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Abstract. Brain Computer Interface (BCI) is a system which straightly converts the
acquired brain signals such as Electroencephalogram (EEG) to commands for controlling
external devices. One of the most successful methods in BCI applications based on Motor
Imagery is Common Spatial Pattern (CSP). In the existing CSP methods, common spatial
�lters are applied on whole EEG signal as one time segment for feature extraction. The fact
that ERD/ERS events are not steady over time motivated us to break down EEG signal
into a number of sub-segments in this study. I combine this sentence with next one: \We
believe the importance of EEG channels varies for di�erent time segments in classi�cation,
therefore we extract features from each time segment using the analysis of CSP method. In
order to classify Motor Imagery EEG signals, we apply a LDA classi�er based on OVR (One-
Versus-the Rest) scheme on the extracted CSP features. The considered Motor Imagery
consists of four classes: left hand, right hand, foot and tongue. We used dataset 2a of BCI
competition IV to evaluate our method. The result of experiment shows that this method
outperforms both CSP and the best competitor of the BCI competition IV.
c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

A Brain Computer Interface (BCI) allows severely
disabled people to control external environment. Elec-
troencephalogram (EEG)-based BCI translates brain
electric signals into operative control commands. The
most commonly used mental control strategy in BCI
researches is the Motor Imagery (MI), because it can be
associated with an attenuation or increase of localized
neural rhythmic activity called Event-Related Desyn-
chronization (ERD) or Event-Related Synchronization
(ERS) [1,2].

Scalp-recorded EEG signals, in addition to ERD
and ERS activities, is contaminated by signals from
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natural brain activities and artifacts such as elec-
tromyogram (EMG) and electrooculogram (EOG) [3].
In presence of these distortions and other outliers, the
signal to noise ratio of EEG signals is low; therefore
recognizing ERD/ERS events from EEG signals is di�-
cult. Human skull has bone tissue, so signals generated
in brain cortex interfere with each other before getting
to scalp [4]. This means that the signals of EEG
channels are sum of several sources generated under
human skull. Therefore, selecting useful channels
for classifying classes and extracting important events
from selected EEG channels is di�cult.

In order to extract discriminative features from
EEG signals, a large number of signal processing and
pattern recognition algorithms have been employed [5].
One of the most successful algorithms for channel
reduction in MI-based BCI is Common Spatial Pattern
(CSP) [6]. CSP is a decomposition method which �rst
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was proposed by Koles (1991) [7] for detecting some
sort of mental diseases.

In CSP method, EEG signals acquired on top of
the scalp are decomposed to two matrices. One of the
matrices is the estimation of source signals generated
under skull and the other matrix is the weights that
show the importance of source signals in creation of
EEG signals acquired on the scalp. The columns
of weights matrix are called spatial �lters [6]. In
a two-class MI problem, CSP method calculates the
spatial �lters for maximizing the variance of signals
between two classes of Motor Imagery. This set of
spatial �lters transform EEG signals to a new space
in which the covariance matrices of transformed data
corresponding to each class is diagonal. The extracted
spatial �lters are the eigenvectors corresponding to the
largest and smallest eigenvalues of common covariance
matrix. The result of �ltering EEG signals, using the
selected spatial �lters, are used for classi�cation of two
classes. For the classi�cation of a two-class Motor
Imagery using CSP, the accuracy of above 90% has
been reported [8].

Before CSP being applied, an appropriate band
pass �lter is needed to properly extract ERD/ERS
events from EEG signals, so that the selection of
frequency band a�ects the result of CSP method [8].
Although a wideband of 8-30Hz was suggested [8], ev-
idence showed that selecting subject-speci�c frequency
bands could yield an improvement in the recognition
rate of MI-based BCI [9]. A problem with this
preprocessing is that the center frequency of a proper
�lter varies from one subject to another, Therefore,
several approaches, such as Common Spatio-Spectral
Pattern (CSSP) [10] and Common Sparse Spectral
Spatial Pattern (CSSSP) [11] are proposed to �nd the
appropriate frequency bands for �ltering each subject.

Recently, an alternative approach called Sub-
band Common Spatial Pattern (SBCSP) was proposed,
and has been shown to yield superior classi�cation
accuracy compared against CSSP and CSSSP on a pub-
licly available dataset [12]. Ang et al. in 2008 proposed
another approach called Filter Bank Common Spatial
Patterns (FBCSP), and showed the FBCSP yields su-
perior classi�cation accuracy compared against SBCSP
method [13]. FBCSP [13], which won dataset IIa
and IIb in BCI competition IV (2008) [14], uses CSP
features from a set of nine �xed bandpass �lters and
feature selection algorithm based on mutual informa-
tion to e�ectively choose the subject-speci�c features.
This selection process selects features from the relevant
frequency components.

