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Abstract. This paper considers two-machine ow shop scheduling problem while there is
ineligible transportation lags in production procedure. There is one transporter to convey
semi-�nished jobs between machines, and another transporter to deliver �nished jobs to the
warehouse (customers). The problem is formulated as a Mixed Integer Linear Programming
(MILP) model to minimize the makespan as an objective function. To solve the problem in
an e�cient way, two heuristic algorithms are also developed. Furthermore, �ve lower bounds
are proposed and computational experiments are carried out to verify the e�ectiveness of
the proposed lower bounds and heuristic algorithms. The results show the performance of
the heuristics to deal with medium and large size problems.

c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

In most production systems with more than one
machine, semi-�nished jobs are transferred between
machines through material handling systems such as
Automated Guided Vehicles (AGVs), conveyers and
robots. There are also a lot of factories in which
the process of carrying �nished jobs to a warehouse
or delivering them to the customers is of great im-
portance. Thus, scheduling problems which consider
transportation and scheduling simultaneously are more
practical than those problems that do not take the
transportation into consideration [1-3]. In the last four
decades, many books and numerous published papers
have studied machine scheduling. However, most of
studies neglect the transportation lags (see, for example
[4-6]) or assume that all needed transportations can be
done instantaneously (see, for example [7-10]).
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Several \logistics" and \production management"
research recently focused on the coordination of ma-
chine scheduling and transportation. These studies
usually divide transportation into two categories. The
�rst category is intermediate transportation which is
needed to carry jobs between machines and called
as transportation Type I. The second category that
named as transportation Type II is needed to deliver
�nished jobs to the customer or warehouse [11].

The main di�erence between ordinary process-
ing machines and transporters, which inuences the
complexity of problems intensely, is their disability
to start next job(s) after accomplishment of the pre-
vious job(s). Transporters need some time to move
to the physical place of next job(s). This makes
transporters quite similar to the ordinary machines
which need extra setup time after each processing.
Hence negligence of returning times or consideration
of in�nite number of transporters can be similar to
neglecting the existence of transporters. The other
di�erence is that transporters can usually carry more
than one job in each trip, so they are similar to batching
machines in this aspect. Some of the most recurrent
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and important assumptions which play an important
role in applicability and complexity of the problems
are: transportation type, number and capacity of
transporters, transportation times, and dependency of
transportation capacity and transportation times in
respect of jobs.

Table 1 presents a brief comparison between our
work and the previous studies by means of these
criteria. Throughout the literature review, emphasis
has been put upon the works of Maggu and Das [12] and
Lee and Chen [11] as they discuss the important issues
of integrated ow shop scheduling with transportation
constraints. Maggu and Das were one of the �rst
researchers who add transportation constraints into the
machine scheduling problem. Two-machine ow shop
problem is considered in their work with in�nite bu�er
space and unlimited number of transporters. In their
study, transportation times are job-dependent. The
study is extended later by the same authors by adding
the constraint of consecutive execution of some jobs to
the problem [13]. Lee and Chen [11] present a com-
prehensive review on the two types of transportation.
It is proved in this article that TF2jcapacityjCmax is
strongly NP-hard when the problem consists of one
transporter Type I with the capacity more than two,
and also when there is one transporter Type II with
the capacity of one or more than three. There are
some studies (e.g. [14-17]) which consider �rst type
of transportation integrated with scheduling problem.
In the other line of investigations with transportation
consideration, the studies focus on the delivery of
�nished jobs to customers or a warehouse with a limited
number of vehicles. These researches, in other words,
investigate transportation Type II (see, e.g. [2,3,18-
23]).

Most of the researchers have devoted a part of
their works on proving the complexity of their prob-
lems (see [13,24-26]). Hence, application of heuristic
and meta-heuristic algorithms together with the exact
methods is of great importance. Although, some of
these studies have just proven the complexity of their
problems, they have just proposed exact algorithms
which are incapable of dealing with the large size
problems.

