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Abstract. In this paper, the problem of controlling chaotic uncertain brushless DC
motor (BLDCM) and Permanent Magnet Synchronous Motor (PMSM), exposed to external
disturbances, is considered. First, a new nonsingular terminal sliding surface is introduced,
and its �nite-time convergence to the zero equilibrium is proved. Then, it is assumed that
the parameters of BLDCM and PMSM are fully unknown, and appropriate adaptive laws
are derived to tackle the unknown parameters of the systems. Besides, the e�ects of models
uncertainties and external disturbances are also taken into account. Afterwards, based
on the adaptive laws and robust �nite-time control idea, a robust adaptive sliding mode
controller is proposed to ensure the occurrence of the sliding motion in �nite time. It is
mathematically proved that the introduced nonsingular terminal sliding mode technique has
�nite-time convergence and stability in both reaching and sliding mode phases. Numerical
simulations are presented to verify the e�ciency of the proposed method and to validate
the theoretical results of the paper.

c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Lately, chaos in electric motors has become one of
the most attractive research topics due to its direct
applications in industrial machinery, electrical locomo-
tives and electrical submersibles thruster drives. In
the late 1980s, since the chaos occurrences in electric
motors have been concentrated on [1], a wide-ranging
research has been done towards the detection of chaos
and its control in various types of motors such as DC
motors [2-4], step motors [5,6], synchronous reluctance
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motor drives [7], switched reluctance motor [8,9] and
PMSMs [10-13].

A BLDC motor is a synchronous electric motor
which is powered by direct-current electricity [14].
The main bene�t of BLDCM is the removal of the
physical contact between brushes and commutators.
BLDCM has been extensively applied in direct-drive
applications such as robotics, aerospace, etc. To date,
there has been several works done in modeling and
controlling of BLDCMs [15]. In [16], a new nonlinear
model has been proposed for BLDCM which could
demonstrate chaotic performance by some particular
alternatives for parameters. Actually, it has shown
that the unforced transformed model is equivalent to
the well-known Lorenz system. Recently, some modern
control methodologies have been proposed for control-
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ling linear brushless permanent magnet DC motors
such as nonlinear control [17], optimal control [18], vari-
able structure control [19], PID control [20], adaptive
control and backstepping approach [21]. On the other
hand, these approaches are applied for a linear BLDCM
that does not show chaotic and complex dynamics.
Chaotic performance in BLDCM, which comes out
mostly alternating ripples of torque and low-frequency
oscillations of rotational speed of motor, can tremen-
dously obliterate the stabilization and performance of
the motor. Therefore, it is crucial to investigate the
method of controlling and suppressing chaos in BLD-
CMs. In [22], piecewise quadratic state feedback con-
troller has been proposed, but the equilibrium points of
the uncontrolled chaotic BLDCM system did not apply
as the control target. In [23], time-delay feedback and
fuzzy control approaches have been used to stabilize the
system around the origin, but a noticeable chattering
phenomenon is observed. In [24], feedback linearization
and sliding mode control techniques have been devel-
oped to control a chaotic BLDCM. Only stator current
state equation has been perturbed by uncertainties.
While in practical applications, the whole dynamics of
the system is disturbed by uncertainties and external
disturbances. Also, no control parameter selection
procedure is used in the above mentioned methods.
Recently, chaotic anticontrol and chaos synchronization
of BLDCM systems have been studied [25-29]. In [30],
a sliding mode controller has been designed, which has
some practical advantages such as fast response, low
sensitivity to external disturbances and robustness to
the system uncertainties.

Furthermore, chaos in PMSM and its control
are other areas of challenging research in the �eld of
nonlinear control of electric motors. PMSM has been
attracting more and more attention in high-accuracy
and high performance electric drive systems in indus-
trial motion control applications due to its advantages
of superior power density, high-performance motion
control with fast speed and better accuracy, large
torque to inertia ratio and long life over other types of
motors such as DC motors and induction motors [31].
But in industrial applications, there are many uncer-
tainties such as system parameter uncertainty, external
load disturbance, friction force, unmodeled uncertainty,
etc., which always diminish the performance quality
of the pre-design of the motor driving system. To
cope with this problem, robust or adaptive or other
control schemes dealing with parameter uncertainties
and unknown external disturbances have extensively
been studied up until now.

