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Abstract. New challenges in the business environment, such as increased competition and
the in
uence of the Internet on main distribution channels has led to fundamental changes
in traditional revenue management models. Under these conditions, modeling individual
decisions more accurately is becoming a key factor. Nearly all research studies about choice-
based revenue management models use the well-known multinomial logit model. This
model has one important restriction, that is, the independence of irrelevant alternatives; a
property which states that the ratio of choice probabilities for two distinct alternatives is
independent of the attributes of any other alternatives. In this paper, a nested logit model is
proposed for removing this limitation and incorporating a correlation between alternatives
in each nest. The new subproblem of column generation is introduced and a combination
of heuristic and metaheuristic algorithms for solving this problem is provided. Interesting
outcomes are obtained during analysis of the results of experimental computations, such
as o�er sets and iteration trends, with respect to the correlation measure inside each
nest. Simulation results show that, although changing the choice model might lead to
signi�cant improvement in revenue under some conditions, during all scenarios, observing
the correlation should not cause the choice model to change immediately.

c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Today's market environment can be explained with
several simple words; increased competition pressure,
the growing dominance of information technology such
as the Internet, and the existence of rich sources about
revealed preference data in a mutual environment. At
the beginning of the previous decade, it was con-
cluded that the assumption of independent demand
in traditional models has serious limitations. Revenue
management scientists preferred to use a new genera-
tion of choice based revenue management structures,
including simple and well known choice models, such
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as the multinomial logit model, for capturing customer
behavior and taking into account the e�ects of buy up,
buy down and recapture. The independent demand
model uses the assumption that the demand for each
fare class is independent from �rm availability controls.
Then, traditional carriers felt the e�ects of these factors
more seriously and tried to minimize their undesirable
e�ects on their revenue.

All above mentioned factors have resulted in
the need for better modeling of individual purchasing
decisions. Application of a multinomial logit model
to forecast ridership for a new transportation line in
1972, in San Francisco, provided a strong foundation
and motivation for researchers to transit from modeling
demands using aggregate data to modeling demands as
a collection of individual choices. Nowadays, with the
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growth in online shopping and booking, there is a new
rich source of data to model customer preferences.

Cooper et al. (2006) show that if an airline wants
to decide about the number of seats that should be
reserved for sale at a high-fare, based on the sales
history, while neglecting to account for the fact that
the availability of low-fare tickets will reduce high-fare
sales, then, high-fare sales will decrease, resulting in
a lower future estimation of high-fare demand. This
process is called the spiral-down e�ect and is observed
only if historical data is used for demand forecasting.
There are di�erent reasons, such as those mentioned
above, for using discrete choice models in order to
forecast future demand.

The most popular choice model is the multino-
mial logit model (MNL). Despite its simplicity and
e�ciency, this model has some restrictions. The
most important limitation of the MNL model is the
assumption of the independent distribution of utility
function errors across alternatives, which leads to
the Independence of the Irrelevant Alternatives (IIA)
e�ect. This property states that the ratio of choice
probabilities is independent of the attributes of any
other alternatives.

The property of IIA, which may not be a realistic
assumption, means that a change or improvement in
the utility of one alternative will draw shares propor-
tionally from all other alternatives. For instance, in
parallel 
ights, it is expected that a 
ight departing in
the afternoon competes further with other afternoon
departing 
ights.

Sch�on (2010) states that, recently, much attention
has been given to (a) modeling how consumers choose
among a set of multiple products, and (b) accommo-
dating the realistic discrete choice model of consumer
behavior in normative RM, while keeping problem
complexity at a reasonable level, simultaneously. The
nested logit model incorporates more realistic substi-
tution patterns by relaxing the assumption of indepen-
dent distribution of errors and grouping alternatives to
the di�erent nests.

The organization of this paper is as follows. In
Section 2, a brief literature review of the related works
is described. In Section 3, the Choice-based Deter-
ministic Linear Programming (CDLP) approach and
nested logit models are explained. At the beginning
of section four, the column generation algorithm is
described, and, subsequently, a new subproblem of this
algorithm, based on the nested logit model, is proposed.

In the rest of this section, a new approach, com-
posed of heuristic and genetic algorithms, is introduced
for solving the problem. In the next section, a complete
test problem is modeled and solved by with the aid of
the proposed method, and the results are illustrated
using a simulation of customer behavior with test
problem data. The last section includes the discussion

and conclusion, and �nally, a number of interesting
topics are presented for future research.

2. Literature review

Most traditional revenue management models are
based on an independent demand assumption. A
complete survey of traditional revenue management
models can be found in Talluri and Van Ryzin [1].
Belobaba and Hopperstad [2] show the importance of
considering customer choice decision behavior. They
studied passenger purchase behavior using simulation
for analyzing the sensitivity of airline time, date, path
and price to passenger preferences. Anderson [3] and
Algers and Baser [4] report the results of a project
in the Scandinavian Airlines System (SAS) regarding
estimation of recapture and buy up using stated and
revealed preference data.

Zhang and Cooper [5] used the Markovian deci-
sion process for simultaneous seat-inventory control of
a set of parallel 
ights from common origins to common
destinations, considering customer choice among the

ights. Their model assumes that the customer chooses
within the same fare class among di�erent 
ights but
not between fare classes. They proposed heuristics and
simulation-based techniques for solving this problem,
and also applied a general choice model for considering
customer behavior.

Van Ryzin and Vulcano [6] consider the network
capacity control problem, where customers choose
among various products o�ered by a �rm. They model
customer choice, assuming that each of them has an
ordered list of preferences. They assume that the �rm
controls the availability of products using a virtual
nesting control strategy.

Chen and Homem-de-Mello [7] consider network
airline revenue management, when the customer choice
model is based on the concept of preference orders.
They proposed a new model using mathematical pro-
gramming techniques to determine seat allocation.

Talluri and Van Ryzin [8] provide a complete
characterization of an optimal policy under a general
discrete choice model of customer behavior in a single
leg revenue management model. They illustrate that
an optimal policy is made up of a selected set of
e�cient o�er sets, where these sets are a sequence of no
dominated sets providing the highest positive exchange
between expected capacity assumption and expected
revenue.