It is also worthwhile to remember that all of these
studies considered just one type of transportation and
none dealt with both types of transportations. In
this paper, we study two-machine ow shop scheduling
problem which involves two types of transportation
and consider makespan as our objective function.
There are two transporters with di�erent capacities;
one for conveying semi-�nished jobs between machines
(Type I), and the other for delivering �nished-jobs
to the customers or a warehouse (Type II). Math-
ematical formulation of the problem is proposed as
a Mixed Integer Linear Programming (MILP) model.

Two heuristic algorithms are also developed for mid
and large size problems. To evaluate the e�ective-
ness of the heuristics, some lower bounds are also
set.

The further sections of the paper are organized as
follows. In the next section the considered problem is
described formally. Section 3 describes MILP model.
Section 4 is devoted to proposed heuristic algorithms
and presented lower-bounds. Computational experi-
ments are carried out in Section 5, and �nally, the
paper is concluded in Section 6.

2. De�nition of the problem

Classical two-machine permutation ow shop
scheduling problem is considered to minimize
Cmax(TF2j jCmax), while transportation is needed to
convey semi-�nished jobs between machines and also
to deliver �nished-jobs to the customers. According
to the permutation ow shop problem, there is a
set of non-preemptive \n" jobs, j = f1 � � �ng, to be
processed on two single machines, each job has one
operation on each machine; and the sequence of the
jobs is the same on both machines. There are two
transporters to carry the jobs. One is responsible to
convey semi-�nished jobs from �rst machine to the
second machine, and the other is to deliver �nished
jobs to the customer (warehouse). Transportation
times and transporters capacities are assumed to be
job-independent. Forwarding and returning times are
equal for transporters. Both transporters are also
available in the beginning on their aligned stations.
The following notations are used for transporter \i":

(i) \capacityi": The capacity of transporters (it
means that the transporter \i" can transport at
most \capacityi" jobs at a time).

(ii) \Ti": The round trip times of transporters.

Let \Cji" denotes the completion time of job \j" on the
\ith" machine. The makespan is denoted by \Cmax"
and is de�ned as Cmax = MaxCJ2 (j = 1 � � �n). The
objective function of the paper is to minimize the
makespan.

It is clear that any solution should answer three
questions: The �rst is the sequence of jobs, and the two
others are the combination of jobs in transportation
batches for each transporter.

3. Problem formulation

In this section, the problem is formulated as a MILP
model. The parameters and the variables used in the
model are as follows:
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Pji: The processing time of job \j" on

machine \i";

(
i = 1; 2
j = 1; 2; � � � ; n

M : A su�ciently large positive constant
Xjik = 1: If job \j", which is performed on

machine \i", is assigned to the \kth"
transportation batch of the
transporter \i", otherwise=0

Sjm = 1: If the job \j" is \mth" job in the
job sequence, otherwise=0

STki: The start time of transporting the
\kth" transportation batch of
transporter \i"

Startji: The start time of processing job
\j" on machine \i"

Decision variables of the mathematical model are Xjik
and Sjm which determine successively the combination
of jobs in transportation batches, and the sequence of
the jobs.

Objective function: Minimize Cmax

subjected to:

nX
m=1

sjm = 1
n
j = 1; � � � ; n (1)

nX
j=1

sjm = 1;
n
m = 1; � � � ; n (2)

Sj0 = 0
n
j = 1; � � � ; n (3)

Startj1 �
 
m�1X
q=0

nX
z=1

Szq � Pz1
!