Considering that EEG signals for a subject are
represented as K � N matrix X = [x1; x2; � � � ; xN ]
where K is the number of EEG channels and N is the
number of samples for each channel. CSP method maps
the samples of EEG signals to a new space based on

covariance matrix of the EEG signals. This method
does not consider local structure of EEG signals, as
for each channel, it uses the whole EEG signal as
one time segment for computing the covariance matrix.
CSP method considers each time point of all channels
as a vector in the feature space, and maps it into
another space based on the average covariance matrix
of all EEG signals. As a result, the noise on one
small time slot a�ects the covariance matrix of EEG
signals. This introduces error when special �lters are
estimated.

Most of CSP-based method, as mentioned above,
does not consider temporally local structure of the
time EEG signals, too [15]. Time segment used in
CSP method is very important, so that adding or
removing one time sample varies covariance matrix and
consequently spatial �lters.

Wang and Zheng proposed a method [15] in
which local structure of EEG signals is considered
by de�ning time-dependent neighboring matrix, called
LTCSP (Local Temporal Common Spatial Patten).
With considering this adjacency matrix, the noise on
one time point does not a�ect the extracting covariance
matrix in the far time points. Therefore, LTCSP is less
sensitive to potential outliers and artifacts. Similar to
CSP method, LTCSP is an eigenvalue problem, so it
is computationally simple, but it is more robust than
CSP. Wang and Zheng [15] showed that LTCSP can
discriminate better than CSP method in a two-class
MI-based BCI problem.

LTCSP method used wide band frequency �l-
tering before extracting spatial �lters. One defect
of LTCSP can be that frequency �ltering a�ects the
spatial �lter and extracted features that is consequent
to wrong discriminating two classes.

One of the limitations for basic CSP method is the
fact that it is only designed for a two-class problem. We
used OVR (One-Versus-the Rest) algorithm to extend
CSP to multiclass problem [16]. As CSP, LTCSP
method, that is the extension of CSP method, is limited
to binary-class problems, too. We can use all the
extension approaches of CSP for LTCSP method to
apply it for multiclass problem.

The goal of this paper is classifying four classes of
Motor Imagery EEG signals. To conduct experiments,
we utilized dataset 2a from the BCI competition,
2008 [14]. It contains EEG signals for 9 subjects. From
each subject, it has been requested to imagine four
motor imagery of left hand, right hand, both foots and
tongue one at a time.

In this paper, we use the OVR approach to extend
LTCSP method to a four-class problem. As we see in
experimental results, LTCSP has better results than
CSP in all subjects of our available data. The success
of LTCSP method is considering the local structure of
time signals.
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Dynamic classi�er such as HMM (Hidden Markov
Model) was used for MI classi�cation too [17]. Success
of these classi�ers is for considering temporal structure
of EEG signals. This motivates us to use new method,
considering time structure of EEG signals.

Observing time frequency distributions of EEG
signals reveals that the energy of frequency bands
during Motor Imagery varies with time. In other
words, frequency patterns are not stable with time [18].
The sequence of this frequency patterns are important
in classi�cation. Gouy-Pailler et al. [18] considered
this characteristic of MI signals, and proposed MS-
JAD method for MI classi�cation. MSJAD is the
improved JAD method [19] that in contrary to CSP
and JAD methods diagonalizes covariance matrices of
four classes simultaneously. MSJAD uses time segmen-
tation on JAD algorithm. In MSJAD method, EEG
signals are divided into a number of time segments,
then JAD method is applied on all time segments [18].
Pailler et al. [18] compared their proposed method with
CSP. They applied CSP method on Motor Imagery
time segment and then they divided �ltered signals
into some time windows. They extracted features
from the time segments in frequency domain. They
applied their method on our available data, and com-
pared their results with results of the best competitor
in the competition IV. Their proposed method does
not have good results related to the best competi-
tor.

In this paper, for considering temporal structure
of EEG signals in CSP method, we use CSP method
on EEG time segments to extract proper features
for four-class Motor Imagery classi�cation. Unlike
reference [18], in our method, at �rst we divided
EEG signals into some time segments, and then the
CSP method was applied on each time segment. The
features extracted from all time segments construct
feature vector.

In fact, spatial �lters are the weights that show
the importance of signals under the skull for generating
signals extracted on scalp. As mentioned above, the
energy of frequency bands are not steady in the whole
motor imagery time segment. It is possible that in
some channels, some frequency bands activate in one
time slot and deactivate in the others. In another time
slot, it is possible that other frequency bands activate in
other channels. Therefore, the importance of channels
for classifying changes in di�erent time slots. We
divided time signals into several time segments, and
applied CSP method in each segment. Through the
experiment we found out the spatial �lters vary for
di�erent time segments of EEG. This means that the
importance of channels is di�erent in each time segment
for discriminating two classes.