Gallego et al. [9] provide a customer choice-based
LP model for network revenue management. They sup-
pose that the �rm has the ability to provide customers
alternative products to serve the same market demands
with a 
exible product o�ering. One limitation of their
market demand model is that it does not allow any kind
of segmentation.
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Liu and Van Ryzin [10] use the analysis of the
model provided by Gallego et al. [9] to extend the
concept of e�cient sets. They prove that when capacity
and demand are scaled up proportionally, revenue
obtained under choice-based deterministic linear pro-
gramming converges to the optimal revenue under the
exact formulation. They present a market segmenta-
tion model to describe choice behavior. The segments
are de�ned by disjoint consideration sets of products,
where a consideration set is a subset of the products
provided by the �rm, which customers consider options.

Bront et al. [11] extended the work of Liu and
Van Ryzin [10] by allowing the customers to consider
products which belong to overlapping segments. In
this case, they proved that the column generation
subproblem is Np-hard and proposed a greedy heuristic
to solve it.

Kunnukal and Topaloglu [12] proposed a new
deterministic linear program for the network revenue
management problem with customer choice behavior.
They generated bid prices that depended on the time
left until the time of departure. The main drawback of
their model is that the number of constraints in their
model is signi�cantly larger than linear programming
formulation used by Liu and Van Ryzin [10].

Vulcano et al. [13] developed a maximum likeli-
hood estimation algorithm in discrete choice models
for airline revenue management. Their simulation
results show 1%-5% average revenue improvements
using choice-based revenue management.

For analyzing the e�ects of applying mis-speci�ed
models, Amaruchkul and Sae-Lim [14] studied the
static overbooking models. They assume that the
decision model embedded in a commercial revenue
management system is mis-speci�ed. They explore the
consequences of the modeling error and �nd that the
performance of the model with mis-speci�cation de-
creases as show-up probability decreases. Meissner and
Strauss [15] propose a new heuristic for specifying bid
prices in a choice-based network revenue management
problem.

Derigs and Friederichs [16] propose a decision
support system for maximizing the revenue generated
in the area of waste and row material management.
They use the dual variables of the linear program for
setting bid prices. Schutze [17] applies price-based
revenue management for hotel room pricing. Di�erent
pricing strategy clusters are proposed according to the
hotel category.

Ben-Akiva and Lerman [18] analyzed di�erent
discrete choice models. Train [19] provided the most
advanced elements of the estimation and usage of
discrete choice models that require simulation. Garrow
[20] provided a comprehensive overview of discrete
choice models and application of these models to the
airline industry.

Garrow et al. [9] completed the study of air-
line traveler no-show and standby behavior, based on
passenger and directional outbound/inbound itinerary
data. They focus on passenger behavior based on
the estimation of a multinomial logit model and de-
scribe the bene�ts of using passenger data to improve
forecasting accuracy and to support a broad range of
managerial decisions.

3. Model

Consider a network with m resources (legs) providing
n products. N = f1; 2; � � � ; ng denotes the set
of products and rj is the associated revenue (fare)
for product j 2 N . We study capacity usage by
de�ning vector c = (c1; c2; � � � ; cm), which denotes the
initial capacities of resources (legs). Resource usage,
according to the corresponding product, is presented
by de�ning an incidence matrix, A = [aij ] 2 Bm�n.
The matrix entries are de�ned by aij = 1, if resource
j is used by product j and aij = 0 otherwise. Aj ,
the jth column of A, denotes the incidence vector for
product j, and notation i 2 Aj indicates that product
j is using resource i. Note that one product can use
more than one resource. Time has discrete periods and
runs forward until a �nite number, T ; t = 1; 2; � � � ; T ,
and it is assumed that we have, at most, one arrival for
each period of time, and that each customer can buy
only a single product.

We divide customers into L di�erent segments.
A consideration set, Cl � N , l = 1; 2; � � � ; L is
used to describe each segment. Gallego et al. [9]
consider a unique segment C1 = N , Liu and Van
Ryzin [10] represent non overlapping segments where
Cl \ Cl0 = ;, for all l 6= l0, and �nally, Bront et al. [11]
consider overlapping segments, where Cl \ Cl0 6= ;,
for certain l 6= l0. We are going to analyze a model
that has di�erent nests in each segment. Alternatives
that belong to the same nest, share common errors,
whereas alternatives that are in di�erent nests have
independent errors. In this paper, we hypothesized
the alternatives which are grouped share common,
unobserved attributes. These unobserved attributes
cannot be incorporated into the observed portion of
the utility.

If we have one arrival, pl represents the proba-
bility that an arriving customer belongs to segment l,
with

PL
l=1 pl = 1. We consider a Poisson process of

arriving streams of customers from segment l, with rate

�l = �pl and total arriving rate of � =
LP
l=1

�l.

In each period of time t, the �rm should decide
about its o�er set (i.e. a subset S � N of products
that the �rm makes available for customers). If set S is
o�ered, the deterministic quantity Pj(S) indicates the
probability of choosing product j 2 S and Pj(S) = 0,
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otherwise. Using the probability law, we have:X
j2S

Pj(S) + P0(S) = 1;

where P0(S) indicates the no-purchase probability.

3.1. Customer choice model
To model customer choice behavior, we can assume
that each customer wants to maximize his utility,
while his utility for alternatives is a random variable.
The �rm is o�ering a set of alternatives for customer
n, where he/she has a consideration set, Cn with
utility Uin for each alternative, i 2 Cn. This utility
can be decomposed into two deterministic (also called
expected utility); denoted �in, and a mean-zero random
component "in without loss of generality. Hence, we
have a utility function as follows:

Uin = �in + "in: (1)

In many cases, the representative component, �in, is
modeled as a linear combination of several attributes:

�in = �Txin; (2)

where � is an unknown vector of weights that should be
computed from data and xin is the vector of observable
attributes for alternative i available to customer n
at the time of purchase, such as time and date of
departure, price, departure airport, airline brand, and
so on.

Train [19] states that one of the best and most
commonly used models for studying how customers
make their choice is the multinomial logit (MNL)
model. In this model it is assumed that the "in in
the utility functions are independent and identically-
distributed random variables with a Gumbel distri-
bution. The probability whereby customer n chooses
alternative i 2 Cn in a MNL model is given by:

Pn(i) =
e�

T xinP
j2Cn

e�T xjn + 1
: (3)

Based on Garrow (2010), the Nested Logit (NL) model,
which appeared just a few years after the MNL model,
incorporates more realistic substitution patterns by
relaxing the assumption that errors are independent.
Within the airline industry, there are many applica-
tions in which the NL model can o�er forecasting
bene�ts over the MNL model. For each nest, the
logsum parameter, �m, is a measure of the degree of
correlation and substitution among alternatives in nest
m. A higher value of �m implies less, and lower values
imply more correlation among alternatives in the nest.
In fact, higher correlation leads to greater competition
e�ects among alternatives in the nest.

