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Abstract. In many situations, the quality of a process can be characterized better
by a relationship, known as a pro�le, between a response variable and one or more
predictors. Almost all research e�orts assume that response variable is continuous and
follows a normal distribution, while there are instances in which the response is a binary
variable, and methods such as logistic regression are commonly used. In this paper,
four control schemes namely Hotelling T 2, MEWMA, Likelihood Ratio Test (LRT) and
LRT/EWMA are proposed to monitor binary response pro�les in phase II. The performance
of the proposed control charts is evaluated and compared by simulation experiments for
di�erent shift values in the parameters of the pro�le in terms of the Average Run Length
(ARL) criterion. The results show that all methods work well in the sense that they can
e�ectively detect shifts in the process parameters. Based on the results, MEWMA and
LRT/EWMA methods display a better performance for small to moderate and large shift
values, respectively.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

In numerous situations, based on the univariate or
multivariate distribution of the quality characteris-
tics of a process, univariate and multivariate control
charts are used to monitor the quality of the process.
However, in some cases, the quality of a process is
characterized by a relationship between a response
variable and one or more explanatory variables. Such
a relationship is commonly referred to as a `pro�le'.
There exist various types of pro�les based on whether
the relationship assumes the form of a simple linear,
multiple linear, polynomial or nonlinear regression.
Simple linear regression pro�les are mostly used in
calibration applications and have been widely studied
in the literature for both phases I and II. The purpose
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of the phase-I analysis is to evaluate the stability of
a process and to estimate the process parameters,
while in phase-II analysis, one is interested in detecting
shifts in the process parameters as quickly as possible.
Kang and Albin [1] proposed a multivariate T 2 and an
EWMA/R control chart to monitor the parameters of
a simple linear pro�le. Kim et al. [2] coded the values
of the predictor variable �rst, such that the average
of the coded values become zero, and then proposed
three EWMA control charts to monitor the parameters
and error variance of simple linear pro�les. Mahmoud
and Woodall [3] developed a monitoring scheme and
an F test-based on indicator variables and a control
chart in line with one of the charts proposed by Kim
et al. [2] to monitor the stability of a linear regression
pro�le. Saghaei et al. [4] developed a cumulative sum
(CUSUM) control chart, and compared its performance
with some existing methods. Other related works in
this area include Zhang et al. [5], Mahmoud et al. [6],
Soleimani et al. [7] and Hossienifard et al. [8].

In some cases, more complicated models such as
multiple linear and polynomial regression are needed
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to represent the relationship. Kazemzadeh et al. [9]
proposed three methods to monitor a polynomial pro-
�le in phase I. Zou et al. [10] proposed a Multivariate
Exponentially Weighted Moving Average (MEWMA)
control chart for monitoring general linear pro�les
in phase II. Amiri et al. [11] proposed a dimension
reduction method to cope with the dimensionality
problem of existing methods in monitoring multiple
linear regression pro�les, and compared it with other
methods (see also [12,13]).

All the references cited above assume that the
response variable is continuous, whereas in many appli-
cations, the response variable of a pro�le can be better
considered as a discrete variable. One application
arises when a process or product should be classi�ed
as defective or non-defective, or when the quality of a
process would be either acceptable or non-acceptable.
For instance, the quality of surface-to-air anti aircraft
missiles is inspected by test-�ring at targets of varying
speed. The outcome for this test will be either a hit or
a miss [14]. Hosmer and Lemeshow [15] provided an ex-
ample in which the relationship between age (predictor)
and presence or absence of evidence of signi�cant coro-
nary heart disease (response) for 100 subjects selected
to participate in a study is investigated (see [14,15]
for more motivating examples). The response in these
cases will be a binary (Bernoulli) variable. Despite
the fact that there exist many real applications for
binary response pro�les, only few research e�orts have
concentrated on this issue. Yeh et al. [16] provided
the only research work on phase I binary response
pro�le monitoring in which logistic regression is used
to model the relationship between a binary response
and one or more continuous explanatory variables.
They developed �ve Hotelling T 2 control charts, and
compared them in terms of signal probabilities. In a
more recent research work, Shang et al. [17] considered
the binary response pro�le monitoring problem and
developed three control charts for phase II monitoring
purposes. Considering a random explanatory variable,
they compared the proposed control charts based on
the Average Run Length (ARL).