We compared the result of our proposed method
with the result obtained by the best competitor of

the competition 2008. The best performance in this
competition was related to FBCSP method [20]. In
average, with simple features such as variance, we
could obtain better results than the results obtained
by the method proposed by Gouy-Pailler et al. [18] and
the best competitor. In these two methods, features
extracted from frequency domain are more complex
than our method. Also, our proposed method had
better results than LTCSP or the same results in 7
subject of 9 in a four-class problem.

Although our proposed method has good result,
we used wide band �ltering before applying it on
the available data. We can easily apply CSP-based
methods, mentioned before [10-13], to select subject-
speci�c frequency bands in each time segment, and
improve our method. With this, we can consider both
time structure and proper frequency band.

In the current CSP method, noise on non-
informative parts of EEG signal a�ects the estimation
of covariance matrix. Thus the extraction of spatial
�lters which provide features for classi�cation is af-
fected by noise and artifacts. By breaking each EEG
channel into equal size time windows, the noise for
each time window only a�ects the features extracted
from that window not all features. This reduces
the e�ect of noise and outliers on feature extraction
process.

The rest of the paper is organized as follows: We
provide a short overview on the CSP and LTCSP meth-
ods in Section 2. In this section, we also explain our
method and extension of it to a four-class problem by
means of OVR method. Data acquisition, evaluation
criterion and the result of experiments are explained in
Section 3. Finally, the paper is drawn to conclusion in
Section 4.

2. Theory

2.1. CSP method
The goal of CSP method is to design spatial �lters that
lead to new time series whose variances are optimal
for the discrimination of two classes of EEG signals.
We assume that we have two conditions of Motor
Imaginary referred to as C1 and C2. Each condition
contains some trials. The output of each trial in a two-
class problem is EEG signals from the person when
he/she is asked to imagine one of the two conditions
C1 or C2 (e.g. move right hand or left hand). For
a trial, signals are represented as K � N matrix
X = [x1; x2; � � � ; xN ] where K is the number of EEG
channels and N is the number of time samples for each
channel. Consequently, xi(i 2 1; 2 � � �N) is a column
vector with K dimension. It is worth to note that the
mean value of the N samples for each channel of EEG
signals must be zero. The estimation of the averaged
normalized covariance matrix for each condition can be
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given by [8]:

Ci =
1
Ti

X
j2Ti

XjXT
j

trace(XjXT
j )
; i 2 f1; 2g; (1)

where Ti is the number of trials for ith condition of
MI. The composite spatial covariance is determined
by:

C = C1 + C2: (2)

C can be factorized as:

C = UT�U; (3)

where U and � are the matrix of eigenvectors and the
diagonal matrix of eigenvalues for C, respectively [8].
These matrices are arranged so that eigenvalues being
sorted in descending order.

Then the whitening transformation matrix P =
U��1=2 can equalize the variances in the space spanned
by U , i.e. all eigenvalues of PTCP are equal to one [8].
This means that we have:

PTCP = I or PT (C1 + C2)P = I; (4)

where I is the identity matrix. Now if C1 and C2 are
transformed as S1 = PTC1P and S2 = PTC2P and if
S1is factored by S1 = BT�1B, then S2 = BT�2B and
�1 + �2 = I.

This means that eigenvector with the largest
eigenvalue for S1 has the smallest eigenvalue for S2
and vice versa. Thereupon the projection of whitened
EEG signals into the space spanned by eigenvectors
corresponding to the largest and smallest eigenvalues of
S1 will give new series of EEG signals that are optimal
for the classi�cation of two populations [8]. With the
transformation matrix W = PB, the mapping of trial
X is given by:

Z = WTX: (5)

The new signals are the rows of matrix Z. The 2m
signals corresponding to the m �rst and last rows of
Z are associated with the largest eigenvalues of each
condition. Using the normalized variance of these
signals, 2m features are extracted as follows:

fP = log

 
var(ZP )P2m
i=1 var(Zi)

!
; (6)

where P = 1; 2; � � � ; 2m. Accordingly, from each trail
of MI, a feature vector with 2m features are obtained
and used for classi�cation.

