
Scientia Iranica D (2013) 20(6), 1953{1977

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

A formal mapping from Object-Z speci�cation to C++
code

M. Naja� and H. Haghighi�

Faculty of Electrical and Computer Engineering, Shahid Beheshti University G.C., Tehran, P.O. Box 1983963113, Iran.

Received 13 May 2012; received in revised form 12 December 2012; accepted 25 June 2013

KEYWORDS
Formal program
development;
Object-oriented
programming;
Animation;
Object-Z;
C++.

Abstract. Object-Z is an extension of Z which provides speci�c constructs to facilitate
speci�cation in an object-oriented style. A number of contributions have been made so
far to animate Object-Z with various object-oriented programming languages. However,
none of the existing animation methods present their mapping rules formally. Also, none
of these animation methods prove the correctness of their mapping rules. In our previous
work, we informally presented an animation method to map Object-Z speci�cations into
C++ code. In this paper, we propose a formal mapping from Object-Z speci�cations to
C++ code. We also prove the correctness of the given mapping rules.
c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Object-orientation is a popular approach which is
applied to formal methods in order to express encap-
sulation and reuse concepts in formal speci�cations [1].
Object-Z [2,3] is an extension of Z [4] providing facility
to de�ne large and complex software as a collection
of independent classes [5]. There are a number of
approaches in the literature for developing object-
oriented programs from Object-Z speci�cations.

Rafsanjani and Colwill [6] presented a method
which maps Object-Z speci�cations to C++ code
structurally; however, this method does not consider
mapping of some constructs of Object-Z, such as
precondition, postcondition, class invariants, visibility
list, operation operators, object containment and some
types of de�nitions such as class variables and generic
parameters. In [7], Fukagawa et al. built upon the
work of [6] to propose an approach for mapping Object-
Z speci�cations to C++ code; indeed, they added two
new rules to the work of [6] that consider constructor

*. Corresponding author. Tel.: +982129904190;
E-mail addresses: M.Naja�@mail.sbu.ac.ir (M. Naja�),
h haghighi@sbu.ac.ir (H. Haghighi)

for types of constants and template class for generic
parameters.

Johnston and Rose [8] presented another method
which animates Object-Z speci�cations using C++.
Although this method covers mapping of precondition,
postcondition, class invariants, visibility list, some
types of de�nitions like free types and class variables,
it does not consider mapping of axiomatic de�nitions
and multiple inheritance. In addition, the proposed
mapping rules for some constructs are rather general;
examples are visibility list and state schema.

Although some other works exist in the literature
which animate Object-Z speci�cations by other object-
oriented programming languages, such as Java [5,9],
Ei�el [10] and Spec# [11], there are limitations in all of
these works: none of them propose their mapping rules
formally and prove the correctness of their mapping
rules.

In our previous work [12-14], we presented an
animation approach to develop C++ code from Object-
Z speci�cations that covers the mapping of some
Object-Z structures whose mappings are never been
considered in the mentioned work. For example, we
introduced animation rules for most of the global
paragraph constructs, all types of de�nitions like class

1954 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

union, object aggregation, object containment, all of
the local de�nitions and operation operators. Also,
animation rules were given with much more details
facilitating automation capability.

In this paper, we present a new version of our
animation approach to develop C++ code from Object-
Z speci�cations which have the following advances in
comparison to our previous work [12-14]:

1. We present our previous mapping rules [12-14]
formally. In this way, the precision of presented
rules is increased. In addition, the number of
various cases, when mapping some constructs, is
decreased.

2. We prove the correctness of our mapping rules; a
contribution which has not been aimed with any of
the existing animation methods.

3. We present translation of some constructs, such
as local abbreviation de�nition (when its left-hand
side is a variable name, and its right-hand side is
in the form of class union or in the form of a set
of sets of numbers) which have not been covered in
our previous work [12-14].

The paper is organized in the following way: Section 2
presents formal mapping from Object-Z to C++. In
Section 3, we prove the correctness of our method.
In Section 4, we give a case study. In Section 5, we
compare our method with other related methods based
on a set of de�ned criteria. Finally, Section 6 concludes
the paper.

It is worth mentioning that due to the space
limitation, we only present the mapping of global
paragraphs and class paragraphs except the visibility
list. The formal mapping of other constructs, such
as visibility list, de�nitions and promotion can be
obtained easily. Also, we do not review related work
in this paper; interested readers can refer to [14]
for a complete description of related work. As the
preliminaries of this paper, the readers should be
familiar with Object-Z [2], C++ [15] and also our
previous work [14].

2. Formal mapping of Object-Z to C++

Based on our previous work [12-14], we interact with
the user in order to obtain the mapping of predicates,
check whether operators have the same semantics, and
increase the exibility of our method by enabling the
user to select one of the alternative mappings according
to his or her preference; see the mapping of scope
enrichment as an example. It is worth mentioning
that some other work, such as [16,17], considers in-
teraction with the user to increase the exibility of
the mapping method regarding user's opinion in code
generation process. For modeling the user interaction,

we introduce a new basic type UserDesc and a new free
type UserInteraction Description as follows:

[UserDesc]
UserInteraction Description ::= NULL j Input <<Seq
UserDesc>>

Value \NULL" allows us to show that no interaction
with the user is performed. The constructor \Input"
allows us to get an input from the user via its expression
(i.e., Seq UserDesc).

Now we de�ne a translation function K which
translates each part of the Object-Z abstract syntax
(see Appendix A for complete account of the abstract
syntax of Object-Z) into its counterpart in C++ (using
user interaction, if needed).