In this paper, we assume that the explanatory
variable values are �xed and constant from pro�le
to pro�le, and develop some phase II control chart
schemes in order to identify shifts in the parameters of
the pro�le in a quick manner. We use logistic regression
to model the relationship. Since Koosha and Amiri [18]
compared di�erent link functions including Probit,
Logit, Log-Log and Comp log log and concluded
that Logit outperforms other functions for both in-
control and out-of-control conditions, we use Logit link
function in this paper as well. The proposed control
charts are compared through simulation experiment
studies in terms of ARL criterion.

The rest of this paper is organized as follows: In

the next section, the pro�le model is described; the
proposed control chart schemes for phase II monitoring
of binary response pro�les are presented in Section
3; the performance of the proposed control charts is
studied in Section 4 through simulation experiments;
an illustrative example is presented in Section 5; and
�nally, the concluding remarks are presented in Sec-
tion 6.

2. The pro�le modeling

The Generalized Linear Model (GLM) is widely used
to model pro�les with discrete responses. However, in
case of a binary response variable, logistic regression is
the most common model used for this purpose.

Assuming n independent settings, the p ex-
planatory variables and the corresponding response
in each setting i are shown by vector Xi =
(Xi1; Xi2; � � � ; Xip)T and variable zi, i = 1; 2; � � � ; n,
respectively. We assume zi is a Bernoulli variable with
a probability of success �i for which E(zi) = �i and
Var(zi) = �i(1 � �i) hold. Denoting the Logit link
function by g(�i), we have:

g(�i) = log
�

�i
1� �i

�
= XT

i �

= �1Xi1 + �2Xi2 + � � �+ �pXip; (1)

in which � = (�1; �2; � � � ; �p)T represents the parame-
ter vector of the model. It is customary to set Xi1 = 1
for �1 to show the intercept. According to this model,
the probability of success will be:

�i =
exp(XT

i �)
1 + exp(XT

i �)
: (2)

We assume there exist mi independent observations
in each setting of the explanatory variables, and as
such M =

Pn
i=1mi denotes the total number of

observations. Based on this model, yi =
Pmi
j=1 zij

represents the total number of successes in the ith
setting, and consequently follows a binomial distribu-
tion with parameters (mi; �i) in which zij represents
the jth observation in the ith setting. Now we have
E(yi) = mi�i and:

Var(yi) = mi�i(1� �i)

= mi � exp(XT
i �)

1 + exp(XT
i �)

� 1
1 + exp(XT

i �)
:
(3)

Moreover, the likelihood function for y1; y2; � � � ; yn can
be written as:

L(�;y) =
nY
i=1

�
mi
yi

�
�yii (1� �i)mi�yi ; (4)
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whose logarithm can be written as follows:

logL(�;y) =
nX
i=1

log
�
mi
yi

�
+

nX
i=1

yi(XT
i �)

�
nX
i=1

mi log(1 + exp(XT
i �)); (5)

in which � = (�1; �2; � � � ; �n)T and y =
(y1; y2; � � � ; yn)T . Taking the partial derivative of the
log-likelihood function with respect to �, we have:

@ logL(�;y)
@�

=
nX
i=1

yiXT
i �

nX
i=1

mi
exp(XT

i �)
1+exp(XT

i �)
XT
i

= XTy �
nX
i=1

mi�iXT
i = XT (y � �);

(6)

where:

� = (�1; �2; � � � ; �n)T = E(y)

= (m1�1;m2�2; � � � ;mn�n)T ;

and:

X = (X1;X2; � � � ;Xn)T ;

is an n�p matrix. The Maximum Likelihood Estimator
(MLE) of � will be obtained by solving the equation
XT (y��) = 0p. In this paper, the Iterative Weighted
Least Squares (IWLS) estimation method is used to
approximate the MLE of �, denoted by �̂ (see [16,19]
for more details). According to this model, �̂ asymp-
totically follows a p-dimensional Normal distribution,
Np(�; (XTWX)�1), in which:

W = diagfm1�1(1� �1);m2�2(1� �2);

� � � ;mn�n(1� �n)g:

3. The proposed control charts for phase II

In this section, four control charts are proposed to
monitor a binary response pro�le in phase II, in order
to detect shifts in parameters in a quick manner.