In recent years, some intelligent control ap-
proaches [32-34] have a good robustness in spite of pa-
rameter variations and unknown external disturbances,
since its design is independent of mathematical model
of the plant. In [35], a detailed review study has been

presented about the arti�cial intelligence-based control
of PMSMs, and pointed out that the fuzzy logic and
neural network control have been successfully applied
for PMSM drive systems. Nonetheless, it is not an
easy task to obtain an optimal set of fuzzy membership
functions and rules, and real time implementation of
these and suchlike methods is di�cult due to their
algorithm complexity.

A state-dependent Riccati equation-based con-
troller has been studied in [36], which is also referred
to nonlinear quadratic optimal control. The controller
requires solving an algebraic Riccati equation [37,38].

A nonlinear speed control of interior PMSM has
been proposed in [39], which has used Model Refer-
ence Adaptive Control (MRAC) for estimating state
variables of nonlinear control systems during periods
of time when the measurements of the related state
variables are not available for feedback [40].

Backstepping control is a recursive design
methodology for the feedback control of uncertain non-
linear systems, mostly for the systems with matched
uncertainties [41,42]. An adaptive robust controller
based on backstepping control method has been pro-
posed for the speed control of PMSM [43]. The
controller is robust against stator resistance, viscous
friction uncertainties and load torque disturbance.
However, this approach uses the feedback linearization,
which cancels some useful nonlinearity out. Other
adaptive nonlinear backstepping approaches that do
not use the linearization theorems are proposed for the
control of electromechanical systems [44-52].

In this paper, �rst a general model is presented for
both BLDCM and PMSM. After introducing a novel
nonsingular terminal sliding surface, its �nite-time
convergence is proved. Then, to tackle the unknown
parameters, appropriate adaptive laws are proposed.
Bounded unknown model uncertainties and external
disturbances are considered in all state equations.
Subsequently, based on the adaptive laws and robust
�nite-time control technique, a control law is designed
to force the trajectories onto the sliding surface, and
remain on it forever.

The rest of this paper is organized as follows: In
Section 2, a brief description of the chaotic BLDCM
and PMSM, and preliminary lemmas are given, and
the control problem is formulated. In Section 3, a new
nonsingular terminal sliding surface is introduced, and
the proposed robust adaptive �nite-time sliding mode
controller is designed. In Section 4, some numerical
simulations are given. Finally, this paper ends with
some conclusions in Section 5.

2. System description, problem formulation
and preliminary de�nitions and lemmas

In this section, �rst a brief description of nonlinear
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chaotic BLDCM and PMSM systems is given. Then,
a general nonlinear model is represented for both
systems. The problem of adaptive robust �nite-
time stabilization of the general nonlinear model with
completely unknown parameters and uncertainties is
formulated, and preliminary de�nitions and lemmas are
presented.

2.1. Dynamics of brushless DC motor
Using time scaling and an a�ne state transformation,
a non-dimensionalized model has been derived for
BLDCM with smooth air gap [28]. It has been shown
that the unforced transformed system exhibits chaotic
behavior. The model is given by:

_Iq = �Iq � Id! + �! + vq;

_Id = ��Id + Iq! + vd;

_! = "Iq � �! + #IqId � TL; (1)

where �, �, #, � and " are system parameters; Iq, Id
and ! are the transformed quadrature-axis for stator
current, the transformed direct-axis for stator current,
and the transformed angular velocity, respectively; vq,
vd and TL are transformed quadrature-axis for stator
voltage, the transformed direct-axis for stator voltage,
and the transformed external load torque (including
friction), respectively.

2.2. Dynamics of permanent magnet
synchronous motor

The mathematical normalized model of a conventional
surface mounted PMSM can be given with standard
assumptions in the d� q frame [53,54] in the following:

_Iq = �Iq � Id! + �! + vq;

_Id = �Id + Iq! + vd;

_! =  (Iq � !)� TL; (2)

where Id and Iq are the d�q axis currents, vd and vq are
the d�q axis voltages, ! is the rotor speed and TL also
represents the applied load torque disturbance; � and
 are system parameters. It follows from the equations
above that PMSM is highly nonlinear system owing to
the cross coupling e�ect between the electrical current
and speed state equations. In a practical way, mea-
surement and calculation of the electrical parameters
are available; however, it must be noted that they vary
with operating conditions, primarily temperature and
saturation e�ects. As for the mechanical parameters,
it is not possible to practically measure or calculate
the exact values of them. These parameters vary
with operating conditions as well, primarily applied
load torque disturbance. Even worse, the load torque

disturbance is always unknown. In that respect, it is
clear that industrial PMSM drive systems encounter
unavoidable parameter variations and immeasurable
disturbances.