� (1� Sjm) �M
(
j = 1; � � � ; n
m = 1; � � � ; n (4)

STi1 � Startji + Pji

� (1� xji1) �M
(
j = 1; � � � ; n
i = 1; 2

(5)

STik � STik�1 + Ti

(
k = 2; � � � ; n
i = 1; 2

(6)

STik � Startji + Pji

� (1� xjik) �M
8><>:i = 1; 2
k = 2; � � � ; n
j = 1; � � � ; n

(7)

Cji � STik + Ti=2

� (1� xjik) �M
8><>:i = 1; 2
k = 1; � � � ; n
j = 1; � � � ; n

(8)

Startj2 � Startz2 + Pz2 � (1� Szm�1) �M

� (1� Sjm) �M
8><>:m = 1; � � � ; n
z = 1; � � � ; n
j = 1; � � � ; n

(9)

Startj2 � Cj1
n
j = 1; � � � ; n (10)

Cmax � Cj2
n
j = 1; � � � ; n (11)

nX
k=1

xjik = 1

(
j = 1; � � � ; n
i = 1; 2

(12)

nX
j=1

xjik � Capacityi

(
k = 1; � � � ; n
i = 1; 2

(13)

M �
0@ nX
j=1

xjik

1A� nX
j=1

xjik+1

(
i=1; 2
k=1; � � � ; n�1 (14)

nX
j=1

xji1 � 1
n
i = 1; 2 (15)

xjik; sjm = 0; 1 (16)

STjk; Cji; Startj � 0: (17)

First, second and third constraints are to determine
the sequence of jobs. The forth constraint considers
the starting time of job \j" at the �rst machine as the
total processing time which is needed for completion of
previous jobs on this machine. Fifth, sixth and seventh
constraints are to compute the starting time of trans-
portation for the �rst and second transporter. Con-
straint (8) demonstrates the completion transportation
time of jobs on the transporters. Constraints (9) and
(10) are to determine the starting time of jobs on the
second machine. Constraint (11) is to give the total
completion time. The constraint (12) is to guarantee
that each job should be carried by transporters between
machines and from second machine to the customer.
Capacity constraint of each transporter is satis�ed by
Inequality (13). Constraints (14) and (15) ensure that
each transportation batch contains at least one job.
Finally, last two constraints de�ne the range of the
variables.
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4. Proposed heuristic algorithms

Although the MILP model provides an optimal so-
lution, it is incapable of dealing with medium and
large size problem e�ciently, because the variables
and constraints increase drastically when the number
of jobs increases. Furthermore, as it was mentioned
in Section 1, the two-machine ow shop scheduling
problem with the �rst type of the transportation and
�xed capacity is de�ned as a NP-hard problem. On
the other hand, the problem with the second type of
transportation has been also proven to be strongly NP-
hard. Due to this complexity and ine�ciency of the
exact algorithms to solve the problem in an appropriate
run time, developing heuristic algorithms seems to be
inevitable.

4.1. Heuristic H1
Heuristic H1 is based on two well-known algorithms,
\Johnson" [27] and \First Only Empty (FOE)" [28].
Johnson's rules sequence the jobs, and FOE algorithm
determines the combination of each transportation
batch. FOE algorithm, which is usually used for
batching machines, calculates dn=capacitye as total
number of the batches. FOE also permits only the
�rst batch to be not full and forces the other batches
to contain all jobs they can. The steps of the proposed
heuristic algorithm are as follows:

Step 1: Determine the sequence of jobs through the
Johnson's algorithm.

Step 2: Determine the combination of transportation
batches through the FOE rule by following
instruction:

i. First transportation batch contains �rst
[n� (dn=capacitye � 1) � capacity] jobs.

ii. Next (dn=capacitye � 1) transportation
batches are all full of jobs up to the
transporter's capacity.

A numerical example, described in Table 2, is used
to illustrate the heuristic H1. The parameters of the
problem are set as follows:

Table 2. Processing time of the jobs.

Number of jobs Pj1 Pj2

1 8 9

2 6 7

3 1 4

4 9 3

5 7 5

T1 = 10; T2 = 8;

Capacity1 = 3; Capacity2 = 2:

Johnson's algorithm determines 3-2-1-5-4 as sequence
of the jobs. Through FOE algorithm, the �rst
transporter carries jobs by two transportation batches
(dn=Capacity1e = 2). First batch contains �rst two
jobs, and the other contains the rest. The second
transporter conveys jobs by three batches. These
batches contain one, two and two jobs, respectively.
Figure 1 shows the �nal solution obtained by heuristic
H1 schematically. Total waiting time and makespan of
this solution are, respectively, 58 and 57.