In the nested logit model, the probability that

individual n selects alternative i is given by:

Pj(S) =

eVj=�m
" P
i2Am

eVi=�m
#�m�1

MP
l=1

" P
i2Al

eVi=�l
#�l ; 0 < �m � 1:

(4)

A more intuitive expression for the NL choice probabil-
ity can be derived as the product of a conditional and
marginal probability.

Pj = Pjjm � Pm =
eVj=�mP

i2Am
eVi=�m

� eVm+�m�m

MP
l=1

eVl+�l�l
;

0 < �m � 1; (5)

�m = ln

" X
i2Am

eVi=�m
#
; 0 < �m � 1: (6)

The �rst component of the product is the probability
of selecting alternative j among all i alternatives in
nest m, conditional to the choice of m, and the second
product is the probability of selecting nest m among all
nests. �m is often called the \log-sum term" because
it is the log of a sum.

3.2. Dynamic and linear programming models
In the general case, as a �rm cannot recognize the
corresponding segment of an arrival in advance, we
consider Pj(S); the probability whereby the �rm sells
product j to an arriving customer as:

Pj(S) =
LX
l=1

plPlj(S): (7)

In this equation, Plj(S) represents the probability of
choosing product j by a customer who belongs to
segment l. The expected revenue, by o�ering set S � N
for an arriving customer is given by:

R(S) =
X
j2S

rjPj(S): (8)

Given that we o�er set S, let P (S) =
(P1(S); � � � ; Pn(S))T be the vector of purchase
probabilities and A the incidence matrix of resources
used by products. Then the vector of capacity
consumption probabilities Q(S) is given by:

Q(S) = A:P (S); (9)

where Q(S) = (Q1(S); � � � ; Qm(S))T , and Qi(S) indi-
cates the probability of using a unit of capacity on leg
i, i = 1; 2; � � � ;m: Based on Liu and Van Ryzin [10]
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this problem can be formulated as a dynamic program
problem:

Vt(x) = max
S�N

8<:X
j2S

�Pj(S)(rj + Vt+1(x�Aj))

+ (�P0(S) + 1� �)Vt+1(x)g

= max
S�N

8<:X
j2S

�Pj(S)(rj � (Vt+1(x)

�Vt+1(x�Aj)))g+ Vt+1(x); (10)

and the boundary conditions are Vt(0) = 0; t =
1; 2; � � � ; T and VT+1(x) = 0; 8x � 0. Since the state
space is multi dimensional, this problem is intractable
and is approximated with a linear programming.

The �rm's decision consists of deciding which set
of products should be o�ered at any period of time
t, while it cannot distinguish each customer related
segment in advance. However, as choice probabilities
are time-homogeneous and demand is deterministic, it
only matters how many times each set S is o�ered;
knowing during exactly which period is not important.
The variable t(S) represents the number of periods
during which set S is going to be o�ered. Another
assumption is that we let variable t(S) be continuous
as well (i.e. the �rm could o�er a set S for a whole or
a fraction of a period of time). The model's objective
is to maximize �rm revenue by deciding the number of
periods of time for each set of products. Formulation
of the CDLP problem will be:

V CDLP = max
X

�R(S)t(S):

S.t.X
�Q(S)t(S) � C;X
t(S) � T;

t(S) � 0; 8S � N: (11)

Liu and Van Ryzin [10] prove that since demand and
capacity are scaled up proportionately, the revenue
obtained under the CDLP model is asymptotically
optimal for the original stochastic network choice
model.

4. Using column generation to solve the CDLP
model

In the model (11), there are an exponential number
of primal variables. This means that a problem with

n products, has 2n � 1 possible non-empty subsets of
products of set N . In spite of an enormous number of
variables for practical real world problems which makes
it impossible to enumerate all o�er sets, there are at
most m+ 1 constraints. Gallego et al. [9] represent the
idea of using a column generation technique to solve
real world practical problems.

The �rst step in applying a column generation al-
gorithm starts by solving reduced linear programming;
that is, just considering a limited number of columns
(subsets) indicated by N = fS1; S2; � � � ; Skg. This
takes us to the reduced CDLP model as follows:

V CDLP�R = max
X

�R(S)t(S):

S.t.X
�Q(S)t(S) � C;X
t(S) � T;

t(S) � 0; 8S � N: (12)

Let � 2 Rm be the dual prices for the �rst m-
dimensional capacity constraints and � 2 R be the dual
price for the one-dimensional time constraint. Now
for the next step in column generation, we construct
a column generation subproblem to �nd the next
column with the most positive reduced cost to add
to our set collection, N , which is not included yet.
This column is obtained by solving the following sub
problem:

max
S�N

�
�R(S)� ��TQ(S)� �	

= max
S�N

�
�R(S)� ��TQ(S)

	� �: (13)

Afterwards, to explicit Eq. (13), a binary vector,
y 2 Bn, is de�ned as follows. Suppose a set, S, is
o�ered now, then we denote:

yj =

(
1; if j 2 S
0; otherwise

(14)

A nesting structure of products can be determined in
two general di�erent ways, according to a no-purchase
alternative. The �rst approach is to divide products
in such a way whereby the no-purchase alternative
is placed in the one nest, and all �rms' products are
allocated in another nest. In this condition, problem
(13) can be expressed as follows:

max
y2f0;1gn

(
LX
l=1

�l



2166 F. Etebari et al./Scientia Iranica, Transactions E: Industrial Engineering 20 (2013) 2161{2176

max
y2f0;1gn

8><>: LP
l=1

�l

P
j2Cl (rj�ATj �)eVlj=�myj

" P
i2Bm

�
eVli=�m+�1=�m

im eVl0=�m
�#�m�1

MP
k=1

" P
i2Bk

�
eVli=�kyi+�

1=�k
ik eVl0=�k

�#�k
9>=>;� �; 0 < � � 1, (16)

Box I.