2.3. General model
From a control engineering point of view, BLDCM
system in Eq. (1) and PMSM system (2) with control
inputs can be rewritten in the following general model
form:

_x1 = �f1(x) + �f1(x; t) + d1(t) + u1(t);

_x2 = �f2(x) + �f2(x; t) + d2(t) + u2(t);

_x3 = �f3(x) + �f3(x; t) + d3(t) + u3(t); (3)

where x1, x2 and x3, (x = [x1; x2; x3]T ), denote
Iq, Id and !, respectively; u1, u2 and u3, (u =
[u1; u2; u3]T ), are control inputs to be designed later;
�fi(x; t) and di(t) (i = 1; 2; 3), are unknown model
uncertainties and external disturbances, respectively;
f1(x) = [x1:x2x3; x3]T , f2(x) = [x2:x1x3]T and f3(x) =
[x1; x3; x1x2]T are nonlinear terms of equations, and
� = [�1; �2; �3], � = [�1; �2] and � = [�1; �2; �3] are the
vector parameters of the system (3).

Assumption 1: We assume that system uncertain-
ties are bounded [55] as follows:

j�fi(x; t)j � ai; i = 1; 2; 3; (4)

where ai, i = 1; 2; 3, are given positive constants.

Assumption 2: In general, it is assumed that exter-
nal disturbances are norm-bounded in C1, i.e.:

jdi(t)j � bi; i = 1; 2; 3; (5)

where bi, i = 1; 2; 3 are known positive constants.

Assumption 3: The unknown vector parameters �,
� and � are norm-bounded, i.e.:

k�k � D�; k�k � D� ; k�k � D�; (6)

where D�, D� and D� are known positive constants.

Lemma 1. [56] Assume that a continuous, positive-
de�nite function V (t) satis�es the following di�erential
inequality:

_V (t) � ��V �(t); 8t � t0; V (t0) � 0; (7)

where � > 0, 0 < � < 1, are two constants. Then, for
any given t0, V (t) satis�es the following inequality:

V 1��(t) � V 1��(t0)� �(1� �)(t� t0);

t0 � t � t1; (8)
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and V (t) � 0, 8t � t1, with t1 given by:

t1 = t0 +
V 1��(t0)
�(1� �)

: (9)

Lemma 2. [57] Suppose a1; a2; � � � ; an and 0 < q <
2 are all real numbers, then the following inequality
holds:

ja1jq + ja2jq + � � �+ janjq � (a2
1 + a2

2 + � � �+ a2
n)

q
2 :
(10)

3. Design of �nite-time sliding mode controller

In this section, a new nonsingular terminal sliding
mode controller is designed to stabilize the chaotic
system in Eq. (3) with unknown uncertainties, external
disturbances and unknown parameters in �nite time.
The design procedure of the proposed �nite-time con-
troller comprises two main steps:

(a) Selecting a nonsingular terminal sliding surface for
the desired sliding motion;

(b) Designing a robust adaptive �nite-time control law
to guarantee the existence of the sliding motion in
a given �nite time.

Consequently, in this paper, a new nonsingular termi-
nal sliding surface is proposed as:

si(t) = jxi(t)j+ i
�Z t

0
jxi(t)j d�

�p=q
;

i = 1; 2; 3; (11)

where si(t) 2 R, i > 0, p and q are positive odd
integers and satisfy p < q.

Let !i(t) =
R t

0 jxi(t)jd� , it is obvious that !i(t) �
0, i = 1; 2; 3. For the existence of the sliding mode, it
is necessary and su�cient that s(t) = 0, _s(t) = 0 [58].
Therefore, the dynamics of the proposed nonsingular
terminal sliding mode can be obtained as:

si(t) = _!i(t) + i(!i(t))p=q = 0;

i = 1; 2; 3; (12)

_!i(t) = �i(!i(t))p=q;
i = 1; 2; 3: (13)

It is clear that as !i(t) can reach the equilibrium point
in �nite time T1, system states xi(t), (i = 1; 2; 3) can
reach equilibrium point in �nite time T1, too.