Lemma. If Cheuristic is the makespan of the solution
implementing the heuristic H1, and C� is the optimum
solution of the problem, the maximum error of heuristic
H1 is as:

Cheuristic �
�

1 +
2n� 2C1

2n� C1
+

2n� 2C2

2n� C2

�
� C�: (18)

Proof. If CJohnson is the makespan, using Johnson's
algorithm for the problem, while the transportations
are neglected, then Statement (20) can be simply
obtained:

Cheuristic � CJohnson + (dn=C1e � 1) � T1

+ (dn=C2e � 1) � T2 + T1=2 + T2=2: (19)

On the other hand, C� should be greater than lower
bound of the problem (see Section 4.3):

C� � CJohnson +
T1

2
+
T2

2
: (20)

From Statements (20) and (21) we can deduce State-
ment (22).

Cheuristic

C�
� 1 +

(dn=C1e � 1) � T1

C�

+
(dn=C2e � 1) � T2

C�
: (21)

Figure 1. Solution using H1.
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There are also two other lower bounds for the problem:

C� � (dn=C1e � 1=2) � T1 + T2=2; (22)

C� � (dn=C2e � 1=2) � T2 + T1=2: (23)

By modifying Statements (23) and (24), and applying
them in Statement (22), Statement (25) can be ob-
tained.

Cheuristic

C�
� 1 +

(dn=C1e � 1) � T1

(dn=C1e � 1) � T1 + T1+T2
2

+
(dn=C2e � 1) � T2

(dn=C2e � 1) � T2 + T1+T2
2

: (24)

By subtracting T2
2 from the second term's denominator

of the right side of Statement (25), and T1
2 from

the third term's denominator, Inequality (26) can be
deduced.

Cheuristic

C�
� 1 +

(dn=C1e � 1) � T1

(dn=C1e � 1) � T1 + T1
2

+
(dn=C2e � 1) � T2

(dn=C2e � 1) � T2 + T2
2
; (25)

Cheuristic

C�
� 1 +

(dn=C1e � 1)
(dn=C1e � 1=2)

+
(dn=C2e � 1)

(dn=C2e � 1=2)
; (26)

Cheuristic

C�
� 1 +

2n� 2C1

2n� C1
+

2n� 2C2

2n� C2
: (27)

4.2. Heuristic H2
Despite the pros of the heuristic H1 (developed based
on two optimal algorithms, simplicity, requiring short
CPU run time and quali�ed solutions in large size
problems), there are some de�ciencies in solving small
and mid-size problems (see Section 5.1). Heuristic H1
neglects transportation times during solving procedure,
and transporters have to wait too long for the comple-
tion of their batches; whereas these transporters can
start transporting before their capacities are full, in
order to save time. Based on this fact, second heuristic
method is suggested.

In heuristic H2, Johnson's algorithm determines
the sequence of jobs. Then a heuristic method de-
termines the combination of jobs in transportation
batches to reduce waiting time in transporters. Un-
like the heuristic H1 algorithm, transportation times
are considered during batching process in heuris-
tic H2.

Let \Lz = l", if job z be lth job in the sequence,
and BKi be a non-empty set of jobs, this set of jobs

must be transported by Kth batch on transporter \i".
Heuristic batching method forces transporters to wait
for the next job when: batch \K" is not full, and
the total waiting time of the transporter is not more
than \h � T1", where \h" is the \E�ciency Multiplier"
(this is named \h" because it a�ects the e�ciency of
second heuristic algorithm). Heuristic H2 limits total
waiting time of transporters regarding transportation
times and \h". During the algorithm, \h" will modify
between [0.1, 6] in each iteration to obtain the best
solution. For each \h" we repeat our batching method,
calculate its corresponding makespan, and report the
best solution as an output of H2.