P
j2Cl(rj�ATj �)eVlj=�myj

" P
i2Bm

eVli=�m
#�m�1

MP
k=1

" P
i2Bk

eVli=�kyi

#�k )

� �; 0 < � � 1: (15)

Another approach is to assume that the no-purchase
alternative exists in all nests with the same
share. With this de�nition, the column generation
subproblem will be calculated in Eq. (16) as shown in
Box I. Or, equivalently:

max
y2f0;1gn

(
nX
j=1

(rj �ATj �)yj
LX
l=1

�
�l

" P
i2Bm

�
eVli=�m + �1=�m

im eVl0=�m
�#�m�1

MP
k=1

" P
i2Bk

�
eVli=�kyi + �1=�k

ik eVl0=�k
�#�k )

� �; 0 < � � 1; (17)

where m is the nest that product j belongs to, and
Vl0 > 0; 8l assumes that the denominator is greater
than zero all the time. We assume that the no-purchase
alternative belongs to all nests in each segment. We
assign the allocation parameter, �jk which re
ects the
extent to which alternative j is a member of nest k.
This parameter must be nonnegative: �jk � 0; 8j; k.
Interpretation is facilitated by having the allocation
parameters sum to one over nests for any alternative:P
k
�jk = 1; 8j. If Problem (15) or (17) have a

positive optimal value, then the optimal solution for
the problem will be the next entering column to the
reduced primal problem. Then we update the reduced
CDLP (12) with the new column, and iterations are
continued. Finally, if there is no solution for Problem
(15) or (17) with a positive value, then the current
solution for the reduced CDLP problem (12) is opti-
mal.

4.1. Complexity of the column generation
subproblem

0-1 fractional programming problems (15) and (17)
can be considered a special case of the sum of ratios

problem with more �rmly connected variables. Bront
et al. [11] proved that the minimum vertex problem,
which is known to be an Np-hard, can be reduced
to the 0-1 fractional programming problem with the
multinomial logit model. Then, this problem is an Np-
hard problem. The multinomial logit model is a special
case of the nested logit model in which if �m = 1 for all
nests, the nested logit model will be equivalent to the
MNL model. Then, Problems (15) and (17) are also
Np-hard.

4.2. Solution approaches for the column
generation subproblem

In this section, we study di�erent solution approaches
for the column generation subproblem starting by a
heuristic method, followed with a metaheuristic.

4.2.1. Greedy heuristic
The fact that the column generation subproblem is
an Np-hard optimization problem, guides us to use
an alternative approach, which makes it possible to
implement this algorithm in practical problems. Bront
et al. [11] propose a greedy heuristic to their own prob-
lem with complexity O(n2L), based on the heuristic
proposed by Prokopyev et al. [21] to overcome the
complexity of the exact algorithm. We are going to
propose a new heuristic inspired by this one.

Comparing local and global optimum results
shows that, in most cases where a greedy heuristic stops
at local optimum, same products exist in the global
optimum with some extras. This fact leads us to insert
a Boltzmann operator, after stopping the algorithm.
This idea stems from the Simulated Annealing (SA)
approach. This heuristic starts with an empty set, S,
taking into account the maximum marginal contribu-
tion to the current solution, by adding progressively
new products to the current set S. If the algorithm
cannot �nd any column with a positive reduced cost
and the new product does not improve the value of
the new set, then the Boltzmann operator will be used
and the new product will be inserted with a certain
probability.

For applying this operator, we should set the
number, say N , of iterations and the initial temper-
ature, T0, and the �nal temperature, T1(T0 > T1). We
decrease temperature T after every iteration, usually
by proportion � (cooling rate). So that, after N
iterations, the temperature becomes tN = �NT0.

The algorithm is presented in the following steps
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j�1 = arg max
j2S01

8><>: LP
l=1

P
j2Cl\(S[fjg)

(rj�ATj �)eVlj=�m
" P
i2Bm\(S[j)

�
eVli=�m+�1=�m

im eVl0=�m
�#�m�1

MP
k=1

" P
i2Bk\(S[j)

�
eVli=�kyi+�

1=�k
ik eVl0=�k

�#�k
9>=>; :

Box II.

j� = arg max
j2S01

8><>: LP
l=1

�l

P
j2Cl\(S[fjg)

(rj�ATj �)eVlj=�m
" P
i2Bm\(S[j)

�
eVli=�m+�1=�m

im eVl0=�m
�#�m�1

MP
k=1

" P
i2Bk\(S[j)

�
eVli=�kyi+�

1=�k
ik eVl0=�k

�#�k
9>=>; :

Box III.

(this algorithm has been proposed for Relation (17) and
can be adapted with Relation (15) easily):

� Step 1: For all product j, such that rj � ATj � � 0,
set yj = 0;

� Step 2: Let S01 � N be the set of products j with
no assigned value for yj ;

� Step 3: Compute:

j�1 = arg max
j2S01

(
LX
l=1

(rj �ATj �)

eVlj=�m
" P
i2Bm

�
eVli=�m + �1=�m

im eVl0=�m
�#�m�1

MP
k=1

" P
i2Bk

�
eVli=�kyi + �1=�k

ik eVl0=�k
�#�k )

:

Set S1 := fj�1g, S01 := S01 � fj�1g;
� Step 4: Repeat:
� Compute the equation given in Box II.
� If Value(S1 [ fj�g) > Value(S1), then S1 := S1 [fj�g, and S01 := S1 � fj�g.
Until S1 is not modi�ed.

� Step 5: If
LX
l=1

(rj �ATj �)

eVlj=�m
" P
i2Bm

�
eVli=�m + �1=�m

im eVl0=�m
�#�m�1

MP
k=1

" P
i2Bk

�
eVli=�kyi + �1=�k

ik eVl0=�k
�#�k

� � < 0;

for all j 2 S1,
� Set yj = 1. For j =2 S1, set yj = 0 and stop;
� Else S2 := S1 & S02 := S01 & T0 & T1 & �N := 0

and go to the step 6.
� Step 6: Repeat:
� Compute the equation given in Box III.
� Update N := N + 1 tN = �N T0 and generate

random number r;
� If Value(S2 [ fj�g) < Value(S2), then compute

Pr ob = exp
�

Value(S2 [ fj�g)�Value(S2)
tN

�
:

� If Pr ob > r, then S2 := S2 [ fj�g, and S02 :=
S02 � fj�g;

� Else S1 := S2&S01 := S02 & go back to Step 4.
Until tN � T1 or Pr ob < r.

� Step 7: Stop.

Thus, a new set may be accepted temporarily with
some probability if it is inferior compared to the old set.
It is easy to see that, initially, when the temperature
is high, and the distance from the best set is low,
there is a higher probability of accepting an inferior
set. This exponential function is called a Boltzmann
function, thus, the operation is called a Boltzmann-
type operator.