2.2. LTCSP method
As CSP method maximizes the variance of signals
for one class and minimizes it for another class, the
solution W can be determined by optimizing the
following fraction:

max
trace(WTC1W )
trace(WTC2W )

: (7)

W must maximize the numerator against the denu-
merator subject to WT (C1 + C2)W = I. This is
an eigenvalue problem which can be converted as
follows [15]:

1
T1

PT1
i=1
PK
j=1

�
wTj XiXT

i wj
�
=trace

�
XiXT

i
�

1
T2

PT2
i=1
PK
j=1

�
wTj XiXT

i wj
�
=trace

�
XiXT

i
� ; (8)

where T1 and T2 are the numbers of trials under condi-
tions one and two, respectively. Index i corresponds to
ith trial, and wj is the jth column of matrix W . With
deletion of indexes, we can expand the term wTXXTw
as follow:

wTXXTw =
1

2N

NX
l=1

NX
m=1

�
wTxl � wTxm�2 : (9)

This says that the sum of the squared pairwise dis-
tances between the projected data samples constructs
the variance after �ltering. In [15], a coe�cient
HX
lm proposed that it speci�es the adjacency value of

samples xl and xm.

wTXXTw =
1

2N

NX
l=1

NX
m=1

�
wTxl � wTxm�2HX

lm:
(10)

The goal of adjoining this parameter is to reduce the
noise e�ect of far samples in computation. So HX

lm
must decrease with increasing the distance between two
temporally close data points. This value is between
zero and one. Therefore, in Wang et al.'s method, a
heat kernel was proposed for it:

HX
lm =

(
exp(�kxl � xmk2=�) j1�mj < �
0 otherwise

(11)

HX is the symmetric matrix that is called the adja-
cency matrix, and k:k is the Euclidean norm of the
two samples in RK . In this function, the parameter �
is a positive number that de�nes the temporally local
range out of which HX is equal zero. The parameter
� is de�ned as � = c�0, where �0 is the standard
deviation of the squared norms of the training samples.
Indeed, CSP is a special case of LTCSP when � = N
and c = +1 that means all samples are involved in
optimization and have equal importance. Thus in CSP,
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the noise of one sample has the same inuence on all
other samples, whereas LTCSP eliminates this defect.
It is worth to notice that adjacency matrix H must be
constructed for each of the trials of both conditions.

After some manipulation, the average normalized
temporally local covariance matrix is given by:

�
Ci =

1
Ti

X
j2Ti

XjLXXT
j

trace
�
XjLXXT

j
� ; i 2 f1; 2g; (12)

where LX = DX � HX is the Laplacian Matrix that
is a semi-positive de�nite matrix; therefore, it can be
decomposed as:

LX = LX
1=2 � LX1=2

;

and DX is a diagonal matrix that its diagonal elements
are the row sums of HX i.e. DX

ll =
PN
m=1H

X
lm.

Then similar to CSP method, the problem is
�nding matrix W that maximizes fraction Eq. (13)

subject to
�
W

T
(
�
C1 +

�
C2)

�
W = I.

max
trace(WT

�
C1W )

trace(WT
�
C2W )

: (13)

Thereupon optimal W is given by:

�
W =

�
U
�
D
�1=2�

V ; (14)

where
�
U is the matrix of eigenvectors, and

�
D is

the diagonal matrix of corresponding eigenvalues of�
C1 +

�
C2, and

�
V is the eigenvectors matrix of

�
D
�1=2�

U
T �
C1
�
U
�
D
�1=2

. Then in LTCSP method the
projected matrix of X is de�ned by:

�
Z =

�
W

T
XLX

1=2
: (15)

The m row of the upside and m row of the bottom of
Z are suitable signals for classi�cation and the feature
vector corresponding to these m signals is evaluated as
follows:

�
fP = log

0@ var(
�
ZP )P2m

i=1 var(
�
Zi)

1A ; P = 1; 2; � � � ; 2m:
(16)

It has been reported that, compared with CSP, LTCSP
signi�cantly enlarges the di�erence of variances be-
tween the �rst and second classes. This implies that the
variances obtained by LTCSP yield more discriminative
information [15].

2.3. The Proposed method in a two-class
problem

As mentioned above, in our method, EEG signals are
divided into a number of time segments. Then CSP
method is applied to each time segment for extracting
proper features. We extend the proposed approach to
a four-class Motor Imagery problem. This method has
training and test phases. Flowchart of training and test
process in a two-class problem is shown in Figure 1.

As EEG signals in our method are divided into a
number of time segments, we refer to this method as
SEG-CSP.

