(19,2) 0.28127 0.21472
(14,11) 0.28174 0.21350
(14,7) 0.28126 0.21475
(20,10) 0.28193 0.21293
(30,15) 0.28229 0.21194
(19,17) 0.28219 0.21226
(19,18) 0.28221 0.21219

two sets of results appears to be su�cient to qualify
the present analytical formulae as precise and powerful
tools for obtaining the elastic properties of BNNTs.
The results of chiral BNNTs are also presented in
Table 4.

Using the present combined model, the critical
buckling loads for armchair, zigzag and chiral single-
walled BNNTs subject to clamped boundary conditions

Table 5. Critical buckling load of clamped single-walled
BNNTs with di�erent chiralities (L=D = 10 and e0a = 1
nm).

Armchair Zigzag Chiral

(7,7) 12.7687 (10,0) 7.5652 (7,4) 6.8605
(10,10) 29.6669 (15,0) 22.0720 (15,3) 28.7507
(12,12) 34.5031 (20,0) 33.4503 (13,9) 32.2935
(15,15) 40.8159 (25,0) 39.7077 (18,3) 33.0034
(20,20) 49.0149 (30,0) 44.9560 (19,2) 33.5515
(25,25) 54.8772 (35,0) 49.2975 (18,4) 33.8522
(30,30) 59.1286 (40,0) 52.8689 (14,11) 35.6997

are tabulated in Table 5. The results in this table show
that by increasing tube diameter, the critical buckling
load tends to be increased.

Figure 4 illustrates the variations of the critical
buckling load versus various aspect ratios of a (18,9)
single-walled BNNT ((Eh)e� = 0:28178 TPa nm,
� = 0:21334) under di�erent boundary conditions. As
expected, end conditions will have an important e�ect
on the critical buckling load. It can be seen in the �gure
that two di�erent types of buckling are distinguishable.
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Figure 4. Variation of critical buckling load of a (18,9)
single-walled BNNT with aspect ratio for di�erent
boundary conditions.

Figure 5. Variation of critical buckling load of a (25,0)
single-walled BNNT with aspect ratio for di�erent
nonlocal parameters.

The L=R ratios smaller than, approximately, 13.3,
17.8, 17.9 and 7.5, for simply supported-simply sup-
ported, clamped-clamped, clamped-simply supported
and clamped-free end conditions, respectively, corre-
spond to the shell-like buckling, while for greater values
above L=R ratios, column-like buckling takes place. It
should be noted that, unlike column-like buckling, the
e�ect of aspect ratio on the case of shell-like buckling
is almost negligible.

In Figure 5, the critical buckling loads for a
(25,0) single-walled BNNT with simply supported
ends ((Eh)e� = 0:28176 TPa nm, � = 0:21347),
corresponding to various nonlocal parameters ranging
from e0a = 0 (corresponding to the classical/ local
continuum model) to e0a = 2 nm, are shown with
respect to di�erent aspect ratios. From this �gure, one
can deduce that for short length BNNTs, for which
shell-like buckling is dominant, the small length scale
has a profound e�ect on the critical buckling loads,
particularly for higher values of nonlocal parameter.

Figure 6. Critical buckling load ratio for a (80,80)
single-walled BNNT with di�erent boundary conditions
(L=R = 10).

As the aspect ratio increases, the e�ect of small length
scale diminishes.

To further investigate small scale and boundary
condition e�ects, Figuer 6 shows the ratio of nonlocal
critical buckling load to the local one, versus the
nonlocal parameter for a (80,80) single-walled BNNT
((Eh)e� = 0:28257 TPa nm, � = 0:21121) subject to
di�erent boundary conditions. As can be observed from
this �gure, the e�ect of small length scale on the critical
buckling load depends on the magnitude of the nonlocal
parameter, as well as the type of boundary condition
selected. One can �nd that the e�ect of boundary
conditions is more pronounced for higher values of
the nonlocal parameter. Moreover, by increasing the
nonlocal parameter, the critical buckling load obtained
from the nonlocal shell model will have a lower value
compared to that from the local one. It is further
observed that the nonlocal in
uence is more prominent
for sti�er boundary conditions.

5. Concluding remarks

The axial buckling of single-walled BNNTs subject to
di�erent boundary conditions was studied in this work.
A hybrid continuum-atomistic model was developed to
obtain the critical axial buckling loads of chiral BNNTs.
Based on nonlocal elasticity, nonlocal shell theory was
employed to derive the governing equations. Within
the framework of calculus of variation, the Rayleigh-
Ritz approach with polynomial series was applied to
the variational form of governing equations. The
molecular mechanics theory was used in conjunction
with the density functional theory to obtain the exact
values of e�ective in-plane and bending sti�nesses and
Poisson's ratio of single-walled BNNTs. Good agree-
ment, observed in a comparison between the present
results for the mechanical properties of BNNTs and
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those from existing data from the literature, con�rm
the validity of the present solution method. With
respect to the numerical results, the signi�cance of the
small size e�ects on critical buckling load was shown
to be dependent on the geometric sizes and boundary
conditions of BNNTs.
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