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Abstract. This paper addresses the No-Wait Two-Stage Assembly Flow-shop Scheduling
Problem (NWTSAFSP) with the objective of makespan minimization. The problem is a
generalization of previously proposed general problem in the Two-Stage Assembly Flow
Shop Scheduling Problem (TSAFSP). The TSAFSP is NP-hard, thus the NWTSAFSP
is NP-hard too, and three meta-heuristic algorithms, namely, Genetic Algorithm (GA),
Di�erential Evolution Algorithm (DEA) and Population-based Variable Neighborhood
Search (PVNS) are proposed in this article to solve this problem. Computational results
reveal that PVNS outperforms other algorithms in terms of average error and average
Coe�cient of Variation (CV). Nevertheless, GA has the least run time among the proposed
algorithms.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

With the advent of global markets and product or-
dering systems, manufacturing �rms are more and
more being dragged into a contest in which cutting
cost and reducing production span are vital traits
of dominant companies. For this reason, production
planning and scheduling are of a foremost importance
for such companies. By making wise plans and sched-
ules, manufacturing �rms can reduce their redundancy
times and thus reduce their current costs. In pursuing
this goal, abundant researches have addressed 
ow-
shop, job-shop and other kinds of scheduling problems.
One of these problems which most resembles the
manufacturing processes in reality is the Two-Stage
Assembly Flow-shop Scheduling Problem (TSAFSP) in
which in the �rst stage parts are processed in parallel,
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and then in the second stage, the �nal product is
assembled.

Since its introduction by Lee et al. [1] and Potts
et al. [2], TSAFSP has been widely studied by re-
searchers. This problem is recognizable in many real
world manufacturing problems where a set of parts
are processed on di�erent machines, and then have
to be assembled to form the �nal product. More-
over, the problem has gained application in areas
other than production scheduling, such as in database
distribution [3], supply chain management and batch
production [4] and invoice printing system [5]. On
the other hand, there are some industries such as
chemical, pharmaceutical, food, plastic, and textile
goods in which we cannot have any delay between
stages [6], because these kinds of products are exposed
to become decayed. Thus, the beginning of a given
job must be postponed as if the completion of the
operation concurs with the start of the operation at
the next stage; however, the machine that processes
it is idle. This is known as \no-wait assembly 
ow-
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shop" problem. Gupta et al. [7], who addressed it for
the �rst time, extended two models of the problem and
developed a comprehensive complexity classi�cation of
the associated two-stage no-wait scheduling problems.
Some researchers have attempted in the �eld of no-
wait 
ow-shop problems [6-10] according to which
the most recent work is corresponded to Ruiz and
Allahverdi [10]. They have considered the m-machine
no-wait 
ow-shop problem with independent setup
times, and proposed four genetic algorithms as solution
approaches.

To the best of our knowledge, no one has consid-
ered the no-wait two-stage assembly 
ow-shop. Lee
et al. [1] and Potts et al. [2] proved that TSAFSP
with only two machines in the �rst stage and a single
assembly machine in second stage is strongly NP-hard.
We can e�ortlessly assume that this holds true for
problems with more than two processing machines and
no-wait consideration. For this reason, implementation
of heuristics are more popular than exact models
among researchers; heuristics have been widely used
in the literature, and mathematical models are less
taken note of. One of the few mathematical models
in this area is carried out by Zhang et al. [5] in which
an invoice printing system, a special assembly 
ow-
shop problem, is modeled into Mixed-Integer Linear
Programming (MILP). However, the model is only able
to solve small-sized problems, and so di�erent heuris-
tics and meta-heuristics have been used in addressing
the TSAFSP. Nepalli et al. [11] used genetic algorithm
in a bi-criteria problem. Allahverdi and Al-Anzi [3]
proposed three heuristics; simple Earliest Due Date
(EDD), Particle Swarm Optimization (PSO) and tabu
search heuristics in which both PSO and tabu search
proved to yield good results. In another study, Al-
Anzi and Allahverdi [12] utilized tabu search, PSO and
Self-adaptive Deferential Evolution (SDE) heuristics in
addressing the problem with bi-criteria of maximum
lateness and makespan minimization in which PSO
was again shown to be the best heuristic. Gupta
et al. [13] extensively experimented several variants
of simulated annealing, threshold accepting and tabu
search, and analyzed the parameter settings of these
heuristics. Allouhi and Artiba [14] developed two
algorithms and a heuristic in addressing TSAFSP with
availability constraints. Koulamas and Kyparisis [15],
Lin et al. [16] and others have also proposed heuristics
of their own. Javadian et al. [17] however developed
a Variable Neighborhood Search (VNS) heuristic for
TSAFSP, and concluded that VNS outperforms SA in
terms of accuracy and consistency.