2.3.1. Training phase
The aim of training phase is to design a classi�er for
classi�cation of EEG samples. This phase has these
steps:

� Preprocessing: Prior to determining the spatial
�lters, the rate of EEG samples is reduced to 100 Hz,
and then they �ltered from 8 to 30 Hz, using zero-

Figure 1. Flowchart for (a) training (b) test of EEG
patterns in a two-class MI classi�cation system in
SEG-CSP method.
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phase forward/backward FIR �lter. This frequency
band is chosen because it encompasses mu (8-13
Hz) and beta (14-30 Hz) rhythms, which have been
shown to be most important for the movement
classi�cation [21]; by this �ltering artifacts, such
EOG and EMG signals removed because the range
of frequency band of these artifacts is out of this
range [3]. Since ERD/ERS can occur before and
after motor imagery execution [1,2], for training our
proposed method, we used the 3 s time interval that
begins of 0.5 s before the onset of the visual cue and
ends to 2.5s after cue.

� Time segmentation: After preprocessing, EEG
signals are divided into a number of time segments
with proper interference. As it is possible that
the proper length of the time segments for feature
extraction vary for each subject, the length of the
time segments is considered a parameter in the
proposed algorithm. In training phase, the accuracy
of MI classi�cation based on di�erent lengths of time
segments are evaluated. The length corresponding
to the maximum accuracy is selected. The proce-
dure for segmentation of EEG signals with segment
length T second and time shift �T second is shown
in Figure 2.

� Extracting spatial �lters: In this step, CSP
method is applied to each time segment in two
classes, and spatial �lters are extracted from each
time segment. If we have S time segments,

Figure 2. Time segmentation procedure with T second
segment length and �T second time shift.

S matrices are obtained, which are denoted by
W1;W2; � � � ;WS .

� Training features: Features from each time seg-
ment are obtained by Eq. (6). Accordingly, from ith
time segment, a feature vector is extracted, denoted
by Fi:

Fi =
�
f i1 f i2 � � � f im � � � f i2m1 � � � f i2m

�
;

i = 1; 2; � � � ; S: (17)

The concatenation of feature vectors corresponding
to all time segments results in a feature vector
denoted by F :

F =
�
F1 F2 � � � FS

�
: (18)

Procedure of constructing feature vector is shown in
Figure 3.

� Learning classi�er: Using the extracted training
features, a classi�er is designed to determine the
class label of a test MI.

2.3.2. Evaluation phase
In evaluation phase, the following steps are taken for
each test EEG data:

� Preprocessing of test EEG same as the training
phase.

� Segmentation of EEG signals to a number of time
segments with the optimal length obtained in the
training phase.

� Applying mapping matrix Wi to ith time segment
for i = 1; 2; � � � ; S and extracting features of all
segments.

� Concatenation of feature vectors extracted from all
time segments and obtaining �nal feature vector.

� Classifying the test MI, using the extracted feature
vector and the designed classi�er in training phase.

Figure 3. Procedure of constructing feature vector for an EEG trail.
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2.4. Extension of CSP-based methods to a
four-class problem

One of the limitations of basic CSP method is the
fact that it is only designed for a two-class problem.
Many studies have been conducted to extend this
approach to a multiclass problem [16,19]. In these
methods, a multiclass problem is broken into a number
of two-class problems. One-Versus-the Rest (OVR)
method computes the features of one condition versus
the others. Hence, for solving a four-class problem,
using OVR approach, we require four classi�ers where
each classi�er states whether the test EEG belongs to
that speci�c class or the rest. Therefore, in Eq. (1),
the average covariance of Condition 2 is the sum of
average covariance matrices of other 3 conditions [19].
If average covariance matrix of class i (i = 1; 2; 3; 4)
is denoted by Ri, then for the ith classi�er that
discriminates class i from other classes, in Eq. (1), we
have:

C1 = Ri and C2 =
X
k 6=i

Rk: (19)

Since LTCSP is limited to binary-class problems, we
can use all these extension approaches of CSP for

LTCSP method. In this paper, we use OVR approach
to extend a two-class LTCSP method to a four-class
problem. We name it OVR-LTCSP. In OVR-LTCSP
method, we have four classi�ers each of which is a two-
class LTCSP method classifying each class versus the
rest.

In this paper, we use the OVR approach to apply
our SEG-CSP method to a four-class problem too.
The extended method is referred to as OVR-SEG-CSP.
Similar to basic CSP, for a four-class problem, we need
four classi�ers in which jth classifer discriminates jth
class from the others (j = 1; 2; 3; 4). Each classi�er is a
two-class SEG-CSP method of which the training and
test phase was explained in the previous section.

In OVR-SEG-CSP method, jth classi�er has a set
of matrix W named W j

1 ;W
j
2 ; � � � ;W j

S . The Procedure
of training in OVR-SEG-CSP method is shown in
Figure 4.

In evaluation phase, as shown in Figure 5, each
test EEG data after preprocessing is divided into a
number of time segments. Then from the prepared
data, four feature vectors are extracted. Each feature
vector is obtained using special �lters for classifying
one class versus the rest. Consequently, four results

Figure 4. Procedure of training in OVR-SEG-CSP method.