De�nition 1. Translation Function K:
K: Object-Z � UserInteraction Description !
C++ is a function from Object-Z � UserInterac-
tion Description to C++ which will be explained in
detail in Subsections 2.1, 2.2, 2.3 and 2.4. Before
beginning these subsections, it should be noted that:

1. When applying translation function K, we assume
that UserInteraction Description has default value
\NULL".

2. We consider each construct in Object-Z abstract
syntax as a type throughout the paper. Also,
we assume that each Object-Z construct, such as
PredicateList and Declaration, is a set of elements;
hence, we use set notations, such as membership
throughout the paper.

3. We consider a set of functions (as utilities) to
present translation function K. These functions are
illustrated in Table 1.

4. We de�ne a set of predicates in order to present
translation function K. These predicates are illus-
trated in Table 2.

2.1. Mapping of speci�cation
We did not present any mapping for speci�cation
in our previous work [12-14]. The translation of a
speci�cation is equivalent to translation of each of
its paragraphs to their counterparts in C++ (user
interaction may be needed to obtain the mapping of
paragraphs in speci�cation); hence, the translation of
speci�cation is as follows:

K (Speci�cation, user interaction) = K (Para-
graphList, user interaction) = 8 p: ParagraphList �
K (p, user interaction)

2.2. Mapping of global paragraphs
Now we present the translation of each global para-
graph construct as follows. Note that the scope of

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1955

Table 1. Utility functions used for formal mapping.

Function Description

GetParam

(VariableName v, Expression e)
Returns the parameters in `e' needed to compute the value of `v'.

GetParam

(Identi�er i, PredicateList p)
Returns the parameters in `p' needed to obtain the value of `i'.

GetComExp

(Identi�er i, PredicateList p)
Returns predicates of `p' related to computing the value of `i'.

GetAbElemType (Expression e)

We use this operation in the translation of abbreviation de�nition

when its left-hand side is a variable name, and its right-hand side

is a set de�nition along with a list of its elements. This operation

returns the type of elements in `e' (i.e., numeric or not numeric).

GetSetKind (Expression e)

We use this operation in the translation of abbreviation de�nition

when its left-hand side is a variable name, and its right-hand side is

a set de�nition along with a list of its elements. This operation checks

whether `e' is in the form of at set de�nition or non-at set de�nition.

GetCardVar (Expression e, N i)

We use this operation in the translation of abbreviation de�nition

when its left-hand side is a variable name, and its right-hand side is

a set de�nition along with a list of its elements. This operation

returns the number of elements de�ned in the `i'th (i may be 0 or 1)

level of sets in `e'.

GetUniqueC++Name () Returns a unique name which is correct according to the C++ syntax.

GetRange (Expression e) Returns the range value de�ned in `e'.

GetPredExceptInitializations

(PredicateList p, Declaration d)

Returns the predicates of `p' except those used for initializing

variables of `d'.

GetSuperClass (ClassName c) Returns super classes of class `c'.

GetOpParam

(ClassName c, OperationName op)

Returns the parameters of operation `op' of class `c'. We

assume that the type parameter, whose array form is the output

of this operation, has been already de�ned in C++.

GetOpSignature

(ClassName c, OperationName op)

Returns the signature of operation `op' of class `c'. We

assume that the type OpSignature, which is the output of this

operation, has been already de�ned in C++.

GetItemType

(ClassName c, Name n)

Checks if name `n' that is de�ned in class `c' is an attribute

or a method; the result is as attribute or method.

GetClass

(OperationExpression op)

Returns the class where the operation existing in `op' is de�ned.

We assume `op' is in the form of operation promotion.

GetPre

(ClassName c, OperationName op)

Returns the mappings of the �rst \if-conditions" in the body

of operation `op' of class `c' without check stateschema ()

(see this function later).

GetPost

(ClassName c, OperationName op)
Returns the mappings of predicateList of operation `op' of class `c'.

Merge (Parameter[] p1,

Parameter[] p2, operator o)

Merges the parameters `p1' and `p2' according to the

semantics of operator `o'.

1956 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

Table 2. Predicates used for formal mapping.

Predicate Meaning
OperatorDe�nition
(AxiomaticDe�nition a)

Checks whether `a' is in the form of operator de�nition.

OperatorIsInC++
(AxiomaticDe�nition a)

Checks whether the operator, which is de�ned in `a', already exists in the
set of C++ operators. In other words, OperatorIsInC++ (a) is equivalent
to OperatorDe�nition (a) ^ a.Declaration.Identi�er 2 C++Op
C++Op is a set whose elements are all operators in C++ language.

SameSemanticOperatorInC++
(AxiomaticDe�nition a)

Checks whether the operator, which is de�ned in `a' and already exists in
the set of C++ operators, has the same semantics as that of the existing
operator in C++; we interact with the user in order to check whether
operators have the same semantics or not.
OperatorDe�nition (a) ^ a.Declaration.Identi�er 2 C++Op ^
user interaction is `the operator has the same semantics as that of the
existing operator in C++'.

ExistsInClassUnion
(ClassName c, Expression e)

We use this operation in the translation of abbreviation de�nition
when its left-hand side is a variable name, and its right-hand side is
in the form of class union. This operation checks whether class `c'
exists in class union expression `e'.