3.1. Hotelling T 2 control chart
The Hotelling T 2 control chart is used by Kang and
Albin [1] for linear pro�les in phase II. Also, Yeh et
al. [16] have developed �ve Hotelling T 2 charts for
phase I of binary pro�les. Considering the asymptotic
normal distribution of the parameters of a binary
response pro�le, the Hotelling T 2 control chart can be
modi�ed and used for monitoring a binary pro�le in
phase II. The T 2 statistic in this method for the jth
pro�le is calculated as:

T 2
j =

�
�̂j��0

�T
��1

0

�
�̂j��0

�
; j = 1; 2; � � �

(7)

where �̂j = (�̂1; � � � ; �̂p)T is the estimated parameters
of the logistic regression and the n � p matrix �0
represents the in-control parameters. Moreover, �0
denotes the in-control variance-covariance matrix of the
parameters of the logistic regression model, which is
estimated as �̂0 = (XTWX)�1. Now, the T 2 statistic
can be re-written as:

T 2
j =

�
�̂j � �0

�T
XTWX

�
�̂j � �0

�
: (8)

As long as a statistic is below the Upper Control
Limit (UCL) of a proposed control chart, the process
is assumed in control. However , when T 2

j > UCL, the
process will be out of control. We resort to simulation
to calculate the UCL of the control chart, yielding the
speci�ed in-control ARL.

3.2. The MEWMA control chart
In this section, an MEWMA control chart is proposed
to monitor binary pro�les. This kind of chart was
�rst developed by Zou et al. [10] for generalized linear
pro�les. In this method, we �rst de�ne the following
variable:

Zj =
�
XTWX

�1=2 ��̂j � �0

�
; (9)

where �̂ is the vector of estimated logistic regression
parameters in the jth pro�le. It is straightforward to
show that the vector Zj follows a multivariate normal
distribution with mean 0 and identity variance when
the process is in-control and n is su�ciently large, i.e.:

E(Zj) = E
��

XTWX
�1=2 ��̂j � �0

��
=
�
XTWX

�1=2E ���̂j � �0

��
= 0; (10)

Var(Zj = Var
��

XTWX
�1=2 ��̂j � �0

��
=
�
XTWX

�1=2 Var
�
�̂j
� �

XTWX
�1=2

=
�
XTWX

�1=2 �XTWX
��1 �XTWX

�1=2
= I: (11)

Now, the statistic for the MEWMA chart is proposed
as:

Wj = �Zj + (1� �)Wj�1; j = 1; 2; � � � (12)

where � is the smoothing parameter and W0 = 0. In
this approach, the control chart generates a signal due
to the out-of-control state of pro�le when:

Uj = WT
j Wj > L

�
2� � : (13)
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The parameter L is calculated by simulation method
in such a way that the speci�ed in-control ARL is
achieved.

3.3. The likelihood ratio test approach
In this section, based on Niaki et al. [20] we propose
an approach to monitor binary pro�les in phase II.
Since the parameters of the pro�le are known in
phase II, the objective is to test the null hypothesis
`H0: all parameters of the regression are equal to in-
control values' versus the alternative hypothesis `H1:
some parameters are signi�cantly di�erent from the in-
control values', i.e.:

H0 : � = �0
H1 : � 6= �0

(14)

Niaki et al. [20] proposed a control chart based on
the generalized linear test to monitor linear pro�les
where the concept of full and reduced models is used
to develop their control chart. Therefore, we resort to
a similar concept, and the partial deviance measure is
applied here to test the null hypothesis. The deviance is
minus twice the log-likelihood statistic. Rewriting the
null and alternative hypotheses given in Relations (14)
for logistic regression, we have:

H0 : �1 = �01; �2 = �02; � � � ; �p = �0p
H1 : not all �k in H0 are equal to �0k

(15)

in which �k denotes the parameter of the logistic
regression model, and �0k stands for the in-control
parameter of the model.