Theorem 1. Consider the sliding mode dynamics in
Eq. (13). This system is �nite-time stable and its
trajectories converge to the equilibrium point, in a

�nite time, T1 = V1(0)1� p+q
2q

2�(1� p+q
2q )

.

Proof. Consider the following positive de�nite func-
tion:

V1(t) =
X3

i=1
!2
i : (14)

Its derivative with respect to time is:

_V1(t) = 2
X3

i=1
!i _!i: (15)

Replacing _!i from Eq. (13) into the above equation, it
yields:

_V1(t) = �2
X3

i=1
i(!i)

p+q
q : (16)

Since 1 < p+q
q < 2, and assuming � = minfi; (i =

1; 2; 3)g, using Lemma 2, we have:

_V1(t) � �2�
�X3

i=1
!2
i

� p+q
2q

= �2�(V1(t))
p+q
2q :

(17)

Since 0:5 < p+q
2q < 1; using Lemma 1, one can conclude

that the states, xi(t), (i = 1; 2; 3) will converge to zero

in the �nite time, T1 = V1(0)1� p+q
2q

2�(1� p+q
2q ) . Hence the proof is

completed.
After establishing the suitable sliding manifold,

the next step is to design a control law to force the
state trajectories go on to the sliding surface within
a �nite time, and remain on it forever. Therefore, to
ensure that the existence of the sliding motion (i.e. to
ensure that the state trajectories xi(t), (i = 1; 2; 3)
converge to the sliding surface si(t) = 0, (i = 1; 2; 3),
the nonsingular sliding mode �nite-time control laws
are proposed as follows:

u1(t) =� �̂f1(x)

� 1(p=q)x1(t)
�Z t

0
jx1(t)j d�

�(p=q)�1

�
�
DD

�
s1

ksk2
�

+ k1 + a1 + b1
�
sgn(x1);

u2(t) =� �̂f2(x)

� 2(p=q)x2(t)
�Z t

0
jx2(t)j d�

�(p=q)�1

�
�
DD

�
s2

ksk2
�

+ k2 + a2 + b2
�
sgn(x2);
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u3(t) =� �̂f3(x)

� 3(p=q)x3(t)
�Z t

0
jx3(t)j d�

�(p=q)�1

�
�
DD

�
s3

ksk2
�

+ k3 + a3 + b3
�
sgn(x3);

(18)

where �̂, �̂ and �̂ are estimations for �, � and �,
respectively; ki, (i = 1; 2; 3) are the switching gains
and positive constants, and:

DD = �
�k�̂k+D� +

�̂+D� +
�̂+D�

�
; (19)

where � is a positive constant.
We assume that ( siksk2 ) = 0, (i = 1; 2; 3), if we

have ksk = 0.
To tackle the unknown parameters, the appropri-

ate adaptive laws are de�ned as:

_̂�(t) = s1sgn(x1)[f1(x)]T ;

�̂(0) = �̂0;

_̂�(t) = s2sgn(x2)[f2(x)]T ;

�̂(0) = �̂0;

_̂�(t) = s3sgn(x3)[f3(x)]T ;

�̂(0) = �̂0; (20)

here, �̂0, �̂0 and �̂0 are initial values of the adaptive
vectors �̂, �̂ and �̂, respectively.

The proposed adaptive control scheme in Eq. (18)
with adaptive laws in Eq. (20) will guarantee the �nite-
timely occurrence of the sliding motion, which is proved
in the following theorem.

Theorem 2. If the system in Eq. (3) is controlled
with the control law in Eq. (18) and adaptive laws in
Eq. (20), then the states of the system will move toward
the sliding surface and will approach the sliding surface

si(t) = 0, (i = 1; 2; 3) in the �nite time, T2 =
p
V2(0)p
2�

.

Proof. Choose a positive de�nite function in the form
of:

V2(t)=
1
2

3X
i=1

ksik2+k�̂��k2+
�̂��2

+
�̂��2

;
(21)

where ~� = �̂ � �, ~� = �̂ � � and ~� = �̂ � � are the
parameters errors (It is clear that _~� = _̂�, _~� = _̂� and
_~� = _̂�).