By applying heuristic H2 to previous example,
the makespan reduces about 10 percent. We also have
huge reduction (34 unit times) in total waiting time of
the transporters by applying second heuristic method.
Figure 2 depicts the obtained solution by heuristic H2
schematically.

In small and mid-size problems, considering trans-
portation times in the batching procedure reduces wait-
ing time on both transporters intensely. Consequently
the obtained makespan by heuristic H2 is closer to
the optimum solution in comparison with heuristic H1
(it can be inferred from the computational results,
Sections 5.1 and 5.2).

4.3. Proposed lower bounds
An optimal solution is not obtainable for most of
problems in appropriate time. Hence to assess the
performance of the proposed heuristic algorithms, �ve
lower bounds are developed. These lower bounds are
so simple to be proven. The proposed lower bounds are
de�ned as follows:

� By assuming that each individual machine is the
bottleneck of the system and there are no idle time in
the transporters and the other machine, the �rst two
lower bounds can be de�ned as the sum of the total
processing time of jobs on the machine, plus the
minimum processing time on the other machine plus
one way transportation time for each transporter.

Figure 2. Solution of H2.
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lbi =
nX
j=1

Pji + min
j;k 6=iPjk + T1=2 + T2=2;

i = 1; 2: (28)

� The next two lower bounds are based on the assump-
tion that the bottleneck is one of the transporters
and it is de�ned as summation of: the minimum
required time for transporting all jobs by this
transporter, the minimum processing times on each
machines, and one way transportation of the other
transporter.

lbi+2 =dn=C1e � Ti � Ti=2 + min
j
Pj1

+ min
j
Pj2 + Tk 6=i=2 i = 1; 2: (29)

� The last lower bound is based on the Johnson's
algorithm which gives an optimum solution for the
classical two-machine ow shop problem. This lower
bound assumes that the transportation lags have no
e�ect on the makespan and is de�ned as below:

lb5 = CJohnson + T1=2 + T2=2: (30)

The lower bound that is used to evaluate the perfor-
mance of heuristic algorithms is given by the following
statement:
lb = max

k
lbk k = 1 � � � 5: (31)

5. Computational experiments

A number of computational experiments were carried
out to verify the e�ectiveness of lower bounds, MILP
model (presented in Section 3) and proposed heuristic
algorithms. Lingo 8 software is used to apply B&B
to obtain optimum solution of the MILP model with
small size problems. The heuristic algorithms were
also coded in MATLAB R2006b and executed on the
computer with 3MB RAM and 2.2GH CPU. For all
instances the processing times are randomly generated
by U � (0; 100). The following equation calculates the
error as a gap between heuristic solutions and lower
bound:
e = (Cheuristic � lb)=lb: (32)

5.1. Small size instances
To evaluate the e�ectiveness of MILP model and
proposed lower bounds, �ve di�erent set of parameters
are randomly generated, see Table 3. Lingo 8 were not
capable to solve problems with more than 5 jobs in
appropriate CPU run time, so we �xed problem sizes
to 5, and generated 6 instances for each set. Other
parameters are also randomly generated:

Capacityi � U(2; 8); Ti � U(20; 100):

CPU run time for heuristics was negligible.
Table 3 illustrates that lower bounds are close

to optimal solutions, which assure e�ectiveness of the
proposed lower bounds. Furthermore the superiority
of the Heuristic H2 in comparison with H1 is obviously
observable. H2 try to reduce waiting times for trans-
porters (and consequently for the whole system), so this
superiority over the other heuristic was predictable.

5.2. Large size instances
In this section, we consider di�erent sets of parameters,
and ran 100 times the algorithms for random problems
for each set of parameters. Problem size altered as: n =
10, 15, 20, 30, 50, 100, and 200; transportation times
as: T1 = T2 = 45, T1 = 2T2 = 90, and T2 = 2T1 = 90;
and �nally the capacities as: C1 = C2 = 3, C1 = 2C2 =
6, and C2 = 2C1 = 6. Table 4 shows the average
results briey. CPU run times were close to zero for
all problems so we did not report them in Table 4. For
almost all sets of parameters we see increase in the
e�ciency of both heuristics by increasing the size of
problems. On the other, performance of both heuristics
decreased by an increase in transportation times. We
can also see a decrease in e�ciency of heuristic H1
when capacity of the �rst transporter increased where
it shows little e�ect on the accuracy of heuristic H2.
The superiority of H2 on H1 is also clearly inferable
for almost all sets of parameters.