Accordingly, for the full model we have:

�i =
exp

�
XT
i �F

�
1 + exp

�
XT
i �F

� ; (16)

where:
XT
i �F = �1Xi1 + �2Xi2 + � � �+ �pXip:

The parameter vector and the deviance of the full
model are represented by �F and DEV(�f ), respec-
tively. Considering the null hypothesis and denoting
the parameter vector and the deviance of the reduced
model by �R and DEV(�R), the deviance of the
reduced model is calculated as follows:

DEV (�R) = �2

"
nX
i=1

log
�
mi
yi

�
) +

nX
i=1

yi
�
XT
i �0

�
�

nX
i=1

mi log
�
1+exp

�
XT
i �0

��#
:
(17)

Now, the partial deviance of the hypothesis testing for
the jth pro�le can be obtained by:

DEVj (�Rj�F ) = DEVj (�R)�DEVj (�F ) ;

j = 1; 2; � � � (18)

For the case of large sample sizes when the null
hypothesis is accepted, the partial deviance follows a
chi-square distribution with p degrees of freedom (�2

p).
Accordingly, if DEVj(�Rj�F ) � �2

1��;p, then the null
hypothesis is accepted and the jth pro�le is ruled to be
in-control.

3.4. The LRT/EWMA approach
In this section, we develop another approach by com-
bining the LRT method with the EWMA approach to
sensitize and strengthen the LRT method in detecting
small shifts as well as large shifts. In this approach,
based on the statistic of the proposed LRT method, an
EWMA control chart is proposed to monitor a binary
pro�le in phase II.

As stated in the previous section, the partial
deviance of the hypothesis testing follows a �2

p distribu-
tion. Accordingly, the partial deviance, as speci�ed in
Eq. (18), only assumes positive values. In preparation
for feeding the partial deviance values to the EWMA
chart, we propose to normalize the values of the partial
deviance for the jth pro�le as shown below:

dj =
�
DEVj (�Rj�F )� �2

0:5;p
�

�DEV
; j = 1; 2; � � �

(19)

We then calculate the statistic of EWMA control chart,
using this variable as:

Wj = �dj + (1� �)Wj�1; j = 1; 2; � � � (20)

where � represents the smoothing parameter and W0 =
0. The proposed control chart generates a signal when
Wj > L �

2�� . Again, the parameter L is calculated by
simulation experiments in such a way that the speci�ed
in-control ARL is achieved.

4. Performance evaluation

In this section, the performance of the proposed control
charts for phase II monitoring of a binary pro�le is
evaluated through simulation experiments for various
shifts in the parameters of the pro�le. All control charts
are designed to have in-control ARL of approximately
200, and the smoothing parameter in both MEWMA
and LRT/EWMA approaches is set equal to 0.2.

To evaluate the performances of the proposed
control charts, the following pro�le model with one
explanatory variable is considered (Montgomery et
al. [14], pp. 479). In this model, the compressive
strength of an alloy fastener used in aircraft construc-
tion is studied. Ten levels of the explanatory variable,
loading strength measured in pounds per square inch
(psi), are selected over the range 2500 { 4300 psi, and
a number of fasteners are tested at each of these levels.
Then, the number of fasteners failing at each level
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of the loading strength is recorded as the response
variable. Replacing the explanatory variable x with
log(x), the matrix X will be as follows:

X =
�

1 1 1
log(2500) log(2700) log(2900)

� � � 1 1
� � � log(4100) log(4300)

�T
: (21)

Based on this model, the in-control values of the
parameters and variance-covariance matrix of logistic
regression are:

�0 = (�42:1110; 5:1772)T ;

and:

�0 = (XTWX)�1 =
�

18:5689 �2:2833
�2:2833 0:2809

�
;

respectively.
This model is used to evaluate the performance of

the proposed control chart schemes. In this study, �ve
di�erent values of mi = 5; 10; 15; 25; 50 are considered
and the upper control limit for each method and for
each value of mi is calculated by 10000 simulation runs,
to achieve an in-control ARL of roughly 200. The
resulting UCLs are reported in Table 1.