ExistsOpInClass
(ClassName c, OperationName op)

Checks whether the operation `op' is de�ned in class `c', i.e.
op 2 c.OperationList

Noattrenamed
(ClassName c, OperationName o)

None of the attributes of class `c' which are used in operation `o' are
renamed.

CallOrpromotion
(OperationExpression op)

Operation expression `op' is in the form of operation call or operation
promotion.

Comdirec (OperationExpression op1,
OperationExpression op2)

Communication direction is from `op1' to `op2'. We assume that `op1'
and `op2' are either in the form of operation call or operation promotion.

Globdef
(AxiomaticDe�nition ad)

`ad' is de�ned globally in the speci�cation.

Statevariableschema
(Schema s)

At least one state variable with type `s' is de�ned in Class�;
we will de�ne Class* later.

mappings of global paragraph constructs (except the
mapping of axiomatic de�nition in the form of operator
de�nition and generic de�nition in the form of operator
de�nition) are the whole C++ code obtained from the
mapping of the speci�cation (i.e., global); see [14] for
more details.

Basic type de�nition
According to our previous work [13,14], we map each
basic type to a struct as follows:

K (BasicTypeDe�nition) = K ([Identi�erList]) = 8 i:
Identi�er ji 2 Identi�erList � (K(i) = struct i fg;) �
Axiomatic de�nition
Based on the form of an axiomatic de�nition (constant
de�nition, operator de�nition, symbol (not operator)
de�nition and function de�nition), we considered four
cases for its mapping in [12,14]. We use concept \class
union" in order to model these four cases. More

precisely, for each form of the axiomatic de�nition, we
introduce a new class whose instances are axiomatic
de�nitions in the form of case description. For instance,
we consider a new class whose name is \ADConstant-
De�nition" to model the axiomatic de�nition in the
form of constant de�nition; in this way, four cases of
axiomatic de�nition are modeled formally as follows:

AxiomaticDe�nition = = ADConstantDe�nition [
ADOperatorDe�nition [ADSymbolDe�nition [AD-
FunctionDe�nition

Also, we assume that the Declaration part of the
axiomatic de�nition is in the form of \Identi�er: Ex-
pression". Now we present the formal translation
of AD: AxiomaticDe�nition using the mapping rules
given in our previous work [12,14]; of course, there
is an exeption: when the operator already exists in
C++, and its semantics is not the same as what
exists in C++, we map \AD" to a global method

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1957

whose return type is Boolean; this method checks
satisfaction of the semantics of the de�ned operator.
In the following, \NM" means that \no mapping is
needed". \PredicateListMapping" indicates the map-
ping of PredicateList part of \AD" obtained via user
interaction. Also, \OZIdenti�er" means that word
\OZ" is concatenated with \Identi�er" to build a new
name. Similarly, \opIdenti�er" denotes that word \op"
is concatenated with \Identi�er".
((AD 2 ADConstantDe�nition)) (K (AD,

PredicateListMapping) =
K ([Identi�er: Expression �jPredicateList�],
PredicateListMapping) = (const K (Identi�er:
Expression)

Boolean check Identi�er ()f
if(!K (PredicateList, PredicateListMapping))
return false;
return true;g)))

_
(((AD 2 ADOperatorDe�nition) ^ OperatorIs-
InC++ (AD) ^ SameSemanticOperatorInC++
(AD))) (K (AD) = NM))
_

(((AD 2 ADOperatorDe�nition) ^ OperatorIs-
InC++ (AD) ^ !SameSemanticOperatorInC++
(AD))) (K (AD) =
Boolean OZIdenti�er (K (Expression))f

if (K (PredicateList, PredicateListMapping))
return true;

return false;g))
_
(((AD 2 ADOperatorDe�nition) ^ !OperatorIs-
InC++ (AD)))

((K (AD, � the left-most operand of the operator
function is an object of the class of that operator�_ PredicateListMapping) =
K ([Identi�er: Expression �jPredicateList�], � the
left-most operand of the operator function is an
object of the class of that operator � _
PredicateListMapping) =
(virtual Boolean opIdenti�er (ClassName c, K
(Expression))f

if (K (PredicateList, PredicateListMapping))
return true;
return false;g))

_
(K (AD, � the left-most operand of the operator
function is an object of a class di�erent from the
class of that operator � _ PredicateListMapping) =
K ([Identi�er: Expression �jPredicateList �], �
the left-most operand of the operator function is an
object of a class di�erent from the class of that

operator � _ PredicateListMapping) =
(typedef char [50] ClassName;

Boolean opIdenti�er (ClassName c, K (Expression))f
if (K (PredicateList, PredicateListMapping))
return true;
return false;g))))

_
((AD 2 ADSymbolDe�nition)) (K (AD, Predi-
cateMapping) =
K ([Identi�er: Expression �jPredicate�],
PredicateMapping) =
(#de�ne Identi�er (GetParam (Identi�er,
Expression)) K (Predicate, PredicateMapping))))
_

((AD 2 ADFunctionDe�nition)) (K (AD, Predi-
cateListMapping)=
K ([Identi�er: Expression �jPredicateList�],
PredicateListMapping) =
(void Identi�er (K (Expression))fK (PredicateList,

PredicateListMapping);g)))
In the translation of axiomatic de�nition in the form
of symbol (not operator) de�nition, we used Predicate
instead of PredicateList because we assume this case of
axiomatic de�nition has only one predicate. �
Generic de�nition
In our previous work [14], we considered two cases for
the mapping of generic de�nition based on whether it
is in the form of operator de�nition or not. Similar to
what we did for modeling the four cases of axiomatic
de�nition, we model the mentioned two cases of generic
de�nition formally using the concept of \class union"
as follows:

GenericDe�nition= = GDOperatorDe�nition [
GDNOperatorDe�nition

Now we present the formal translation of GD: Gener-
icDe�nition using the mapping rules given in our previ-
ous work [14]. We map a generic de�nition that is in the
form of operator de�nition and does not have formal
parameters similar to the mapping of axiomatic de�ni-
tion which is in the form of operator de�nition; abbre-
viation \GPADOD" in the following implies that we
use a translation similar to what presented for \global
paragraph axiomatic de�nition in the form of operator
de�nition". Note that we interact with the user in
order to obtain the mapping of predicates, such as
PredicateList part of GD (i.e., PredicateListMapping)
and also preconditions (i.e., PredicateListPrecondition)
and postconditions (i.e., PredicateListPostcondition)
included in the PredicateList part of GD:

((GD 2 GDOperatorDe�nition) ^ (GD = [Declaration
�j PredicateList�]) ^ (GD 2 ADOperatorDe�nition))

1958 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

) K (GD) = GPADOD
_

((GD 2 GDNOperatorDe�nition))
(K ([Declaration �FormalParameters�
�jPredicateList�], PredicateListMapping _
DeclarationMapping _ PredicateListPrecondition
_ PredicateListPostcondition) =
K ([Declaration �[Identi�erList]�
�jPredicateList�], PredicateListMapping _
DeclarationMapping _ PredicateListPrecondition
_ PredicateListPostcondition) =
(template h 8 i: Identi�erList � class i, i
Boolean GetUniqueC++Name () (K
(Declaration, DeclarationMapping))f

if (K (PredicateList, PredicateListMapping _
PredicateListPrecondition))f
K (PredicateList, PredicateListMapping _
PredicateListPostcondition)

return true;g
return false;g))) �

Abbreviation de�nition
In our previous work [12,14], we considered four cases
for the mapping of abbreviation de�nition. Always,
the left-hand side of the abbreviation de�nition is a
variable name, but its right-hand side is in the form
of a (an): computational expression, set de�nition
along with a list of its elements, class union and
range de�nition. The formal model of these cases of
abbreviation de�nition is as follows:

AbbreviationDe�nition = = AD1 [AD2 [AD3 [AD4

where AD1, AD2, AD3 and AD4 contain those in-
stances of abbreviations whose right-hand side is in
the form of computational expression, set de�nition
along with a list of their elements, class union and
range de�nition, respectively. In all four cases, the left-
hand side is a variable name. In order to present the
translation of abbreviations, we de�ne new free types
whose name are SetKind and AbElemType (\non-at"
refers to a set of . . . of numbers):

AbElemType ::= numeric j not numeric
SetKind ::= at j non-at

Now we map AbD: AbbreviationDe�nition. To trans-
late an abbreviation de�nition whose right hand side is
a set along with the list of its members, we consider two
cases in terms of whether the right hand set is a at
set (of non-number or number members) or a non-at
set. For non-at sets, each member may be either a
number or a set; if a member is set, it can be itself at
or non-at similar to the above distinction. This story
can be continued recursively. In our previous work [14],

we only considered the mapping of at sets. Now, we
map a non-at set to a linked list of records each of
which corresponds to a set member. These records are
de�ned by a struct, called Rec VariableName; see the
following obtained code in C++. The �rst attribute
of this record contains a number if the corresponding
member is a number; otherwise, it has no value. For
a member that is a set itself, p2 points to a linked list
obtained from the mapping of that set recursively. In
addition, we have another pointer, called p1, to point
to the next member of the set being mapped. For
example, Figure 1 shows the mapping of ff1; 2g; 3g to
this struct.

Also, we consider two methods \Variable-
Name Initialization", which recursively maps an Ex-
pression in Abbreviation De�nition when it is
in the form of a non-fat set, and \initializa-
tion VariableName", which initialize VariableName
(VariableName is the left hand side of AbD; see
below). For simplicity, only the pseudo code of the
mapping is given here (for this, many implementation
details and required de�nitions are not given here; for
example, we use type \Expression" in the signature
of \VariableName Initialization" without de�ning it in
advance). Note that we interact with the user to
initialize the elements of VariableName for obtaining
the mapping of the Expression part of AbD when AbD
2 AD1 (i.e., ExpressionMapping).

(((AbD 2 AD1))
(K (AbD, ExpressionMapping) =
K (VariableName = = Expression,
ExpressionMapping) =
(#de�ne VariableName (GetParam (VariableName,
Expression)) K (Expression, ExpressionMapping))))
_

((AbD 2 AD2))
((((GetSetKind (Expression) = at) ^
(GetAbElemType (Expression) = numeric))
_
(GetSetKind (Expression) =non-at)))
(K (AbD) =
K (VariableName = = Expression) =

(struct Rec VariableNamef
int value;
Rec VariableName * p1;

Figure 1. Mapping of ff1; 2g; 3g to linked list of
Rec VariableName elements.