Figure 5. Evaluation phase in OVR-SEG-CSP method.
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of classi�cation by 4 classi�ers are provided. The
true label of the test EEG data is determined by
the classi�er that provides the highest class label
probability [21]. In the problem with a few training
data and noisy features, it is better to use steady and
simple classi�ers with a few parameters [17]. In this
research, �sher's Linear Discriminant Analysis (LDAs)
has been used for classi�cation.

3. Experiments

3.1. Evaluation criterion
In this paper, we used the accuracy criterion for pre-
senting the result of classifying EEG signals of a two-
class motor imagery data. We applied the proposed
method to dataset 2a of the BCI competition 2008 [14].
In order to compare the performance of this method
with the best competitor in the 2008 competition we
used kappa score, as used for evaluation of methods in
this competition, for a four-class problem. The kappa
score is determined as follow [22]:

� =
p0 � pe
1� pe ; (20)

where p0 is the overall agreement on all test trails. This
parameter is equal to the classi�cation accuracy. pe is
de�ned as the chance agreement. These parameters are
calculated as:

p0 =
MX
j=1

njj=N; (21)

and

pe =
MX
j=1

n:ini:=N2: (22)

nij is the element of confusion matrix on ith row and
jth column which indicates how many trails of class i
have been classi�ed as class j. In an M-class problem,
ni: and n:i refer to the sum of the elements of ith row
and ith column of confusion matrix, respectively. The
diagonal element nii represents the number of correctly

classi�ed test trials of ith class. The total number of
trails is:

N =
MX
i=1

MX
j=1

nij : (23)

3.2. Dataset
The dataset 2a of the BCI Competition IV (2008)
has been provided by the BCI research group at Graz
University [14]. This dataset contains EEG signals
recorded from nine subjects (persons) performing four
di�erent motor imagery tasks, i.e. left hand, right
hand, both feet and tongue. The recording concluded
22 channels (with interelectrode distances of 3.5 cm),
and was sampled with rate 250 Hz. Monopolar
derivations were used throughout all recordings, where
the left mastoid served as reference, and the right
mastoid as ground. The dataset consists of 288 trials
for training and 288 trials for test. This cue-based BCI
includes three important periods. In the �rst 2 seconds
a �xation cross is displayed on the screen; in the next
second, cue is appeared; third period is from 3s to 6s
in whitch subject is imagining the related action. The
paradigm and montage are illustrated in Figure 6.

3.3. Results
Since BCI problems are subject-speci�c, in our pro-
posed method, the length and overlap of time segments
and m parameter of CSP method in these segments
are di�erent for each subject. For this reason, we
must obtain optimal value of these parameters for each
subject. If the overlap of time segments becomes large,
the number of segments would be large. This causes
the increase of dimensionality of feature vectors and
the complexity of algorithm. Accordingly, the shift of
time segments is chosen (�T = 0:5 s). The length of
time segments varies from 0.5 to 3 s with step time
0.5 s (i.e. T = 0:5, 1, 1.5, 2, 2.5, 3 in Figure 2).
The number of spatial �lters (2m) is considered as a
parameter which varies from 2 to 16 (m is 1 to 8).
The parameters T and m are the same in all time
segments. The result of a four-class problem for subject
1 with di�erent parameters T and m has been shown
in Table 1.

Figure 6. (a) Timing scheme of the BCI paradigm. (b) Electrode setup of the 22 channels [14].
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Table 1. The classi�cation rate for OVR-SEG-CSP method for subject 1 in classifying EEG signals of two class left and
right hands with parameters T and m.

m T = 0:5 s T = 1 s T = 1:5 s T = 2 s T = 2:5 s T = 3 s

1 0.69 0.62 0.70 0.67 0.69 0.66
2 0.63 0.65 0.69 0.67 0.67 0.68
3 0.65 0.67 0.72 0.71 0.72 0.71
4 0.65 0.62 0.68 0.71 0.72 0.70
5 0.63 0.62 0.72 0.72 0.70 0.74
6 0.53 0.6 0.68 0.70 0.69 0.67
7 0.53 0.61 0.68 0.69 0.68 0.66
8 0.49 0.59 0.65 0.66 0.64 0.68

Table 2. The kappa score for evaluation of the proposed method OVR-SEG-CSP against the best competitor in the
competition IV, three methods proposed in [18], OVR-LTCSP and OVR-CSP.