According to the results in Table 1, the UCL of
the control charts decreases as mi increases. How-
ever, the di�erence in UCL of LRT and LRT/EWMA
schemes, for various values of mi, is negligible and
one can conclude that these methods are robust with
respect to di�erent values of mi.

The out-of-control ARL values of the proposed
control chart schemes for di�erent shifts in �1 and �2
are summarized in Tables 2 and 3, respectively. The
Standard Deviations of Run Length (SDRL) values are
also reported in these tables to provide an estimate of
the precision of simulation results. As stated in [21],
run length values follow a geometric distribution in
cases where the parameters are known. Therefore, the
standard deviation of run length will be close to the
mean, whenever type I error is small (see also [22]).

Based on the results in Table 2, all methods
perform relatively well, and the performance of all

Table 1. Upper control limits for the proposed control
charts.
mi T 2 MEWMA LRT LRT/EWMA

5 19.86 1.70 10.74 1.37
10 13.85 1.35 10.72 1.36
15 12.60 1.24 10.71 1.35
25 11.87 1.18 10.70 1.34
50 11.35 1.12 10.70 1.33

methods improves as the value of mi increases. The
MEWMA control chart outperforms other compet-
ing methods for small to moderate shifts in �1.
LRT/EWMA method performs better than T 2 and
LRT control chart schemes for shifts of almost all
magnitudes. Moreover, this method performs better
than MEWMA method for large shifts. The T 2 control
chart displays a rather poor performance.

Table 3 shows that MEWMA control chart has
a better performance than all other methods for small
to moderate shift values. However, the performance
of both LRT and LRT/EWMA methods is better
than MEWMA method for larger shifts. Also, the
LRT/EWMA control chart outperforms T 2 and LRT
methods for almost all shifts. Again, the T 2 control
chart has a poor performance in comparison to other
methods.

In summary, MEWMA method performs better
than the other competing control chart schemes for
detecting small and moderate shift values in the pa-
rameters of the logistic regression model. However,
LRT/EWMA method outperforms T 2 and LRT con-
trol charts for shifts of almost any magnitude, and
outperforms MEWMA method for larger shifts. In
addition, the LRT and LRT/EWMA methods utilize
the robustness of the statistic for di�erent sample sizes.
This is a practical advantage that di�erentiates them
from other methods. This characteristic for pro�le
monitoring is signi�cant and practical, because in real
world applications, the sample size for each pro�le may
change based on various conditions. Thus, developing a
method whose statistic behaves consistently in the face
of varying sample sizes in each pro�le will be helpful.

5. Illustrative example

In this section, the application of the proposed methods
is illustrated by an example which we borrow from
Montgomery et al. [14]. In this example, the e�ec-
tiveness of a price discount coupon on the purchase of
a two-liter beverage product is investigated by market
research department of a soft drink manufacturer. The
predictor variable (x) is price discount ranging from 5
to 25 cents, and the response variable (y) is the number
of coupons in each price discount category redeemed
after one month. Applying the logistic regression model
and replacing x with log(x), the matrix X will be:

X =
�

1 1 1
log(5) log(7) log(9)

� � � 1 1
� � � log(21) log(23) log(25)

�T
:

The in-control values of the parameters and variance-
covariance matrix of logistic regression are estimated
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Table 2. ARL and SDRL (in parentheses) comparisons between four proposed approaches in detecting various shifts in
parameter �1.

mi Chart
Shift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5

T 2 195.23 160.24 97.45 65.97 40.65 25.34 14.79 10.02 6.63 4.35

(194.07) (157.95) (95.14) (63.79) (38.53) (24.74) (14.08) (9.69) (5.96) (3.87)