Taking the time derivative of V2(t), one has:

_V2(t) =
X3

i=1
[si _si] + ~�T _̂�+ ~�T _̂� + ~�T _̂�: (22)

It is clear that:

_V2(t) =
3X
i=1

"
si

"
_xi(t)sgn(xi(t))

+ i(p=q) jxi(t)j
�Z t

0
jxi(t)j d�

�(p=q)�1##
+ ~�T _̂�+ ~�T _̂� + ~�T _̂�: (23)

Inserting _xi(t), (i = 1; 2; 3) from system in Eq. (3) and
adaptive laws from Eq. (20) into Eq. (23), we have:

_V2(t)=
3X
i=1

264si
264i(p=q) jxi(t)j0@ tZ

0

jxi(t)j d�
1A(p=q)�1

375375
+ s1[�f1(x) + �f1(x; t) + d1(t) + u1(t)]sgn(x1(t))

+ s2[�f2(x) + �f2(x; t) + d2(t) + u2(t)]sgn(x2(t))

+ s3[�f3(x) + �f3(x; t) + d3(t) + u3(t)]sgn(x3(t))

+ (�̂� �)T s1sgn(x1)[f1(x)]T

+ (�̂ � �)T s2sgn(x2)[f2(x)]T

+ (�̂ � �)T s3sgn(x3)[f3(x)]T ; (24)

_V2(t)=
3X
i=1

0B@si
264i(p=q) jxi(t)j0@ tZ

0

jxi(t)j d�
1A(p=q)�1

375375
+ s1[�f1(x) + �f1(x; t) + d1(t) + u1(t)]sgn(x1(t))

+ s2[�f2(x) + �f2(x; t) + d2(t) + u2(t)]sgn(x2(t))

+ s3[�f3(x) + �f3(x; t) + d3(t) + u3(t)]sgn(x3(t))

+ �̂T s1sgn(x1)[f1(x)]T

+ �̂T s2sgn(x2)[f2(x)]T

+ �̂T s3sgn(x3)[f3(x)]T : (25)

Replacing ui(t), (i = 1; 2; 3) from Eq. (20) into the
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above equation and simplifying it, gives:

_V2(t)=
3X
i=1

264si
264i(p=q) jxi(t)j0@ tZ

0

jxi(t)j d�
1A(p=q)�1

375375
+ s1

"
�f1(x) + �f1(x; t) + d1(t)� �̂f1(x)

� 1(p=q)x1(t)
�Z t

0
jx1(t)j d�

�(p=q)�1

�
�
DD

�
s1

ksk2
�

+k1+a1+b1
�
sgn(x1)

#
sgn(x1(t))

+ s2

"
�f2(x) + �f2(x; t) + d2(t) +��̂f2(x)

� 2(p=q)x2(t)
�Z t

0
jx2(t)j d�

�(p=q)�1

�
�
DD

�
s2

ksk2
�

+k2+a2+b2
�
sgn(x2)

#
sgn(x2(t))

+ s3

"
�f3(x) + �f3(x; t) + d3(t)� �̂f3(x)

� 3(p=q)x3(t)
�Z t

0
jx3(t)j d�

�(p=q)�1

�
 
DD

 
s3

ksk2
!

+k3+a3+b3

!
sgn(x3)

#
sgn(x3(t))

+ �̂T s1sgn(x1)[f1(x)]T + �̂T s2sgn(x2)[f2(x)]T

+ �̂T s3sgn(x3)[f3(x)]T : (26)

Using the fact
P3
i=1 si(

siksk2 ) = 1, we have:

_V2(t) = s1[�f1(x; t) + d1(t)

� (k1 + a1 + b1)sgn(x1)]sgn(x1(t))

+ s2[�f2(x; t) + d2(t)

�(k2+a2+b2)sgn(x2)]sgn(x2(t))+s3[�f3(x; t)

+ d3(t)(k3 + a3 + b3)sgn(x3)]sgn(x3(t))�DD:
(27)

It is obvious that:

_V2(t) � js1j [j�f1(x; t)j+ jd1(t)j
� (k1 + a1 + b1)sgn(x1)]sgn(x1(t))

+ js2j [j�f2(x; t)j+ jd2(t)j
� (k2 + a2 + b2)sgn(x2)]sgn(x2(t))

+ js3j [j�f3(x; t)j
+ jd3(t)j (k3+a3+b3)sgn(x3)]sgn(x3(t))�DD:

(28)

Using Assumptions 1 and 2 and Eq. (19), one can
conclude that:

_V2(t) ��
3X
i=1

ki jsij � �(k�̂k+D� +
�̂+D�

+
�̂+D�): (29)