The best
competitor in

The method proposed by
Gouy-Pailler et al. [18]

OVR-CSP
(m)

OVR-LTCSP
(c; � ;m)

OVR-SEG-CSP
(T;m)

BCI 2008 CSP JAD MSJAD

Subject 1 0.68 0.52 0.65 0.66 0.74(5) 0.77(5,4,5) 0.74 (3s,5)
Subject 2 0.42 0.39 0.40 0.42 0.34 (4) 0.35(9,5,4) 0.43 (2.5s,6)
Subject 3 0.75 0.67 0.77 0.77 0.76 (4) 0.80 (3,4,2) 0.80(2s,2)
Subject 4 0.48 0.50 0.50 0.51 0.51 (3) 0.60 (10,2,3) 0.57(2s,2)
Subject 5 0.40 0.49 0.44 0.50 0.22 (5) 0.31 (8,2,5) 0.31 (2.5s,2)
Subject 6 0.27 0.18 0.19 0.21 0.27 (3) 0.37 (2,5,3) 0.38(1s,1)
Subject 7 0.77 0.26 0.25 0.30 0.69 (3) 0.75 (2,5,3) 0.76 (2s,2)
Subject 8 0.75 0.57 0.72 0.69 0.62 (5) 0.74 (8,3,5) 0.75 (1.5s,7)
Subject 9 0.61 0.40 0.50 0.46 0.79 (3) 0.80 (3,5,7) 0.80 (2.5s,2)
Average 0.57 0.41 0.49 0.50 0.55 0.61 0.61

We repeated similar experiment for all subjects.
The maximum performance and the corresponding
parameters (m;T ) for each subject have been shown
in Table 2. For instance, for subject 1, the maximum
performance is obtained when T = 3 s and m = 5 are
selected.

In order to compare the proposed method with
the existing CSP method, we applied the OVR-CSP
method [8] to the BCI dataset, i.e. OVR-CSP method
is applied on whole considered 3 s (from 2.5 s to 5.5 s).
The number of spatial �lters (2m) is considered as a
parameter which varies from 2 to 16 (m is 1 to 8). We
obtained the classi�cation rate for di�erent values of
m. The maximum classi�cation rate for each subject
and the optimal m for obtaining it are shown in column
5 of Table 2.

As we see in Table 2, our proposed method has
a better result than OVR-CSP in all subjects except
subject 1. In the worst case, i.e. subject 1, two methods
have the same results. In subject 1, we obtained
maximum kappa in T = 3 and m = 5. With T = 3,
we only have one time segment as OVR-CSP, that
two methods are the same and have the same results.

Thereupon, current CSP method is the state of our
proposed method with T = 3.

In subject 8, the maximum kappa in our proposed
method has been obtained in T = 1:5 s and m = 7.
For this case, four time segments with T = 1:5 s and
�T = 0:5 s exist in 2.5 to 5.5 time interval. First and
second important spatial �lters of each time segment
in classi�er 1 (left hand versus the rest) are shown in
Figure 7.

As we see in this �gure, spatial �lters are di�erent
in time segments. This means that the importance

Figure 7. The selected two spatial �lters in 4 time
segment method for classifying left and right hand motor
imagery classes for subject 2 by SEG-CSP.
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of channels is di�erent for classifying two classes in
time segments. In current CSP method, only one time
segment and consequently one spatial �lter matrix ex-
ist, that means the importance of channels considered
similar in whole time segment. It is possible that
speci�c events happen in one time segment that do not
happen in the others. It is possible that one frequency
band activates in one channel in one time segment
that deactivate in other segment. For this reason,
the importance of channels is di�erent in segments.
With extracting the events happening in di�erent time
intervals and considering all of them in classi�cation
process, we can get better results.

We apply OVR-LTCSP method on our available
data. Similar to work done in [15], we had set � =
c�0, where m 2 f1; � � � ; 8g, � 2 f2; � � � ; 5g and c 2
f1; 2; � � � ; 10g[+1 for LTCSP method. As mentioned
above, �0 is the standard deviation of the squared
norms of the training samples that we considered the
training data of four classes as training data, where this
and other parameters (i.e. m, � and c) are �xed during
the four classi�ers of OVR method in one experiment.
The maximal kappa and the corresponding parameters
(m, � , c) for each subject have been shown in Table 2.

As we see, both OVR-CSP and our proposed
methods have the same results in 3 subjects of the nine.
In four of the subjects, our proposed method has better
results than OVR-LTCSP and in 2 subjects, vice versa.
Anyway, both of them have the same results in average.

Our proposed method has two parameters (m
and T ) and used CSP method in each time segment.
LTCSP has 3 parameter and is more complex than
CSP. thereupon, LTCSP is more complex than our
proposed method which gives more time for execution.
In our proposed method, time segmenting is done on
EEG signals; CSP is applied in all time segments and
features are extracted from all time segments. There-
fore, the same process is applied in all segments. We
can execute our proposed method in parallel process on
the time segments. Thereupon, our proposed method is
faster than LTCSP method in training and test phase.