This paper proposes three meta-heuristic algo-
rithms; GA, DEA and PVNS. GA is a well-known
algorithm, which has shown it is germane for the
scheduling problems [18-20]. The most important ben-
e�ts of using a DEA is its simple but e�ective mutation

process [21]. On the other hand, the PVNS is a novel
metaheuristic algorithm. Since almost all the meta-
heuristics use one type of neighborhood mechanism,
there exists high probability to become trapped in a
local optimum, while the use of multiple neighborhoods
in PVNS overcomes this drawback successfully.

The rest of this paper is organized as follows:
Section 2 states the problem. Section 3 proposes three
meta-heuristic algorithms for the problem. Experi-
mental results are presented in Section 4, and �nally
Section 5 concludes the paper and recommends some
areas for future studies.

2. Problem statement

In the No-Wait Two-Stage Assembly Flow-shop
Scheduling Problem (NWTSAFSP) there are n jobs
available at time zero. Each job consists of m + 1
operations; the �rst m operations are performed at the
�rst stage on m parallel machines, so that each machine
is capable of performing one job at a time with no
preemption, i.e. once a job has begun, it will continue
without interruption till the job is �nished in the �rst
stage. Then the output is assembled by an assembly
machine at the second stage. Because of the no-wait
limitation, when a job begins to be processed, it must
be continued without any interruptions between stages.
In other words, the beginning of a part of a given job in
a given machine at the �rst stage should be delayed, so
that the completion of the m operations can coincide
with the start of assembly process at the second stage.
We aim to �nd the best sequence of jobs to minimize
the makespan.

As stated in previous section, makespan is the
dominating objective function in the 
ow-shop prob-
lems. This is because the overall time of �nishing the
jobs most particularly a�ects the total costs of the �rm.
Makespan is thus chosen as the objective function of
our study.

Let:
t[jk] Process time of the job in position

j on machine k at the �rst stage,
k = 1; :::;m.

P[j] Assembly time of job in position j on
assembly machine at the second stage,
j = 1; 2; :::; n.

R[j] Finishing time of job in position j at
the �rst stage, j = 1; 2; :::; n.

C[j] Completion time of job in position j,
j = 1; 2; :::; n.

C1 = mmax
k=1
ft1kg+ P1; (1)

C2 = R2 + P2; (2)
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R2 = maxf mmax
k=1
ft1kg+ mmax

k=1
ft2kg; C1g; (3)

C3 = R3 + P3; (4)

R3 = maxfmaxf mmax
k=1
ft1kg+ mmax

k=1
ft2kg; C1g

+ mmax
k=1
ft3kg; C2g = maxfR2 + mmax

k=1
ft3kg; C2g;

(5)

Cj = Rj + Pj ; (6)

Rj = maxfRj�1 + mmax
k=1
ftjkg; Cj�1g 8j = 1; :::; n:

(7)

3. Meta-heuristic algorithms

As mentioned before, the NWTSAFSP is known as
NP-hard, and therefore, heuristic or meta-heuristic
algorithms should be used to solve the problem. In this
paper, we propose GA, DEA and PVNS in Subsections
3-1, 3-2 and 3-4, respectively.

3.1. Genetic algorithm
Genetic algorithm is a population-based heuristic
which �rst was introduced by Holland [22]. GA is
usually termed as a part of, and sometimes used as
an equivalent of, Evolutionary Algorithms (EA) to
solve optimization problems, using techniques natu-
rally inspired evolution such as selection, inheritance,
mutation and crossover. GA is extensively used in
optimization and search problems, and is proved to
be a powerful heuristic. The basic idea of GA is:
At each iteration, the current population or genetic
pool consists of di�erent solutions called genomes or
chromosomes.

The evolution begins with a population of ran-
domly generated individuals, and later takes place in
generations to come. In each generation, the �tness
of every genome in the population is calculated. The
�tness function, depending on the problem, is de�ned
over the genetic representation, and measures the
quality of solution.