4.2.2. Genetic algorithm
The genetic algorithm was developed by J. Holland
in the 1970s to understand the adaptive processes of
natural systems [22]. GAs are a very popular class
of population-based metaheuristic. These algorithms
start from an initial population of solutions. Then,
they iteratively generate a new population and replace
it with a current population. This replacement is based
on selection methods.
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One of the most suitable algorithms to tackle the
column generation subproblem is the genetic algorithm.
According to the nature of this problem, we can
transform it to a binary unrestricted problem, this type
of which, the GA algorithm successfully solves.

Firstly, the structure of chromosomes is a binary
vector with a dimension equal to the number of prod-
ucts. A gene of the chromosome, denoted as g(j),
where g(j) = 1, means product number j is available
in the set, and g(j) = 0, otherwise.

With this chromosome structure, the mutation
operator is a uniform function, whose rate is 0.05,
whose crossover function is scattered and whose frac-
tion rate is 0.8.

This approach �rst uses a greedy heuristic in order
to identify an entering column to solve the CDLP by
column generation. If this algorithm does not �nd an
entering column, then, we use the metaheuristic GA
algorithm. Experiments show that when there is still
a column to enter the reduced problem, in most cases,
the heuristic will �nd it.

The genetic algorithm for solving the column
generation subproblem was implemented using the
Matlab genetic toolbox.

5. Computational experiment

In this section, we consider a small network for a choice-
based network revenue management model with nested
segments in which customers choose their products
based on a nested logit model.

Taking into account the computational results,
we evaluate di�erent solution approaches, based on
the quality of the obtained solution and computational
feasibility. According to the fact that the time com-
plexity of the heuristic algorithm is O(n2L), we focus
on analyzing the e�ect of the correlation of nests in the
revenue. For the computational side, we analyze the
numbers of iterations and their trend according to the
correlation measure in nests.

Mont Carlo simulation has been used for simu-
lating customer choice behavior. For analyzing the
impact of the correlation between products in each
nest, simulation has been done with 1000 streams of
demand according to two distinct scenarios:

1. The assumption that customers choose products
based on a nested logit model and �rms use a
standard logit model for determining the required
o�er sets.

2. The assumption that customers choose products
based on a nested logit model and �rms apply
the nested logit model for determining the required
o�er sets.

For determining the o�er sets in each period, we solve
CDLP formulation and determine optimal o�er sets

and their related time periods to recommend them.
These sets are o�ered, according to the lexicographic
order of the indices of the LP variables. Since variable
t(S) could be fractional, we round them to the nearest
integer.

Di�erent network load factors are tested. To
better evaluate the algorithms, we consider di�erent
capacities by multiplying a load factor, �, to the
capacity of legs. Parameter � is to scale all the legs
capacity, where � = 1 corresponds to the original base
case. The performance in choice behavior is analyzed
by varying the no-purchase observed utility vector;
V0 = (V10; � � � ; VL0). We assume that in each segment,
the no-purchase alternative belongs to all nests, with
equal allocation parameters.

5.1. A small airline network
We evaluate di�erent heuristic methods and product
nesting e�ects with a small airline network. Consider a
network with 4 airports and 7 
ight legs. The capacities
of the legs are C = (100; 150; 150; 150; 150; 80; 80). The
�rm o�ers two high (H) and low (L) fares on each leg.
Considering local and connecting itineraries, customers
can choose between 22 available products de�ned by
itineraries and fare class combinations. The problem
consists of �nding a policy which leads us to prepare a
set of products at any period of time during the booking
horizon to o�er to the customers, while the revenue of
the �rm should be maximized. This airline network
is illustrated in Figure 1, and Tables 1 and 2 describe
available products in this network.

According to the customer prices and time sen-
sitivities, their origin and ultimate destination, 10
overlapping segments and 20 nests (two nests in each
segment) are de�ned in this example. This segmenta-
tion is described in Table 2.

The probability of customer arrival for the corre-
sponding segment is given in the last column. Columns
3, 4 & 5 specify the nests, their consideration set
and the observed utility for the indicated products,
respectively.

Indeed, if the capacity of legs exceeds correspond-
ing demand, the problem becomes much easier to solve
and the �rm could o�er almost all of its products.

Figure 1. Small network airline.
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Table 1. Product de�nition for small network problem.

Product Legs Class Fare

1 1 H 1000
2 2 H 400
3 3 H 400
4 4 H 300
5 5 H 300
6 6 H 500
7 7 H 500
8 f2,4g H 600
9 f3,5g H 600
10 f2,6g H 700
11 f3,7g H 700
12 1 L 500
13 2 L 200
14 3 L 200
15 4 L 150
16 5 L 150
17 6 L 250
18 7 L 250
19 f2,4g L 300
20 f3,5g L 300
21 f2,6g L 350
22 f3,7g L 350

To better evaluate algorithms, we consider di�erent
capacities by multiplying scale factor � to the capacity
of legs C. We use � = 0:6; 0:8; 1; 1:2 & 1.4 to solve
the problem and the booking horizon consists of 1000
periods of time.

Table 3 shows the results under the condition
whereby the �rm uses a nested logit model for deter-
mining o�er sets, with respect to di�erent correlations
among alternatives in each nest, di�erent load factors
and no-purchase observed utility. For a no-purchase
utility, we assume that a pair utility is repeated for all
segments.

We assume that, correlations in di�erent nests are
equal. This assumption is considered for better analysis
of results and can be relaxed easily.

Table 4 presents similar results when the �rm
uses a multinomial logit model for specifying o�er sets,
but customers choose products based on a nested logit
model.

Table 5 represents a 95% con�dence interval for
the improvement percent when the �rm switches to the
nested logit model.

The �rst column in the result table is the case in
which correlation is zero. We expect these models to
have similar results in this condition, due to the fact
that when correlation between each nest's alternatives
became zero, the nested logit model restructures to a
multinomial logit model. It can be observed that in
all rows of the �rst column of results, the revenue gaps

Table 2. Customer segmentation in small network problem.