6. Conclusion

In this paper, a two-machine ow shop problem was
studied while there are ineligible transportation lags in
production procedure. Two types of transportations
were considered: one for transferring semi-�nished

Table 3. Small size instances.

Instance
number

T1 T2 C1 C2 Lower
bound

B&B H1 H2

Value CPU(s) Value e% Value e %

1 30 74 7 4 352.0 352.0 125.00 571.2 62.2 359.8 2.2
2 25 66 5 7 384.0 384.0 90.16 675.5 75.9 390.4 1.6
3 63 45 8 7 389.2 394.9 1236.6 614.9 55.7 413.9 4.8
4 84 39 6 2 386.8 401.6 1059.6 620.3 54.4 415.4 3.4
5 89 25 3 6 349.8 377.5 1579 463.7 22.8 388.5 2.9
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Table 4. Mid and large size instances with di�erent set of parameters.

0� 100 T1 = T2 = 45 T1 = 2 � T2 = 90 T2 = 2 � T1 = 90

C1; C2 n Ave E
H1 %

Ave E
H2 %

Ave E
H1 %

Ave E
H2 %

Ave E
H1 %

Ave E
H2 %

C1 = C2 = 3

10 7.80 2.24 10.08 5.78 11.04 6.36

15 3.75 1.65 4.52 3.38 6.88 4.82

20 2.11 1.65 3.54 2.08 4.71 4.60

30 1.82 1.46 3.06 1.46 4.53 4.22

50 1.51 1.27 3.54 1.21 4.26 4.15

100 1.73 0.89 4.79 1.11 5.26 5.13

200 1.61 1.03 4.94 1.18 5.44 5.38

C1 = 2 � C2 = 6

10 34.84 3.05 31.84 7.87 35.95 7.18

15 20.63 2.68 17.95 5.64 24.25 7.04

20 11.35 2.48 10.16 4.52 15.74 6.46

30 5.37 1.68 5.50 3.67 8.92 5.15

50 2.20 1.68 2.80 1.59 5.84 5.83

100 1.48 1.10 1.77 1.25 5.28 5.18

200 1.40 1.24 1.91 1.03 5.52 5.59

C2 = 2 � C1 = 6

10 7.54 2.29 9.36 4.94 8.68 3.19

15 3.55 1.74 3.72 2.47 3.67 1.86

20 1.53 1.00 2.80 1.48 1.80 1.31

30 1.06 0.57 2.24 0.84 1.49 1.01

50 0.72 0.25 3.24 0.37 1.32 0.94

100 1.05 0.18 4.89 0.30 1.60 0.94

200 1.04 0.20 5.32 0.22 1.58 0.97

jobs between machines (transportation Type I), and
the other for delivering �nished jobs to the customers
(transportation Type II). The capacity of transporters
and transportation times were assumed to be predeter-
mined and job-independent. There were neither bu�ers
nor priority constraints. The problem is formulated
as MILP model. B&B algorithm, using Lingo 8
software, is used to solve MILP model, but it shows
ine�ciency in solving the problems with more than 5
jobs in desired times. Due to this incapability, two
heuristic algorithms are developed to deal with large
size problems. Furthermore a set of lower bounds is
introduced in order to evaluate the e�ectiveness of
heuristics. The results of computational experiments
show that the two proposed heuristics are capable to
produce good solutions in comparison with the lower
bounds. Further extensions to this research can add
more machines to this problem. Considering multiple
customer locations be could also considered in order
to make the problem more practical. Transportation
times and capacity can be also assumed to be job-
dependent to increase the reality of the problem.
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