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1959

Rec VariableName * p2;gVariableName;
Rec Variable* VariableName Initialization (Expression
s)f

Rec VariableName * p;
Rec VaribaleName * pp;
p=NULL;
for each x in sf

pp=new Rec VariableName ();
if (x is number)f

pp->value=x;
pp->p2=NULL;g

elsef
pp->p2=VariableName Initialization (x);g

pp->p1=p;
p=pp;gg

void initialization VariableName ()
fVariableName = VariableName Initialization
(Expression);g

)))_
((GetSetKind (Expression) = at) ^
(GetAbElemType (Expression) = not numeric))

(K (AbD, ExpressionMapping) =
K (VariableName = = Expression,
ExpressionMapping) =
(enum VariableName fK
(Expression, ExpressionMapping)g))))
_

((AbD 2 AD3)) (K (AbD) =
K (VariableName = = Expression) =
(struct VariableName f 8 c: Class j
ExistsInClassUnion (c, Expression) � c *
GetUniqueC++Name (); g)))
_

((AbD 2 AD4)) (K (AbD) =
K (VariableName = = Expression) =
(int [GetRange (Expression)]
VariableName;)))�

Free type de�nition
We only present the mapping of free type de�nition
when no constructor is used in its de�nition as follows
(this case is a limitation of our work):

K (FreeTypeDe�nition) =K (Identi�er ::= BranchList)
= enum Identi�er f 8 b: Branch j b 2 BranchList � �

Notation \j" used in the above mapping is the
separator which is de�ned in enumerator syntax.

Schema
If SchemaHeader is in the form of SchemaName,
then the translation of schema is as follows (\Pred-
icateListMapping" indicates the mapping of Predi-
cateList part of Schema obtained via user interaction):
K (Schema, PredicateListMapping) =

K (SchemaName =̂ [Declaration
�jPredicateList�], PredicateListMapping) =
struct SchemaName f K (Declaration) g;
Boolean check SchemaName (SchemaName s)f

if (K (PredicateList, PredicateListMapping))
return true;
return false;g�

Class
The translation of class is as follows. Notice that we
present the translation of class paragraphs in Subsec-
tion 2.3. Also, since we may need user interaction in
the translation of class paragraphs, we consider user
interaction in translation function here:

K (Class, user interaction) = K (ClassName
�FormalParameters�, user interaction)=

[�VisibilityList�
�InheritedClassList�
�LocalDe�nitionList�
�State�
�InitialState�
�OperationList�]

K (FormalParameters);
class ClassName: K (InheritedClassListClassName)

fK (�LocalDe�nitionList�, user interaction);
K (�State�, user interaction);
K (�InitialState�, user interaction);
K (�OperationList�, user interaction)
K (InheritedClassListRenameList)g;

where K (InheritedClassListClassName) denotes the
mapping of ClassName part of the InheritedClassList
(see InheritedClassList abstract syntax in Appendix
A). In addition, K (InheritedClassListRenameList)
indicates the mapping of the remained parts of Inherit-
edClassList.

In our previous work [12-14], we proposed tem-
plates for constructors and destructors; hence, they
must be considered in class de�nition. Also, it is worth
mentioning that the mapping of the VisibilityList is
considered implicitly when mapping other constructs;
see [14] for details.�
2.3. Mapping of class paragraphs
We present the translation of each class construct
step by step as follows. For each class in Object-Z
speci�cation, we consider a corresponding class in C++
which is denoted by Class* throughout the paper.

Formal parameters
In our previous work [12,14], we considered a template
class for each formal parameter. Thus, the translation
of formal parameters is as follows (the mapping of each
formal parameter has global scope):
K (FormalParameters) = K ([Identi�erList])=
template h 8 i: Identi�erList � class i, i �

1960 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

Local de�nitions
Basic type de�nition: Its translation is the same as of
the global paragraph basic type de�nition. However,
the result of translation must be considered within
Class* de�nition.

K (BasicTypeDe�nition) = K ([Identi�erList]) =
8 i: Identi�erList � (K (i) = struct i fg;) �
Axiomatic de�nition: Similar to what we did for the
mapping of global paragraph axiomatic de�nition, we
consider four cases. However, mappings of all cases
except axiomatic de�nition in the form of operator
de�nition must be considered within Class* de�nition;
see [14] for more details. Now we map AD: Axiomat-
icDe�nition (see Subsection 2.2 Axiomatic De�nition).
If the axiomatic de�nition is in the form of a (an):

� Constant de�nition: In addition to map the Predi-
cateList part of AD in the constructor of Class* [14],
the following translation must be considered:

(AD 2 ADConstantDe�nition))
(K (AD, PredicateListMapping) =
K ([Identi�er: Expression � j PredicateList�], Pred-
icateListMapping) =

(const K (Declaration)
virtual Boolean check Identi�er ()f
if(!K (PredicateList, PredicateListMapping))
return false;
return true;g))

� Operator de�nition: The translation of local ax-
iomatic de�nition in the form of operator de�nition
is the same as that of global paragraph axiomatic
de�nition. In the following, GPADOD abbreviates
for \Global Paragraph Axiomatic De�nition in the
form of Operator De�nition".