Several genomes are then selected from the cur-
rent population. In this selection, usually by the
roulette wheel, the genomes which have the best
�tness value are most likely to be selected, and this
probability decreases for genomes with reduced �tness.
When the candidate genomes are selected, the GA
improves the solution through mutation and crossover
operators, and creates new o�spring and population.
The new population is then used in the next iteration
of the algorithm. Usually, the algorithm terminates
when either a maximum number of generations has
been produced, or a satisfactory �tness level has been
reached for the population. In this paper, we have used
a maximum number of generations.

While solutions are traditionally represented in
binary 0 and 1 strings, other encodings are also
possible. For instance, in our problem, genomes are
strings of n successive numbers indicating the sequence
of the jobs. The reproduction operations used in this
paper are de�ned below.

1. Crossover
We have used a certain type of one-point cross over
for ordered chromosomes in our algorithm. To do the
crossover, two of the genomes are randomly chosen. As
stated earlier, in choosing the two genomes, solutions
are given a weight according to the quality of their
�tness function, and so, better solutions have a higher
chance to be chosen for the crossover operation. Then
a random number k is generated between 1 and n, and
the �rst k sequences of the two genomes are swapped.
In each solution, there must be numbers 1 to n, so
the algorithm then searches for duplicate numbers,
and randomly swaps duplicated numbers of the two
genomes with each other. The selection from two of
the repetitive numbers is also random. Consider the
following two genomes and their new o�spring; random
number is k = 3.

[1 5 2 3 4 6 7] ! [3 5 1 3 4 6 7] ! [3 5 1 2 4 6 7]

[3 5 1 7 4 6 2] ! [1 5 2 7 4 6 2] ! [1 5 3 7 4 6 2]

Note that the second 3 was selected randomly from the
�rst genome, and was swapped by randomly selected
�rst repetitive 2 in the second genome. If more than
one duplicate number was seen, a random repetitive
number from �rst genome was swapped with a random
one from the second genome.

2. Job mutation
Two random jobs of the best solution are selected and
swapped. Consider the following o�spring from its
parent:

[1 2 3 4 5 6 7] ! [1 2 7 4 5 6 3]

3. Sequence mutation
A random job of the best solution is selected, and
the place of former jobs and later jobs are swapped.
Consider the following o�spring from its parent:

[1 2 j 3 4 5 6 7] ! [3 4 5 6 7 1 2]

By changing some genomes randomly, both job and
sequence mutations prevent the algorithm to fall in
local minima.

Provided that the rate of crossover, job mutation
and sequence mutation are f , g, h, respectively, and
the rate of last generation which goes to the next
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generation directly is i, a pseudo code of GA will be
as below:

1. Create the �rst generation (population) with N
initial solutions randomly;

2. Set k  1;

3. while k � kmax do/// maximum number of gener-
ations;

4. Sort the solutions according to their �tness;

5. Calculate the selection probability of each
solution, using roulette wheel rule;

6. Do crossover and job mutation and sequence
mutation according to their rates (f , g, h) and
the probability calculated for each current
solution to create a part of next generation;

7. Complete the next generation, using the rate
of i and the probability calculated for each
current solution;

8. k  k + 1;

9. End while.

3.2. Di�erential evolution algorithm
Di�erential Evolution Algorithm (DEA) is a kind of
Evolutionary Algorithms (EA), �rst introduced by
Storn and Price [23] for optimization over continuous
spaces. Due to its invention, DEA has been extensively
applied with high success on many numerical opti-
mization problems outperforming other more popular
population heuristics such as GAs [24,25]. Recently,
some researchers successfully extended the applica-
tion of DEA to complex combinatorial optimization
problems with discrete decision variables, such as
the machine layout problem [26] and the 
ow-shop
scheduling problem [27]. The main features and stages
of a classical DEA are as follows:

Step 1. DE utilizes Np, D-dimensional parameter
vectors xi;k, i = 1; 2; :::; Np, as a population to search
the feasible region 
 uniformly of a given problem. The
index k denotes the iteration (or generation) number
of the algorithm (k = 0 denotes initial population).

� = fx1;0; x2;0; :::; xNP;0g : (8)

Step 2. At each iteration, all vectors in ' are
targeted for replacement. Therefore, Np competitions
are held to determine the members of ' for the next
iterations. This is achieved using three operators which
are mutation, crossover and acceptance.