MEWMA
121.33 40.65 17.11 9.63 6.59 5.03 4.08 3.46 3.02 2.69

(114.64) (35.56) (11.97) (5.22) (2.99) (1.96) (1.42) (1.12) (0.90) (0.77)

LRT
142.87 82.21 44.43 23.66 13.05 7.89 5.05 3.38 2.52 1.92

(141.76) (81.87) (44.01) (22.45) (12.70) (7.49) (4.56) (2.81) (1.96) (1.33)

LRT/EWMA
144.59 64.33 28.70 13.99 8.26 5.34 3.95 3.08 2.43 2.10

(140.95) (60.06) (24.55) (10.59) (5.54) (3.18) (2.14) (1.55) (1.17) (0.93)

10

T 2 145.47 75.05 33.72 15.34 7.61 4.25 2.62 1.85 1.44 1.21

(146.04) (74.38) (32.80) (14.89) (7.10) (3.76) (2.06) (1.25) (0.80) (0.51)

MEWMA
59.96 15.17 7.37 4.78 3.59 2.92 2.47 2.19 1.98 1.83

(54.19) (10.22) (3.65) (1.83) (1.18) (0.86) (0.66) (0.53) (0.46) (0.44)

LRT
125.28 52.43 21.04 9.40 4.86 2.89 1.94 1.47 1.23 1.09

(122.70) (51.25) (20.10) (8.78) (4.38) (2.30) (1.35) (0.84) (0.52) (0.32)

LRT/EWMA
112.53 32.92 12.16 6.12 3.81 2.70 2.07 1.66 1.39 1.23

(107.57) (28.85) (9.00) (3.80) (2.05) (1.31) (0.94) (0.71) (0.56) (0.44)

15

T 2 120.37 45.37 16.24 6.78 3.36 2.02 1.44 1.17 1.06 1.02

(119.46) (44.37) (15.62) (6.22) (2.81) (1.42) (0.80) (0.45) (0.26) (0.14)

MEWMA
35.24 9.63 5.10 3.53 2.75 2.28 2.01 1.82 1.64 1.45

(30.06) (5.46) (2.12) (1.17) (0.78) (0.58) (0.45) (0.44) (0.48) (0.50)

LRT
103.35 32.80 11.74 6.95 2.60 1.67 1.28 1.11 1.03 1.01

(104.13) (32.69) (11.42) (4.47) (2.02) (1.07) (0.61) (0.35) (0.18) (0.09)

LRT/EWMA
86.54 19.85 7.36 3.94 2.59 1.91 1.51 1.25 1.11 1.04

(82.91) (15.82) (4.80) (2.16) (1.25) (0.84) (0.62) (0.45) (0.31) (0.20)

25

T 2 91.11 21.66 6.64 2.75 1.58 1.18 1.04 1.01 1.00 1.00

(90.22) (20.76) (6.17) (2.20) (0.96) (0.50) (0.22) (0.10) (0.02) (0.00)

MEWMA
20.57 6.19 3.58 2.61 2.12 1.83 1.60 1.34 1.13 1.04

(15.59) (2.82) (1.21) (0.72) (0.49) (0.43) (0.49) (0.47) (0.34) (0.19)

LRT
78.97 17.86 5.55 2.40 1.46 1.14 1.03 1.00 1.00 1.00

(77.29) (17.14) (5.11) (1.80) (0.81) (0.40) (0.18) (0.07) (0.02) (0.00)

LRT/EWMA
54.25 10.39 4.18 2.42 1.67 1.29 1.10 1.02 1.00 1.00

(49.14) (7.40) (2.32) (1.15) (0.72) (0.49) (0.30) (0.15) (0.06) (0.01)

50

T 2 48.98 7.55 2.23 1.24 1.03 1.01 1.00 1.00 1.00 1.00

(49.31) (6.87) (1.67) (0.54) (0.18) (0.04) (0.01) (0.00) (0.00) (0.00)