(AD 2 ADOperatorDe�nition))) (K (AD) =
GPADOD)

� Symbol (not operator) de�nition: Its translation is
the same as that of global paragraph axiomatic def-
inition (when it is in the form of symbol de�nition);
GPADSD abbreviates that translation:

(AD 2 ADSymbolDe�nition)) (K (AD, Predi-
cateMapping) = GPADSD)

� Function de�nition: The translation of this case of
axiomatic de�nition is as follows:

(AD 2 ADFunctionDe�nition)) (K (AD,
PredicateListMapping)=
K ([Identi�er: Expression [jPredicateList]], Predi-
cateListMapping) =

(void Identi�er (K (Expression))fK (PredicateList,
PredicateListMapping);g))�

Abbreviation De�nition: Similar to what we did for the
mapping of global paragraph abbreviation de�nition,
we consider four cases here. However, mappings of all
cases must be considered within Class* de�nition. Now
we map AbD: AbbreviationDe�nition (see Subsection
2.2 Abbreviation De�nition). Suppose that the left-
hand side of the abbreviation de�nition is a variable
name. In the following, we provide the mapping of the
de�nition based on the various forms of its right-hand
side:

� Computational expression: Its translation is the
same as that of global paragraph abbreviation de�-
nition when its left-hand side is a variable name, and
its right-hand side is in the form of computational
expression; GPAbDCE denotes the translation of
this case of global paragraph abbreviation de�nition:
(AbD 2 AD1)) (K (AbD, ExpressionMapping) =
GPAbDCE)

� Set de�nition along with a list of its elements:
((AbD 2 AD2))
((((GetSetKind (Expression) = at) ^
(GetAbElemType (Expression) = numeric)) _
(GetSetKind (Expression) =non-at)))
(K (AbD) = K (VariableName = = Expression) =
(struct Rec VariableNamef

int value;
Rec VariableName * p1;
Rec VariableName * p2;gVariableName;

virtual Rec Variable* VariableName Initialization (Ex-
pression s)f

Rec VariableName * p;
Rec VaribaleName * pp;
p=NULL;
for each x in sf

pp=new Rec VariableName ();
if (x is number)f

pp->value=x;
pp->p2=NULL;g

elsef
pp->p2=VariableName Initialization (x);g

pp->p1=p;
p=pp;gg

virtual void initialization VariableName ()
fVariableName = VariableName Initialization (Expres-
sion);g)))_
(((GetSetKind (Expression) = at) ^
(GetAbElemType (Expression) = not numeric))
)
(K (AbD, ExpressionMapping) =
K (VariableName = = Expression,
ExpressionMapping) =

(enum VariableName f K (Expression,

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1961

ExpressionMapping)g))))

� Class union: We did not present any mapping for
this case of abbreviation de�nition in our previous
work [12-14]. Nevertheless, the translation of this
case of abbreviation de�nition is the same as that
of global paragraph abbreviation de�nition when
its left-hand side is a variable name, and its right-
hand side is in the form of class union; GPAbDCU
abbreviates that translation:
(AbD 2 AD3)) (K (AbD) = GPAbDCU)

� Range de�nition: Its translation is the same as that
of global paragraph abbreviation de�nition when its
left-hand side is a variable name, and its right-hand
side is in the form of range de�nition; GPAbDRD
abbreviates that translation:

(AbD 2 AD4)) (K (AbD) = GPAbDRD) �
Free type de�nition: Its translation is the same as
that of global paragraph free type de�nition; GPFD
abbreviates the translation of global paragraph free
type de�nition when it involves no constructor. Notice
that the translation of local free type de�nition must
be considered within Class* de�nition.
K (FreeTypeDe�nition) = GPFD �
State
We consider the Declaration given before Delta nota-
tion in State abstract syntax as \Declaration1" (i.e.,
the part including primary variables) and the Dec-
laration given after Delta notation as \Declaration2"
(i.e., the part including secondary variables). Also,
we separate two categories of secondary variables:
those secondary variables that are not obtained via
primary variables and other constants in PredicateList
(i.e., D2NP), and those secondary variables that are
obtained via primary variables or other constants in
PredicateList (i.e. D2P). To model these two categories
formally, we use a \class union" as follows:

Declaration2: D2P [D2NP

Now, we present the translation of State which may
need user interaction as follows. We interact with the
user in order to obtain the mapping of PredicateList
part of State (i.e., PredicateListMapping), global predi-
cates (i.e., PredicateMapping) and the Declaration part
of those generic de�nitions which are not in the form
of operator de�nition (i.e., DeclarationMapping).

Note that CEL and FAS, which are used to
obtain the mapping of secondary variables according to
our previous work [14], abbreviate for \Computational
Expression Length" (the expression in PredicateList
used to compute the value of these variables) and
\Frequency of Appearance in the Speci�cation" (the

frequency of appearance of these variables in the
speci�cation), respectively. Also, K (Dec) indicates the
mappings of de�nitions; see [14] for details. Notice that
the mapping of all parts of State must be considered
within Class* de�nition:

K ([Declaration1 [� Declaration2] [jPredicateList]],
CEL _ FAS _ PredicateListMapping _
PredicateMapping _ DeclarationMapping) =

(8Dec: Declaration j Dec 2 Declaration1 � K (Dec)

(8Dec: Declaration j Dec 2 Declaration2 �
((Dec 2 D2np)) K (Dec))

_
((Dec 2 D2p))
(K ([Dec�j PredicateList�], CEL _ FAS _
PredicateListMapping) =
K ([Identi�er: Expression �jPredicateList�], CEL
_ FAS _ PredicateList Mapping) =
(((CEL=NotLong) ^ (FAS= High)))

(#de�ne Identi�er (GetParam (Identi�er,
PredicateList))

K (GetCompExp (Identi�er, PredicateList),
PredicateListMapping)))

_
((FAS= Low)) (K (Dec);

virtual inline void set Identi�er ()f
K(GetCompExp (Dec, PredicateList),
PredicateListMapping);g))