Step 3: Mutation phase.
For each target vector xi;k, i = 1; :::; Np, a mutant
vector x̂ik is obtained by:

x̂i;v =r:xbest;k + (1� r) (x�;k

+Fs (x�;k � x
;k)) ; (9)

where �, �, 
 2 fI; :::; Npg are mutually exclusive
random indices, and are also di�erent from the current
target index i, and r 2 [0; 1] is a random number that
is generated randomly for each mutant vector. It is
a coe�cient for the convex combination between the
best element xbest;k of ', and a randomly combination
of three random elements. The vector x�;k is known as
the base vector, and Fs 2 (0; 2] is a scaling parameter.

Step 4. Crossover phase.
The crossover operator is applied to obtain the trial
vector yi;k from x̂ik and xi;k by the following equation:

yLi;k =

(
x̂Li;k if RL � CR or L = Ii
xLi;k otherwise

: (10)

In the above equation, CR shows the crossover rate,
Ii is a random number in [1; D] which guarantees that
the di�erence between xi;k and yi;k is at least one gene
and therefore, xi;k and yi;k are not the same no way.

Step 5. Acceptance phase.
Acceptance is applied after allNp trial vectors yi;k have
been generated. In the acceptance phase, the �tness
function of the trial vector, F (yi;k), is compared with
F (xi;k); the value at the target vector, and the target
vector is updated as below:

xi;k+1 =

(
yi;k if F (yi;k) < F (xi;k)
xi;k otherwise

: (11)

Step 6: Mutation, crossover and acceptance phases
continue until some stopping conditions are met.

3.3. Population-based variable neighborhood
search

The Variable Neighborhood Search (VNS) is a recent
meta-heuristic technique introduced by Mladenovic
and Hansen [28], and has quickly gained widespread
popularity. This meta-heuristic was successfully ap-
plied to solve complex optimization problems such
as routing problem [29], allocation problems [30] and
production scheduling problems [31]. The basic idea in
VNS is that it focuses on the mechanism of systemat-
ically exploring more than one kind of neighborhood
structure during the searching process. The local
optimum in each neighborhood is found iteratively and
hopefully to reach the global optimum at the end. In
its basic form, VNS explores a set of neighborhoods
of the current solution, makes a local search from a
neighbor solution to a local optimum, and moves to
it only if there has been an improvement [32]. Since
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almost all the meta-heuristics make use of one type of
neighborhood mechanism, there exists high probability
to become trapped in a local optimum, while the
use of multiple neighborhoods in VNS overcomes this
drawback successfully. The reasons why VNS has been
used widely in researches are due to the utilization
of several neighborhood structures, easy to implement
and high 
exibility and brilliant adaptability of VNS to
di�erent problems [31]. Despite the good potentials of
VNS, it is necessary to devise strong systematic neigh-
borhood structures and su�cient potential to escape
from local optima. Therefore, in this paper we describe
a population-based VNS algorithm (PVNS), which is
an enhanced version of the basic VNS algorithm.

3.3.1. Implementation of PVNS
Though the variable neighborhood search has been
successfully applied in many combinatorial optimiza-
tion problems, the existing research shows a lack of
application of PVNS to the NWTSAFSP. As stated
before, in this subsection we present a population-based
VNS algorithm (PVNS) for the NWTSAFSP, which
is an enhanced version of the basic VNS. The idea of
PVNS was �rst introduced by Wang and Tang [33].
Like basic VNS algorithm, PVNS uses two important
functions, i.e. shake procedure and local search to
enhance the solution quality. The shake function
diversi�es the search by switching the solution to
another neighborhood structure, while the local search
strives to �nd an improved solution within the current
neighborhood structure. In this section, to further
improve the performance of the basic VNS, we adapt a
population k of solutions in which the solution quality
is taken into account. Di�erent from basic VNS, in
the PVNS, multiple trial solutions are simultaneously
generated to improve the search diversi�cation and pre-
vent local optimum solutions. A subset of population
is randomly selected in each iteration of inner loop,
and the epitome of group is established as the average
property of the selected individuals as follows:

e =
1
m

mX
i=1

xi; (12)

where xi represents the ith member of subset. Since
the new chromosomes obtained as epitome of the group
may represent infeasible solutions, some modi�cations
are required. For production part, according to
Largest Order Value (LOV) rule [34], we suggest to
convert the individuals found by Eq. (12) into the
feasible solutions. According to the LOV rule, e =
(e1; e2; :::; en) are �rstly ranked by descending order
to obtain a sequence � = (�1; �2; :::; �n). Then, the
job permutation y = (y1; y2; :::; yn) is calculated by the
formula y�k = k.