Segment O-D Nest Con. Set Observed utility �1

1 A-B 1 f1, 8, 9g (2.3000, 2.0800, 2.0800) 0.08
2 f12, 19, 20g (1.7900, 1.3900, 1.3900)

2 A-B 1 f1, 8, 9g (0.0001, 0.6900, 0.6900) 0.2
2 f12, 19, 20g (2.0800, 2.3000, 2.3000)

3 A-H 1 f2, 3g (2.3000, 2.3000) 0.05
2 f13, 14g (1.6100, 1.6100)

4 A-H 1 f2, 3g (0.6900, 0.6900) 0.2
2 f13, 14g (2.3000, 2.3000)

5 H-B 1 f4, 5g (2.3000, 2.3000) 0.1
2 15, 16 (1.6100, 1.6100)

6 H-B 1 f4, 5g (0.6900.0.6900) 0.15
2 f15, 16g (2.3000, 2.0800)

7 H-C 1 f6, 7g (2.3000, 2.0800) 0.02
2 f17, 18g (1.6100, 1.6100)

8 H-C 1 f6, 7g (0.6900, 0.6900) 0.05
2 f17, 18g (2.3000.2.0800)

9 A-C 1 f10, 11g (2.3000.2.0800) 0.02
2 f21, 22g (1.6100, 1.6100)

10 A-C 1 f10, 11g (0.6900, 0.6900) 0.04
2 21, 22 (2.3000, 2.3000)
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Table 3. Revenue results for simulation when �rm o�ers products based on NL model.

Small network
Correlation 0 0.2 0.6 0.8

Scale
factor

No-purchase
utility

Mean %LF Mean %LF Mean %LF Mean %LF

0.6
(0.00, 1.61) 207904.8 93.02054 207993.4 93.11279 206575.9 95.77636 203310.9 94.91705
(1.61, 2.30) 193561.9 93.33527 193447.5 93.31357 185402.0 94.12519 175745.0 96.02054
(2.30, 2.99) 164349.0 93.20271 162821.0 92.94729 155709.2 92.68023 148123.3 92.14690

0.8
(0.00, 1.61) 260799.2 89.15698 259923.4 89.13023 250344.1 92.08547 239459.5 92.82849
(1.61, 2.30) 217825.6 92.25727 216111.5 92.13343 209488.6 92.24448 202329.2 93.25988
(2.30, 2.99) 184764.5 88.60959 183928.0 88.22238 178145.3 86.55349 170175.0 85.69797

1.0
(0.00, 1.61) 276191.2 85.07023 276597.0 84.91302 267626.0 90.21372 258039.2 92.32186
(1.61, 2.30) 230631.4 86.87116 230666.2 88.04605 228506.9 88.47000 224989.9 89.28651
(2.30, 2.99) 190601.9 81.74186 189724.1 81.59651 184409.6 81.00651 175569.4 77.94977

1.2
(0.00, 1.61) 283230.4 75.27558 282294.0 75.06376 277296.8 86.46298 274703.4 88.85891
(1.61, 2.30) 238092.5 74.27287 238249.8 74.27248 236356.0 74.16434 235514.1 76.76899
(2.30, 2.99) 192334.8 70.91589 191800.6 70.80543 185848.2 68.68120 176161.1 65.30640

1.4
(0.00, 1.61) 286072.0 64.62724 285101.8 64.51362 283276.2 74.12907 285054.6 77.78189
(1.61, 2.30) 238194.8 63.64817 238467.5 63.66196 238066.1 63.77824 236551.5 63.67342
(2.30, 2.99) 192401.1 60.85963 191793.6 60.63505 185363.6 58.84302 176349.1 56.04385

Table 4. Revenue results for simulation when �rm o�ers products based on MNL Model.

Small network
Correlation 0 0.2 0.6 0.8

Scale
factor

No-purchase
utility

Mean %LF Mean %LF Mean %LF Mean %LF

0.6
(0.00, 1.61) 207392.6 92.84031 206979.4 92.58178 199437.8 89.53411 183400.2 82.27647
(1.61, 2.30) 193320.5 93.27984 192556.2 92.99225 181320.9 87.55078 163316.4 78.17519
(2.30, 2.99) 164512.8 93.31395 163366.6 92.99225 152727.3 87.60736 138054.6 79.38527

0.8
(0.00, 1.61) 260940.4 89.18866 260435.0 89.01802 248975.4 85.23895 227128.2 77.54157
(1.61, 2.30) 216355.2 91.93227 216117.6 91.97471 209135.2 90.54942 198589.4 87.73721
(2.30, 2.99) 184212.4 88.38488 183796.6 88.26017 177343.0 85.76638 167133.7 81.12558

1.0
(0.00, 1.61) 276746.8 85.19023 275401.1 84.92884 266761.8 83.36209 249905.2 79.41605
(1.61, 2.30) 230924.5 86.97326 230723.8 86.94163 227675.1 86.73837 222632.8 86.26093
(2.30, 2.99) 190760.8 81.75744 189653.5 81.43767 184303.0 79.62488 174843.1 75.98628

1.2
(0.00, 1.61) 283298.0 75.28566 282916.0 75.48411 276197.0 74.19012 264457.0 72.04981
(1.61, 2.30) 237662.0 74.23760 237861.5 74.23876 236482.7 74.28973 232488.9 73.87132
(2.30, 2.99) 192197.0 70.87403 191727.4 70.76202 185574.7 68.69554 176506.8 65.45543

1.4
(0.00, 1.61) 285996.8 64.69917 285703.2 64.60498 281134.2 64.27193 270573.4 62.90166
(1.61, 2.30) 238691.1 63.67924 238940.1 63.68688 237893.7 63.67209 237212.1 63.79435
(2.30, 2.99) 192351.6 60.79352 192221.1 60.80615 185570.0 58.84302 176927.0 56.26578

include zero, and then there is no signi�cant di�erence
between them.

General results show that when there is scarce
capacity, the nested logit model outperforms the stan-
dard model and we have signi�cant improvement in

the revenue. However, it is obvious that if we have
ample capacity or low correlation in the nests, it is
recommended not to change the �rm's choice model.

Figure 2 represents the improvement obtained in
revenue in the case of switching to the nested logit
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Table 5. Con�dence interval for the improvement percent while �rm switches to the NL model.

Small network

Correlation 0 0.2 0.6 0.8
Scale
factor

No-purchase
utility

C.I. C.I. C.I. C.I.