MEWMA
10.22 3.75 2.39 1.89 1.53 1.18 1.03 1.00 1.00 1.00

(6.15) (1.32) (0.62) (0.43) (0.50) (0.38) (0.17) (0.05) (0.02) (0.00)

LRT
40.87 6.60 2.06 1.20 1.03 1.00 1.00 1.00 1.00 1.00

(40.27) (6.02) (1.48) (0.49) (0.16) (0.05) (0.01) (0.00) (0.00) (0.00)

LRT/EWMA
24.30 4.72 2.17 1.38 1.08 1.01 1.00 1.00 1.00 1.00

(20.22) (2.70) (0.99) (0.55) (0.28) (0.09) (0.01) (0.00) (0.00) (0.00)
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Table 3. ARL and SDRL (in parentheses) comparisons between four proposed approaches in detecting various shifts in
parameter �2.

mi Chart
Shift

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5

T 2 194.72 168.37 132.75 87.58 57.35 39.42 28.75 18.76 13.49 8.78

(181.82) (170.81) (132.87) (85.87) (57.06) (40.87) (28.86) (16.88) (13.15) (8.92)

MEWMA
145.26 59.31 26.31 14.32 9.46 6.83 5.44 4.48 3.86 3.38

(140.31) (53.82) (20.99) (9.37) (5.23) (3.20) (2.23) (1.68) (1.31) (1.09)

LRT
154.01 105.67 63.22 37.99 22.84 14.47 9.33 6.34 4.47 3.39

(154.86) (105.42) (61.94) (37.13) (22.84) (13.92) (8.80) (5.77) (3.94) (2.84)

LRT/EWMA
160.03 90.65 44.62 23.45 13.27 8.56 6.14 4.59 3.70 3.02

(151.52) (85.04) (40.53) (19.37) (9.80) (5.79) (3.78) (2.55) (1.94) (1.49)

10

T 2 152.56 97.72 52.09 26.28 14.01 8.09 4.94 3.26 2.29 1.77

(152.38) (96.88) (51.94) (25.52) (13.75) (7.58) (4.44) (2.70) (1.73) (1.15)

MEWMA
80.94 22.33 10.10 6.41 4.69 3.69 3.08 2.67 2.37 2.15

(75.45) (16.91) (6.19) (2.88) (1.80) (1.24) (0.93) (0.76) (0.62) (0.52)

LRT
144.14 72.89 34.26 17.01 8.93 5.39 3.36 2.38 1.76 1.43

(142.19) (72.80) (33.18) (16.45) (8.40) (4.84) (2.83) (1.85) (1.17) (0.79)

LRT/EWMA
138.01 52.26 20.59 9.86 5.92 4.03 2.99 2.35 1.91 1.62

(133.62) (47.29) (16.99) (6.89) (3.64) (2.19) (1.51) (1.12) (0.86) (0.68)

15

T 2 136.16 66.44 27.79 12.97 6.29 3.58 2.30 1.68 1.32 1.16

(133.39) (65.39) (27.18) (12.49) (5.81) (3.06) (1.76) (1.07) (0.66) (0.43)

MEWMA
50.62 13.71 6.97 4.58 3.47 2.82 2.42 2.13 1.94 1.79

(44.76) (9.16) (3.40) (1.75) (1.14) (0.83) (0.64) (0.51) (0.44) (0.45)

LRT
124.06 51.14 20.46 9.18 4.77 2.81 1.91 1.45 1.21 1.10

(122.71) (50.66) (19.94) (8.76) (4.29) (2.25) (1.34) (0.80) (0.51) (0.34)

LRT/EWMA
113.03 32.59 12.15 6.16 3.86 2.70 2.07 1.67 1.42 1.25

(108.32) (28.98) (8.92) (3.78) (2.12) (1.32) (0.93) (0.71) (0.56) (0.45)

25

T 2 114.14 36.65 12.41 5.16 2.61 1.66 1.27 1.09 1.03 1.01

(114.26) (36.13) (12.07) (4.65) (2.07) (1.04) (0.59) (0.32) (0.17) (0.08)