After the shake procedure is implemented and
the resultant solution x0 is transformed to the local

optimum x00, the current solution x� and population P
would be updated if x00 dominates x0. The procedure
of adapted PVNS is illustrated below:

1 Create a set of neighborhood structures Nk(k =
1; 2; :::;Kmax);

2 Initialize the �rst population P with Np solutions;
3 For i = 1 to imax do /// maximum number of

iterations of outer loop;
4 Set k  1;
5 Generate a random number q (1 � q � Np);
6 Select q solutions randomly from P and calcu-

late the epitome of solutions x�;
7 Rank elements of x� in production part by de-

scending order to reach sequence
� = (�1; �2:::; �n);

8 Calculate the feasible solution y = (y1; y2;
:::; yn)
by the formula y�k = k, and replace the prod-
uction part of x� with y;

9 set x x�;
10 while k � kmax do /// maximum number of

iterations of inner loop;
11 For current solution x�, execute shake

procedure r times to �nd r trial solutions
x0 2 Nk(x�);

12 For each trial solution, execute local
search on Nk(x0) to �nd the best local
solution x00;

13 if �tness (x00) < �tness (x), then
14 x�  x00;
15 set k  1;
16 Update population P by replacing

the worst solution in P with x�;
17 else;
18 k  k + 1;
19 end if;
20 end while;
21 i = i+ 1;
22 End for.

3.3.2. Neighborhood search
The neighborhood structure deals with the systematic
way of moving from one solution to its neighborhood
such that infeasible solutions are prevented. A vari-
ety of neighborhood structures has been adapted to
scheduling problems. As described previously, the
main principle of VNS concerns with the use of several
neighborhood structures and systematic switching from
one structure to another, so as to improve the search
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Table 1. Parameters tuned for the proposed GA.

Parameter Range Best
value

N 10-50 with an increment of 10 20
kmax 10-100000 multipled by 10 each time 1000
f; g; h; i f + g + h+ i = 1 0.8,0.05,0.05,0.1

intensi�cation as well as its diversi�cation. Javadian et
al. [17] developed a three-neighborhood search which is
able to �nd excellent solutions to the TSAFS problem,
and therefore, we use it in this paper. The proposed
neighborhood structures are as follows:

Neighborhood 1. Two pairs of jobs are selected ran-
domly from a given sequence and swapped indepen-
dently.

Suppose that we have a sequence of jobs: [3 7 2
1 4 6 8 5]. Four numbers are generated randomly from
\1\ to \8". Consider that these random numbers are:
1, 2, 6, 8. So, the jobs in positions 1 and 2 and the jobs
in positions 6 and 8 must be swapped independently:

[3 7 2 1 4 6 8 5] ! [7 3 2 1 4 5 8 6].

Neighborhood 2. A random number  , in which 2 <
 < n=2, is generated and the �rst  jobs are swapped
with the last  ones. For addressed sequence and a
random  = 3, we have:

[3 7 2 1 4 6 8 5] ! [6 8 5 1 4 3 7 2].

Neighborhood 3. A random number  is generated.
Then, the �rst  jobs are inversed, and last n� jobs
are inversed too. For the above sequence and a random
 = 5, we have:

[3 7 2 1 4 6 8 5] ! [4 1 2 7 3 5 8 6].

4. Computational results

Subsection 4.1 tunes parameters of three meta-
heuristics, while Subsection 4.2 compares their perfor-
mances.

4.1. Tuning parameters
Setting parameters is an important factor, whereby
we can establish a trade-o� between time and quality
of heuristic solutions. Each meta-heuristic has some
parameters which should be tuned. Theses parameters
are set by doing some experiments and evaluating
the results with respect to run time and quality of
solutions. Tables 1 to 3 summarize the results for GA,
DEA and PVNS, respectively. For each meta-heuristic,
no signi�cant improvement was observed beyond the

Table 2. Parameters tuned for the proposed DEA.

Parameter Range Best
value

CR (0.5,0.75,0.9) 0.75
Fs (0.5,1,1.5) 1.5
r (0,0.4,0.8) 0.4

(NP;NI) ((n; 3n); (1:75n; 1:75n); (3n; n)) (n; 3n)

Table 3. Parameters tuned for the proposed PVNS.