0.6
(0.00, 1.61) (-0.017364, 0.675914) (0.362213, 0.600817) (3.388140, 3.935200) (10.64630, 11.31920)

(1.61, 2.30) (-0.161641, 0.597681) (0.177845, 0.937099) (1.964460, 2.866910) (7.305070, 8.382390)

(2.30, 2.99) (-0.394900, 0.400578) (-0.637082, 0.171305) (1.821490, 2.201360) (7.154340, 7.619630)

0.8
(0.00, 1.61) (-0.296974, 0.319497) (-0.448020, 0.194134) (0.302587, 1.013182) (5.164140, 6.014120)

(1.61, 2.30) (-0.296502, 0.920363) (-0.251740, 0.382133) (-0.081722, 0.582707) (1.608600, 2.371510)

(2.30, 2.99) (-0.135901, 0.790873) (-0.209928, 0.513364) (0.140065, 1.051149) (1.501270, 2.442290)

1.0
(0.00, 1.61) (-0.446172, 0.155106) (0.319984, 0.569470) (0.192665, 0.496207) (3.112320, 3.461020)

(1.61, 2.30) (-0.387057, 0.273689) (-0.272800, 0.372330) (0.104934, 0.744230) (0.817920, 1.424940)

(2.30, 2.99) (-0.393047, 0.482683) (-0.258402, 0.533039) (-0.244723, 0.595023) (0.084582, 1.039203)

1.2
(0.00, 1.61) (-0.283048, 0.380720) (-0.484887, 0.200243) (0.287579, 0.551087) (3.740850, 4.056720)

(1.61, 2.30) (-0.108983, 0.645529) (-0.120987, 0.623261) (-0.323690, 0.388319) (1.023920, 1.72100)

(2.30, 2.99) (-0.251667, 0.644250) (-0.266928, 0.577070) (-0.173553, 0.766554) (-0.526092, 0.408106)

1.4
(0.00, 1.61) (-0.232830, 0.427023) (-0.471582, 0.194415) (0.516539, 1.143274) (5.111180, 5.707190)

(1.61, 2.30) (-0.500950, 0.310346) (-0.492060, 0.302054) (-0.231975, 0.566751) (-0.569590, 0.216023)

(2.30, 2.99) (-0.295294, 0.636239) (-0.548584, 0.373440) (-0.438872, 0.488193) (-0.651141, 0.323096)

Figure 2. Improvement percent in revenue in the case of
switching to the NL model.

model, with respect to the di�erent scale factors and
load factors when correlation is equal to 0.8.

It is obvious that by decreasing initial capacity
and no-purchase utility, the nested logit model outper-
forms the standard logit model.

As expected, with increasing correlation between
nest products, in most cases, the gap between two mod-
els becomes greater, especially when there is capacity
shortage. Then, it is recommended to use a nested logit
model under these conditions.

Table 6 represents the number of iterations in
the column generation method, according to the dif-
ferent correlation measures inside the nests. It shows
that changing the correlation measure between each
nest's products will alter the buy up and no-purchase
probability. The algorithm tries to balance these
e�ects and this leads to an increasing or decreas-
ing number of iterations. It can be observed that,
generally, when there is ample capacity in the high
scale factor and high no-purchase utility, increasing
correlation will lead to simplifying o�er set structures.
In order to explain the causes of this e�ect, consider
a case in which the scale factor is 1, and the no-
purchase observed utility is (2.3,2.99). If we solve this
problem, the optimum solution will be degenerated
with three o�er sets. Results are summarized in
Table 7.

These results should be analyzed based on the
fact that products 19 and 20 are low fare products and
belong to the same nest. Figure 3 shows the trend
of di�erent sets o�ering time periods according to the
product correlations of the nest.

When the product correlation of the nests is zero,
removing products 19 and 20 will lead to an increase
in other product choice probabilities, with the same
rate. But, increasing correlation will result in the
choice probability of product 12 (low fare product)
to be increased more than other high fare products,
and this leads to reductions in buy up probability



2172 F. Etebari et al./Scientia Iranica, Transactions E: Industrial Engineering 20 (2013) 2161{2176

Table 6. Number of iterations in the column generation algorithm.

Correlation 0 0.2 0.6 0.8

Scale factor Iterations Iterations Iterations Iterations

0.6
(0.00, 1.61) 18 19 28 31
(1.61, 2.30) 25 33 28 37
(2.30, 2.99) 22 22 23 20

0.8
(0.00, 1.61) 17 17 22 26
(1.61, 2.30) 21 20 26 23
(2.30, 2.99) 13 12 13 13

1.0
(0.00, 1.61) 13 10 21 22
(1.61, 2.30) 14 16 13 18
(2.30, 2.99) 10 10 9 2

1.2
(0.00, 1.61) 8 7 11 15
(1.61, 2.30) 3 2 2 6
(2.30, 2.99) 2 2 2 2

1.4
(0.00, 1.61) 5 7 4 10
(1.61, 2.30) 2 2 2 2
(2.30, 2.99) 2 2 2 2

Table 7. O�er sets and their optimal o�ering period.

Correlation

0 0.2 0.6 0.8

O�er set 1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22) 572 604 947 1000

O�er set 2 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22) 224 208 39 0

O�er set 3 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22) 204 288 14 0

Figure 3. Optimal o�ering period of di�erent sets.

and increases departure with no-purchase probability.
Then, as seen in Figure 3, increasing correlation will
result in a decrease in the o�ering time period of sets
2 and 3. But, when we decrease capacity, buy up
will become more important than departure with no-
purchase, and then we will not observe the mentioned
behavior.

Computational results show that in 88% of cases,
a heuristic without the Boltzmann operator and genetic

Figure 4. Path of the best and mean of population in
di�erent generations.

algorithm manages to �nd the entering column and,
then, the heuristic works well itself.

Figure 4 represents the path of the best and
mean of populations in di�erent generations in a
genetic algorithm with parameters � = 0:6. The no-
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purchase utility is (1.61,2.30) and the nest correlation
is 0.8.

5.2. Railroad network
A speci�c railroad network in Europe is used by
Hosseinalifam [23] for a test problem, a part of which
we will consider with �ve cities and four legs. There
are two high (H) and low (L) fare classes on each leg.
Figure 5 illustrates this railroad network.

In this problem, there are 10 trains with a capac-
ity of 100 passengers going from Paris to Amsterdam.
Each train stops in Brussels, Rotterdam, Schiptol and
Amsterdam. Thus, there are 10 markets shown in
Table 8. Two fare classes and 10 markets produce a
total of 60 products.

Customers are divided into 20 di�erent segments
based on their sensitivity to prices, their origin and
ultimate destination and 40 nests. Table 9 shows each
segment's de�nition according to our assumptions. We
assume that the booking horizon includes 2000 time
periods and each segment includes two nests. The

Figure 5. Railroad network.

Table 8. Products de�nition in railroad network.

O-D Low fare High fare

PAR-BRU 200 400
PAR-RTA 300 500
PAR-SCH 350 525
PAR-AMA 350 525
BRU-RTA 150 250
BRU-SCH 175 275
BRU-AMA 200 300
RTA-SCH 50 100
RTA-AMA 175 300
SCH-AMA 50 100

experiments are done for three scale factors, including
0.5, 1 and 1.5 for time periods.