_
(((CEL=Long) ^ (FAS=High))) (K (Dec);

virtual void set Identi�er ()f
K(GetCompExp (Dec, PredicateList),
PredicateListMapping);g)))

virtual Boolean check stateschema ()f
if ((8 P: Predicate � K (P,
PredicateMapping)) && (8 AD:
AxiomaticDe�nition j Globdef (AD) �
check axiomaticde�nition name ()) &&
K (GetPredExceptInitializations
(PredicateList, Declaration2),
PredicateListMapping) && GetSuperClass
(Class*)::check stateschema ()
&&(8 S:Schema jStatevariableschema (S) �
check SchemaName (S.SchemaName s)) &&
(8 GD: GenericDe�nition j GD 2
GDNOperatorDe�nition �
genericde�nition name (K (GD.Declaration,
DeclarationMapping)))(

return true;
return false;g) �

Initial state
The translation of Initial State using our mapping rules

1962 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

in [14] is as follows. We interact with the user in
order to obtain the mapping of the PredicateList part
of INIT (i.e., PredicateListMapping). We also apply
PredicateList in constructor of Class*. In addition,
method INIT must be considered within Class* de�-
nition:

K (INIT=̂[PredicateList], PredicateListMapping) =
virtual Boolean INIT()f

return (check stateschema () &&
K (PredicateList, Predicate

ListMapping) && GetSuperClass
(Class*)::INIT ()) g �

Operation schema
According to our previous work [12-14], we map op-
eration schema to a virtual method whose name is
the operation schema name itself as follows. Notice
that we interact with the user in order to obtain the
mapping of PredicateList part of operation schema
(i.e., PredicateListMapping). The mapping of the
operation schema must be considered within Class*
de�nition:

((! ExistsOpInClass (Class*, OperationName)))
(K (OperationName =̂ [DeltaList �Declaration� �j
PredicateList�], PredicateListMapping) =
(virtual Boolean OperationName (K (Declaration),
GetOpParam (GetSuperClass (Class*), Opera-
tionName))f

if (check stateschema () &&
K (9State* � [DeltaList �Declaration�
�j PredicateList�]n Declaration�,
PredicateListMapping) &&
GetOpSignature (GetSuperClass (Class*),
OperationName))f

K (PredicateList, PredicateListMapping);
return check stateschema();g

return false;g))))
_

((ExistsOpInClass (Class*, OperationName)))
(K(OperationName =̂ [DeltaList �Declaration� �j
PredicateList�], PredicateListMapping) =
(virtual Boolean OperationName (K (Declaration))f

if (check stateschema() &&
K (9 State* � [DeltaList �Declaration�
�j PredicateList�]n Declaration�,
PredicateListMapping))f

K (PredicateList, PredicateListMapping);
return check stateschema();g

return false;g)))
where Declaration� and State* denote the outputs of
the operation schema and State of Class*, respectively.
�

Inheritance
In order to present the translation of rename list when
mapping inheritance, we de�ne a new free type as
follows:

ItemType ::= attribute j method

Now, we translate inheritance as follows. Notice that
in the case of method renaming, when at least one of
the method attributes is renamed, we need to interact
with the user to know how to map the renamed
attribute (i.e., attribute renaming). In other words,
we get the mapping of the renamed attribute(s) based
on the user interaction. Also, the mapping of both
method renaming and attribute renaming must be
considered within Class* de�nition:

K (InheritedClass) = K (ClassName
�ActualParameters� �RenameList�)=
K (ClassName �[ExpressionList]�
�[RenameItemList]�)=
(: public �virtual� ClassName < 8 e: Expression j e
2 ExpressionList � K (e),>

8 item: RenameItem j (item 2 RenameItemList) ^
(item=newName/oldName) ^ (GetItemType (Class-
Name, oldName)=method) ^ Noattrenamed (Class-
Name, oldName) � K (item) =

(virtual Boolean newName (GetOpParam
(ClassName, oldName))f

if (check stateschema () && ClassName
::oldName (GetOpParam (ClassName,
oldName))

return check stateschema();
return false;g)

8 item: RenameItem j (item 2 RenameItemList) ^
(item=newName/oldName) ^ (GetItemType (Class-
Name, oldName)=method) ^ : Noattrenamed (Class-
Name, oldName) � K (item, attribute renaming)

8 item: RenameItem j (item 2 RenameItem-
List) ^ (item=newName/oldName) ^ (GetItemType
(ClassName, oldName)=attribute) � K (item, at-
tribute renaming)

Note that we cannot present the result of K (item,
attribute renaming) because it depends on how to map
attribute renaming which is determined by the user. �

2.4. Mapping of operation expressions
Suppose that we want to translate op =̂ op1 O op2,
where O is the operator and op1 and op2 are the
operands. First, we de�ne new free type \operator"
which is used in function \Merge":

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1963

operator ::= ^ j [] j 0
9 j jj j � j :

We map conjunction and parallel composition opera-
tors in main method to boost threads [18]. In addition,
we merge inputs and outputs of op1 and op2 and map
the resulting parameters to attributes of ClassName
because threads cannot have any input and output
parameters. We also de�ne new methods op1conj and
op2conj whose bodies are promotions of op1 and op2;
parameters of op1conj and op2conj are newly de�ned
attributes for ClassName, provided that they have not
been de�ned before. The mappings of other operators
are the same as what we presented in our previous
work [12-14]:

op =̂ op1 ^ op2.