MEWMA
30.18 8.48 4.63 3.26 2.56 2.17 1.91 1.71 1.50 1.29

(24.83) (4.66) (1.80) (1.03) (0.70) (0.51) (0.43) (0.47) (0.50) (0.46)

LRT
99.91 30.71 10.36 4.38 2.34 1.54 1.21 1.06 1.02 1.00

(101.14) (30.51) (9.99) (3.79) (1.78) (0.92) (0.51) (0.27) (0.14) (0.07)

LRT/EWMA
79.69 17.59 6.57 3.56 2.35 1.74 1.39 1.18 1.07 1.02

(74.18) (14.01) (4.16) (1.90) (1.12) (0.75) (0.55) (0.39) (0.26) (0.14)

50

T 2 71.09 14.20 4.12 1.84 1.22 1.04 1.01 1.00 1.00 1.00

(71.17) (13.09) (3.59) (1.25) (0.51) (0.21) (0.07) (0.01) (0.00) (0.00)

MEWMA
14.54 4.86 2.98 2.23 1.88 1.58 1.28 1.08 1.01 1.00

(9.88) (1.96) (0.89) (0.54) (0.42) (0.49) (0.45) (0.27) (0.12) (0.03)

LRT
62.08 12.29 3.74 1.73 1.18 1.03 1.00 1.00 1.00 1.00

(61.46) (11.79) (3.25) (1.12) (0.47) (0.19) (0.07) (0.02) (0.00) (0.00)

LRT/EWMA
39.67 7.39 3.12 1.89 1.35 1.10 1.02 1.00 1.00 1.00

(36.11) (4.86) (1.61) (0.84) (0.52) (0.31) (0.14) (0.04) (0.00) (0.00)
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Figure 1. T 2 control chart for the example with shift
from �1 = �4:5986 to �1 = �4:4986 at sample 11.

Figure 2. MEWMA control chart for the example with
shift from �1 = �4:5986 to �1 = �4:4986 at sample 11.

as �0 = (�4:5986; 1:7397)T and �0 = (XTWX)�1 =�
0:0315 �0:0116
�0:0116 0:0044

�
, respectively. Based on the in-

control values of the parameters, 10 samples were
�rst generated from the in-control process, and then 5
samples were generated from out-of-control process in
which the value of the parameter �1 was shifted from
the in-control value of -4.5986 to -4.4986. The UCL
of the proposed control charts are obtained as 10.825,
0.432, 10.665 and 1.324 to achieve the in-control ARL
of roughly 200. The control charts are presented in
Figures 1-4. According to these �gures, T 2 and LRT
generated a signal two samples after the occurrence
of the shift, while both MEWMA and LRT/EWMA
detected the shift correctly at sample 11.

6. Concluding remarks

Despite the fact that in many situations the re-
sponse variable is discrete and in most cases a binary
variable, only few research e�orts have focused on
this area. In this paper, we proposed four con-
trol chart schemes namely Hotelling T 2, Multivariate
Exponentially Weighted Moving Average (MEWMA),
likelihood ratio test and LRT/EWMA control chart
for monitoring a binary response pro�le in phase II.
We then evaluated the performance of the proposed
methods in terms of Average Run Length (ARL)
criterion. The results of simulation show that all
methods perform relatively well. Also, the performance

Figure 3. LRT control chart for the example with shift
from �1 = �4:5986 to �1 = �4:4986 at sample 11.

Figure 4. LRT/EWMA control chart for the example
with shift from �1 = �4:5986 to �1 = �4:4986 at sample
11.

of the methods improves as the sample size increases.
According to the results, MEWMA method outper-
forms other methods for small and moderate shifts in
the parameters of the logistic regression model, while
LRT/EWMA method performs better than MEWMA
for large shift values. In addition, LRT/EWMA control
chart outperforms T 2 and LRT methods for shifts
of almost any magnitude and all values of sample
size. Developing some control schemes for monitoring
multinomial logistic regression pro�les in both phases I
and II would be an interesting area for future research.
In addition, one may consider some control schemes for
monitoring binary response pro�les in the presence of
pro�le autocorrelation for further studies.
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