Table 10 represents a 95% con�dence interval for
the improvement percent, while the �rm changes the
choice model from a multinomial to a nested logit
model.

The �rst column in this table is the case in which
correlations in all nests are zero. As we expect, all
con�dence intervals in this condition include zero and
both model outputs are the same.

Following the previous network, scarce capacity
leads to an increase in the importance of choosing
the correct choice model for o�ering the most suitable
products for customers, and ample capacity decreases
this sensitivity.

6. Conclusion

This article focuses on the e�ects of speci�c choice
models on network revenue management. Most re-
search focusing on choice-based revenue management,
usually applies a multinomial logit choice model. In
spite of the simplicity of this model, it has some
serious limitations, such as the independence of irrel-
evant alternatives. We explained this restriction and
compared it with the multinomial logit choice model
in this article. In order to overcome this restriction,
we introduce the nested logit model, the most well
known model after multinomial logit. One of the
challenges faced by scientists in revenue management
is incorporation of more realistic choice models in
traditional models without signi�cantly increasing the
complexity of the problem. One of the most applicable
models of choice-based revenue management is choice-
based deterministic linear programming. Considering
the exponential number of variables in this problem,
a column generation technique is used for solving it.
The subproblem of this algorithm is sensitive to the
speci�c choice model used in the original problem.
We changed the choice model and introduced the
new subproblem structure. By referring to previous
studies, we showed that the new subproblem is Np-
hard and a heuristic algorithm is required for solving
it in real conditions. A combination of heuristic and
metaheuristic algorithms is proposed for solving the
new subproblem. The heuristic algorithm assures that
we can reach a reasonable point and the metaheuristic
would improve it if the previous algorithm stopped at
a local optimum point. The simulation study was done
under two di�erent conditions. We assume that the real
choice model customers use for specifying a product
is nested logit, and we analyze the e�ects of using
the multinomial logit model by the �rm to determine
the o�er sets. The results show that when there is
scarce capacity, specifying an accurate choice model is
very important and can improve organization revenue.
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Table 9. Customer segmentation in railroad network problem.

Segment O-D Nest Consideration
set

Preference
vector

No-purchase
utility

Arrival
rate

1 PAR-BRU 1 1, 2, 3 10, 55, 25 8 0.08
2 4, 5, 6 20, 4, 3 8 0.08

2 PAR-BRU 1 1, 2, 3 8, 38, 18 60 0.02
2 4, 5, 6 60, 10, 7 60 0.02

3 PAR-RTA 1 7, 8, 9 15, 30, 20 2 0.08
2 10, 11, 12 8, 2, 1 2 0.08

4 PAR-RTA 1 7, 8, 9 10, 25, 8 45 0.02
2 10, 11, 12 25, 10, 4 45 0.02

5 PAR-SCH 1 13, 14, 15 25, 25, 20 10 0.08
2 16, 17, 18 2, 2, 2 10 0.08

6 PAR-SCH 1 13, 14, 15 10, 12, 15 30 0.02
2 16, 17, 18 21, 3, 3 30 0.02

7 PAR-AMA 1 19, 20, 21 20, 20, 2 4 0.08
2 22, 23, 24 3, 4, 3 4 0.08

8 PAR-AMA 1 19, 20, 21 8, 5, 2 35 0.02
2 22, 23, 24 20, 3, 3 35 0.02

9 BRU-RTA 1 25, 26, 27 10, 60, 50 15 0.08
2 28, 29, 30 4, 3, 2 15 0.08

10 BRU-RTA 1 25, 26, 27 4, 25, 20 70 0.02
2 28, 29, 30 45, 4, 6 70 0.02

11 BRU-SCH 1 31, 32, 33 5, 25, 10 5 0.08
2 34, 35, 36 4, 3, 3 5 0.08

12 BRU-SCH 1 31, 32, 33 2, 14, 3 40 0.02
2 34, 35, 36 7, 6, 4 40 0.02

13 BRU-AMA 1 37, 38, 39 30, 24, 4 6 0.08
2 40, 41, 42 2, 2, 2 6 0.08

14 BRU-AMA 1 37, 38, 39 25, 12, 2 10 0.02
2 40, 41, 42 6, 5, 4 10 0.02

15 RTA-SCH 1 43, 44, 45 10, 25, 20 4 0.08
2 46, 47, 48 4, 3, 2 4 0.08

16 RTA-SCH 1 43, 44, 45 3, 13, 12 30 0.02
2 46, 47, 48 36, 3, 2 30 0.02

17 PAR-AMA 1 49, 50, 51 20, 40, 10 5 0.08
2 52, 53, 54 2, 1, 2 5 0.08

18 PAR-AMA 1 49, 50, 51 10, 15, 5 40 0.02
2 52, 53, 54 25, 25, 3 40 0.02

19 SCA-AMA 1 55, 56, 57 30, 32, 20 5 0.08
2 58, 59, 60 4, 3, 2 5 0.08

20 SCA-AMA 1 55, 56, 57 20, 24, 15 60 0.02
2 58, 59, 60 20, 4, 4 60 0.02

Table 10. Con�dence interval for the improvement percent while �rm switches to the NL model.

Correlation
0 0.2 0.4 0.6 0.8

Time periods C.I. C.I. C.I. C.I. C.I.
1000 (-0.672,0.924) (-0.309,1.097) (-0.969,0.356) (-1.044,0.590) (0.840,2.147)
2000 (-0.678,0.241) (-0.009,0.984) (0.499,1.406) (2.556,3.495) (6.353,7.584)
3000 (-0.542,0.386) (-0.344,0.550) (0.258,1.112) (3.096,4.110) (8.299,9.500)
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Improvement percent con�dence intervals indicate that
even if statistical tests demonstrate a correlation be-
tween unobserved parts of utility functions, it is not
bene�cial under all conditions to change the choice
model in the optimization module immediately and
increase the complexity of calculations. We studied
the relationship between correlation measure and �rm
revenue under di�erent conditions, and analyzed the
number of iterations, with respect to the correlation
measure in di�erent nests. We also showed that
changing the correlation will lead to a change in buy
up and no-purchase probability. The algorithm tries
to balance these e�ects, which causes a change in
the number of iterations of the column generation
algorithm.

For future work, the nested logit model could
be applied to other choice-based revenue management
algorithms. Further work can be done to prove,
analytically, the improvement in changing speci�c
choice models. Finally, research can be planned to
incorporate other realistic choice models and analyze
their e�ects in the choice-based revenue management
models.
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