Using Assumption 3 and since k�̂��k � k�̂k+ k�k �
k�̂k + D�, k�̂ � �k � k�̂k + k�k � k�̂k + D� and
k�̂� �k � k�̂k+k�k � k�̂k+D�, one can conclude that
�(k�̂k + D�) � �k�̂ � �k, �(k�̂k + D�) � �k�̂ � �k
and �(k�̂k+D�) � �k�̂ � �k; this yields:

_V2(t) ��X3

i=1
ki jsij

� ��k�̂� �k+
�̂ � �+

�̂ � �� : (30)

According to Lemma 2, one has:

_V2(t) �

� �
"

3X
i=1

jsij+
�k�̂� �k+

�̂ � �+
�̂ � ��#

� �p2�

 
3X
i=1

1
2
ksik2 +

1
2
k�̂� �k2

+
1
2

�̂��2
+

1
2

�̂��2
!1=2

=�p2�V2(t)1=2;
(31)

where � = minfki; �(i = 1; 2; 3)g.
Therefore, from Lemma 1, the state trajectories

xi(t), (i = 1; 2; 3) will converge to the sliding surface

si(t) = 0, (i = 1; 2; 3), in the �nite time, T2 =
p
V2(0)p
2�

.
Hence the proof is completed.
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Remark 1. According to the Theorems 1 and 2, the
sliding mode control law in Eq. (18) with adaptive laws
in Eq. (20) and the nonsingular terminal sliding surface
in Eq. (13) can make the system in Eq. (3) states reach
zero in the �nite time, T = T1 + T2.

Remark 2. The proposed nonsingular terminal slid-
ing mode in Eq. (11) is di�erent from the previously
reported terminal sliding mode control (s = _e+ �ep=q)
and fast terminal sliding mode control (s = _e + �e +
�ep=q) where �, � > 0, p > q > 0 are odd integers.
Since the control inputs of the conventional terminal
sliding mode control and fast terminal sliding mode
control approaches contain the term e

q
p�1, one can see

that for e < 0, the fractional power q
p � 1 may lead

to the term e
q
p�1 =2 R, which leads to _e =2 R. Our

proposed nonsingular terminal sliding mode in Eq. (11)
overcomes this singularity.

4. Numerical simulations

In this section, numerical simulations are presented to
verify the e�ciency and e�ectiveness of the proposed
controllers. Numerical simulations are carried out
using MATLAB software. The ode45 solver is used
for solving di�erential equations.

4.1. BLDCM
The nonlinear equations of BLDCM are as follows:8>>>>>>><>>>>>>>:

_x1 =� x1 � x2x3 + 7:961x3 + �f1(x; t)
+ d1(t) + u1(t)

_x2 =� 0:84x2 + x1x3 + �f2(x; t) + d2(t)
+ u2(t)

_x3 =� 3:708x3 + x2x2 + �f3(x; t) + d3(t)
+ u3(t)

(32)

where � = [�1; �2; �3] = [�1;�1; 7:961], � = [�1; �2] =
[�0:84; 1] and � = [�1; �2; �3] = [0;�3:708; 1] are the
vector parameters of the system in Eq. (3).

The following uncertainties and external distur-
bances are added to the BLDCM system.

�f1(x; t) = 0:5 sin(x1)� 0:1 cos(2t);

�f2(x; t) = 0:3 cos(3x2) + 0:1 cos(5t);

�f3(x; t) = �0:4 sin(2x3) + 0:2 sin(3t);

d1(t) = 0:3 cos(5t);

d2(t) = 0:2 sin(3t);

d3(t) = �0:25 cos(2t): (33)

The initial conditions of the BLDCM system in Eq. (32)
is selected as x1(0) = 3, x2(0) = 5 and x3(0) = �1.

The initial values and the norm bounds of the adaptive
vectors are �̂0 = 0, �̂0 = 0, �̂0 = 0 and D� = 33, D� =
33, D� = 33, respectively. The controller parameters
are K = [K1;K2;K3] = [0:1; 0:1; 0:1],  = [1; 2; 3] =
[10; 10; 2], p = 3, q = 5, a = [a1; a2; a3] = [0:5; 0:5; 0:5],
b = [b1; b2; b3] = [0:5; 0:5; 0:5].