Parameter Range Best value
imax (3,4,5,6,7) 5
kmax (5,6,7,8,9,10,11,12) 8
Np (15,20,25) 25

value given in the tables. The parameters for GA
have been acquired in Table 1. Parameters required
for DEA consist of the Crossover Rate (CR), scaling
parameters (Fs), rate (coe�cient) of best function (r)
and �nally Number of Populations and Iterations (NP
and NI). Table 2 shows these parameters. According
to Subsection 3.3, parameters tuned for PVNS are
shown in Table 3.

4.2. Evaluation of the meta-heuristics
We have used a PC with 8.2 GHz CPU processor under
the Windows XP operating system with 2 GB of RAM,
and the proposed meta-heuristics were implemented in
Borland C++ compiler version 5.02.

The processing time at the �rst stage on each m
machines and assembly time at the second stage were
generated randomly from uniform distribution [1, 100].
The reason why a Uniform distribution with a wide
range is used is that the variance of this distribution
is large, and if a heuristic performs well with such
a distribution, it is likely to perform well with other
distributions [12].

In this paper, we consider 20, 40, 60 and 80 as
di�erent number of jobs (n) and 3, 5 and 7 as di�erent
number of machines at the �rst stage (m). These types
of classes are very common among the researchers [3,8-
10]. Each combination was solved 40 times by each
meta-heuristic, and so a total of 1440(4�3�40�3)
instances were evaluated.

In order to compare the performance of the
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Figure 1. Average run time versus di�erent number of
jobs.

algorithms, we use three measures: the �rst measure
is average run time. Another measure is the Rela-
tive Percentage Deviation (RPD). RPD is a common
measure frequently used in literature, and is obtained
by the following manner. When the best solution
yielded by three algorithms in each combination is
found, the percentage error is calculated as follows:
100*(the solution found by the algorithm { the best
solution)/ (the best solution). The last measure is
the Coe�cient of Variation (CV) which is de�ned as:
CV= (standard deviations (STD) of the algorithm
solutions)/ (average of the algorithm solutions). The
reason why CV is used is that we cannot compare the
STD of two combinations which have di�erent means,
and hence it is better to use CV instead of STD. For
the sake of brevity, the results are shown in �gures and
are not tabulated.

Figure 1 illustrates run times of the meta-
heuristics for di�erent number of jobs. From Figure 1,
it can be inferred that GA has the smallest CPU times
and PVNS has the greatest one in comparison with
other algorithms. In fact, according to the CPU times,
GA outperforms other algorithms.

Figures 2 and 3 demonstrate the RPD measure,
with respect to the number of jobs and number of
machines at the �rst stage, respectively. Figure 2
reveals that GA has the worst performance among the
algorithms. In contrast, PVNS has the lowest RPD
and performs much better than GA and DEA. Figure 3
yields that PVNS outperforms other algorithms again,
and GA has the worst performance. Figures 4 and 5
show CV versus di�erent number of jobs and machines
at stage one, respectively. Again, the �gures reveal that
GA and PVNS have the worst and best performances
among the algorithms.

5. Conclusion and recommendation for future
studies

In this paper, the no-wait two-stage assembly 
ow-shop
scheduling problem was addressed. The makespan was

Figure 2. RPD versus di�erent number of jobs.

Figure 3. RPD versus di�erent number of machines at
the �rst stage.

Figure 4. Average coe�cient of variation versus di�erent
number of jobs.

selected as an objective function of the problem to
be minimized. Three meta-heuristics were proposed:
Genetic Algorithm (GA), Di�erential Evolution Algo-
rithm (DEA) and Population base Variable Neighbor-
hood Search (PVNS). Computational experiments have
revealed that the performances of PVNS and GA are
the best and worst, respectively, among the algorithms
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Figure 5. Average coe�cient of variation versus di�erent
number of machines at the �rst stage.

in terms of RPD and CV. However, according to the
CPU time, the result is di�erent; GA and PVNS are
the best and worst, respectively.

To have a more realistic situation, adding some
constraint such as sequence-dependent setup time to
the problem could be proposed. Furthermore, some
other assumptions made in this paper could be also
relaxed, such as priorities in jobs, having a set of similar
jobs, probabilistic processing time, etc.
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