In Table 2, we also compare the performance
of three addressed methods proposed by Gouy-Pailler
et al. (2010) [18]. In CSP-based method proposed
by them, in each classi�er of OVR approach, at �rst
they applied CSP on whole 3 s motor imagery time
segments. After �ltering by spatial �lters, �ltered
signals divided into �ve time segments and features
in frequency domain are extracted from each segment,
and all features classi�ed by logistic regression method.
We emphasize that in the proposed method, EEG
signals are divided into a number of equal lengths time
segments. Then the CSP method is applied on each
time segment. We could obtain better results than
the CSP-based method. This means that segmentation
before CSP can extract more e�ective events for classi-

�cation. Our proposed method outperformed MSJAD
method proposed by Pailler et al. [18] that is more
complex than our method. They used equal length
for time segments for all subjects, but we considered it
variable and selected optimal value for each subject.

The results of the method proposed by the best
competitor of competition 2008 are shown in Table
2, too. The best competitor used OVR approach
for expanding FBCSP method [13] to a four-class
problem. They used 2 s time segment from 2.5 s to
4.5 s. In FBCSP, nine band-pass �lter is applied in
the time segment of EEG signals, and CSP is applied
on the �ltered signals in each frequency bands. After
�ltering the signals by spatial �lters in each frequency
band, features are extracted. Features are reduced by
a feature selection algorithm based on mutual infor-
mation classi�ed by SVM (Support Vector Machine)
classi�er. Our proposed method outperformed the
method proposed by the best competitor in six subjects
of the nine by the simple features such as variance, the
simple classi�er such as �sher LDA and without feature
reduction.

We used wide band �ltering before doing our
proposed method on EEG signals. We applied CSP
method in each time segments. We can apply CSP-
base method such as SBCSP, FBCSP and other stead
CSP methods in each time segment, and improve our
method. With this manner subject-speci�c frequency
patterns are extracted from each time window and
features with more information for classi�cation are
obtained from EEG signals. With parallel processing
in all segments we can save time.

4. Conclusions

In this paper we addressed the problem of multiclass
BCI Motor imagery recognition. We used dataset 2a of
BCI competition IV to evaluate the performance of the
proposed method. This database contains EEG signals
related to four di�erent motor imagery tasks of nine
subjects.

One of the most successful methods in MI-based
BCI is CSP method. This method obtains spatial �lters
from EEG data; such �lters reveal the importance of
EEG channels in discrimination of MI data. In the
existing CSP method, spatial �lters are extracted using
EEG channels as one time segment. The fact that
the generated frequency patterns in Motor Imagery are
di�erent from one time slot to another, motivated us
to apply CSP on EEG time segment. The augment
of features from EEG time segments are used as
the feature vector for discriminating EEG signals for
two MI classes. We utilized the One-Versus-the-Rest
(OVR) approach [16] to extend the proposed method
to the four-class MI problem. We used LDA algorithm
for this classi�cation.
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CSP method is based on estimating covariance
matrix, and does not consider temporal segmentation
of EEG signals. LTCSP [15] is the extension of CSP
method that considers time structure of the signals.

We used time segmentation for considering the in-
formation of consecutive time segments. Our proposed
method and LTCSP have the same result in average,
but our method is simpler than the other.

The best competitor used FBCSP method [13] for
classifying a four-class motor imagery. Our method
outperforms in many subject and in average of the best
competitor's method. Our proposed method conquest
MSJAD and CSP and JAD-based method proposed by
Gouy-Pailler et al. [18]. In their CSP-based method
they apply CSP method on whole motor imagery time
segment, and then they divided �ltered signal, by
extracted spatial �lters, into several time segments.
In our method, we used time segmentation and then
CSP applied in each time segment. More success
of our method shows that time segmentation before
CSP has a signi�cant e�ect on the improvement of
results.

Obtaining the good results with our proposed
method and using the simple features such as variance
and simple classi�er such as �sher LDA shows that
information of consecutive time segments are impor-
tant for classi�cation. Our good achievement is due
to the fact that the e�ect of noise and artifacts are
reduced by segmenting EEG signals into a number of
time slots.

However, the performance of this method depends
on an appropriate pre-�ltering in frequency domain.
Since MI-based BCI is a subject-speci�c problem, as
a future work, the performance of BCI system can be
improved by selecting proper frequency band for each
subject individually. For instance, we can apply CSP-
based method such as SBCSP and FBCSP methods
instead of CSP method in each time interval, and
extract frequency bands, activate or deactivate, in each
time segment.

Our proposed method applies the same process on
all time segments; therefore, we can have faster method
with parallel processing.
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