The state trajectories of the controlled uncertain
chaotic BLDCM and the applied control inputs are
depicted in Figures 1 and 2. It can be seen that the
closed loop system is not chaotic anymore. The time
responses of adaptive vector parameters �̂, �̂ and �̂,
are depicted in Figure 3. It is clear that the adaptive
parameters converge to some constants. It can be seen
that the control inputs are bounded and feasible in
practice. Also, it is obvious that not only the system
is stabilized around the origin, but also the closed
loop system is robust against model uncertainties and
external disturbances.

4.2. PMSM
PMSM is known to exhibit chaotic behavior for a
certain range of system parameters. It was shown
in [59] that PMSM system given in Eq. (34) behaves
in a chaotic mode for the following system parameters
and initial conditions.8>>>>>>>><>>>>>>>>:

_x1 = �x1�x2x3+20x3| {z }
�f1(x)

+�f1(x; t)+d1(t)+u1(t)

_x2 = �x2 + x1x3| {z }
�f2(x)

+�f2(x; t) + d2(t) + u2(t)

_x3 = 5:5(x1 � x3)| {z }
�f3(x)

+�f3(x; t) + d3(t) + u3(t)
(34)

Figure 1. State trajectories of the controlled uncertain
chaotic BLDCM.
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Figure 2. Control inputs applied for the uncertain
chaotic BLDCM.

Figure 3. Time responses of adaptive vector parameters
�̂, �̂ and �̂ for the uncertain chaotic BLDCM.

where � = [�1; �2; �3] = [�1;�1; 20], � = [�1; �2] =
[�1; 1] and � = [�1; �2; �3] = [5:5; 5:5; 0] are the vector
parameters of the system in Eq. (3).

The following uncertainties and external distur-
bances are imposed to PMSM system.

�f1(x; t) = 0:2 cos(3x1) + 0:15 cos(t);

�f2(x; t) = 0:2 sin(x2)� 0:5 cos(5t);

�f3(x; t) = 0:25 sin(2x3) + 0:4 sin(4t);

d1(t) = �0:2 cos(5t);

d2(t) = 0:1 sin(3t);

d3(t) = �0:25 sin(t): (35)

The initial conditions of the PMSM system are selected
as x1(0) = 1, x2(0) = �1, and x3(0) = 2. The initial
values and norm bounds of the adaptive vectors are
�̂0 = 0, �̂0 = 0, �̂0 = 0 and D� = 40, D� = 50,
D� = 40, respectively. The controller parameters are
K = [K1;K2;K3] = [0:2; 0:1; 0:3],  = [1; 2; 3] =
[6; 7; 4], p = 3, q = 5, a = [a1; a2; a3] = [0:7; 0:7; 0:7],
b = [b1; b2; b3] = [0:5; 0:5; 0:5].

Figure 4 illustrates PMSM system states. It is
obvious that the controller works well for stabilization
of the system states around the zero equilibrium even
when the whole system with unknown parameters
is perturbed by unknown uncertainties and external
disturbances. Control inputs are depicted in Figure 5,
respectively. One can see that the control signals
are practical. The time responses of adaptive vector
parameters �̂, �̂ and �̂, are depicted in Figure 6,
respectively. One can see that the adaptive parameters
are bounded.

Figure 4. State trajectories of the controlled uncertain
chaotic PMSM.
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Figure 5. Control inputs applied for the uncertain
chaotic PMSM.

Figure 6. Time responses of adaptive vector parameters
�̂, �̂ and �̂ for the uncertain chaotic PMSM.

5. Conclusions

In this paper, the nonsingular terminal sliding mode
controller is represented to stabilize chaotic nonlinear
BLDCMs and PMSMs with unknown parameters. It
is assumed that all states of BLDCM and PMSM
are perturbed by unknown model uncertainties and
external disturbances. A novel nonsingular terminal

sliding mode manifold was proposed and its �nite-time
convergence was proved analytically. Suitable adaptive
laws were designed to approach the unknown parame-
ters. Based on the adaptive laws and robust �nite-time
control method, a robust adaptive �nite-time sliding
mode controller was introduced. The proposed tech-
nique had �nite-time convergence and stability in both
the reaching and the sliding mode phases. Numerical
simulations show that the proposed controllers work
well for �nite-time stabilization of BLDCM and PMSM
systems with unknown parameters, in the presence
of both unknown model uncertainties and external
disturbances.
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