(CallOrpromotion (op1) ^ CallOrpromotion (op2))
)
K (op =̂ op1 ^ op2) =
virtual Boolean op ()f
void op1conj () fop1 (related attributes ClassName)g;
void op2conj () fop2 (related attributes ClassName)g;
if (check stateschema() && GetPre (GetClass
(op1), op1) && GetPre (GetClass (op2), op2))f

boost::thread conj op1 op2 (&op1conj);
boost::thread conj op2 op1 (&op2conj);
conj op1 op2.join ();
conj op2 op1.join ();g

else return false;g �
op =̂ op1 [] op2.

(CallOrpromotion (op1) ^ CallOrpromotion
(op2))
) K (op =̂ op1 [] op2) =
virtual Boolean op (Merge (GetOpParam
(GetClass (op1), op1), GetOpParam
(GetClass (op2), op2), []))f
int r =rand() % 2;
if (r = = 0)f

if (check stateschema ())f
if (!GetPre (GetClass (op1), op1)) return
op2 (GetOpParam (GetClass (op2),
op2));
else return op1 (GetOpParam (GetClass
(op1), op1));g

return false;g
else f

if (check stateschema ())f
if (!GetPre (GetClass (op2), op2)) return op1
(GetOpParam (GetClass (op1), op1));
else return op2 (GetOpParam (GetClass

(op2), op2);g
return false;gg �

op =̂ op1
0
9 op2.

(CallOrpromotion (op1) ^ CallOrpromotion (op2))
) K (op =̂ op1

0
9 op2) =

virtual Boolean op (Merge (GetOpParam
(GetClass (op1), op1), GetOpParam (GetClass
(op2), op2), 0

9))f
Local Params Def
if (check stateschema () && GetClass (op1)::
op1 (GetOpParam (GetClass (op1), op1))
&& GetClass (op2):: op2 (GetOpParam
(GetClass (op2), op2))

return true;
return false;g

where Local Params Def denotes those parameters
which are included in both parameters lists of op1 and
op2; they are also outputs in op1 and inputs in op2. �

op =̂ op1 jj op2.
(CallOrpromotion (op1) ^ CallOrpromotion (op2) ^
Comdirec (op1, op2)))
K (op =̂ op1 jj op2) = K (op =̂ op1 ^ op2) �

op =̂ op1 � op2.
(CallOrpromotion (op1) ^ CallOrpromotion (op2))
)
K (op =̂ op1 � op2, user opinion) =
((user opinion = 1)) K (op =̂ op1 ^ op2)

^
(user opinion = 2))
virtual Boolean op (Merge (GetOpParam
(GetClass (op1), op1), GetOpParam
(GetClass (op2), op2), �))f

if (check stateschema () && GetPre
(GetClass (op1), op1) && GetPre
(GetClass (op2), op2))f

GetPost (GetClass (op1), op1);
GetPost (GetClass (op2), op2);

return check stateschema();g
return false;g)

Note that in our previous work [13,14], we considered
the user's opinion to obtain the �nal mapping of scope
enrichment when at least one of its operands is in the
form of operation promotion; we speci�ed this kind
of user interaction using \user opinion" in the above
mapping. The value of \user opinion" could be \1" or
\2" indicating the �rst option or the other one; to see
options, refer to [13,14] �

op =̂ : op.
(CallOrpromotion (op)))
K (op =̂ : op, PredicateListMapping) =
virtual Boolean op (GetOpParam (GetClass (op),
op))f

if (check stateschema () && K (9State* �

1964 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

(: op)nDeclaration�, PredicateListMapping))f
K (: (op. PredicateList),
PredicateListMapping);
return check stateschema();g

return false;g
where \PredicateListMapping" indicates the mapping
of negation of PredicateList part of op in the above
translation. �

3. Proof sketch

Theorem 1 demonstrates the soundness of our mapping
method by showing it re�nes Object-Z speci�cations
into corresponding C++ code.

Theorem 1 (Soundness). For a given Object-Z
speci�cation ozs and a given C++ code cppc, if cppc
= K (ozs), then we have ozs v2 cppc (The notation `v'
is used as the re�nement notation.)

In the next subsection, we present our proof
methodology.

3.1. Proof methodology
We use some proof obligations similar to what are
proposed in B method [19] to prove that a re�nement
N re�nes a machine M in order to prove Theorem 1.
The steps of our proof methodology are as follows:

1. We consider a correspondence between OZ speci�-
cations and machine notion in B. In other words,
when determining each construct of B machine,
we notice which parts of an OZ speci�cation (and
in which way) could participate, based on the
semantics of OZ and machines in B.

2. We consider a correspondence between C++ code
and re�nement notion in B. In other words, when
determining each construct of B re�nement, we
notice which parts of C++ code (and in which way)
could participate, based on the semantics of C++
and re�nements in B.

3. We introduce the machine and re�nement obtained
after doing steps 1 and 2 into Atelier-B [20].

4. Atelier-B makes three proof obligations [19] to show
the introduced re�nement re�nes the introduced
machine. Finally, Atelier-B proves the obtained
proof obligations.

The next two subsections describe the details of
our proof method by explaining proof approach in B
and details of correspondences mentioned in steps 1 and
2 above. Figure 2 summarizes our proof methodology.

3.2. Proof in B method
Consider the following speci�cation of machine M and

re�nement N:

MACHINE M(p)
CONSTRAINTS Constraints
CONSTANTS CM
PROPERTIES PropertiesM
VARIABLES VM
INVARIANT InvM
INITIALIZATION InitM
OPERATIONS

y op(x) =
PRE Preop, M
THEN Defop, M
END

� � �
END

REFINEMENT N
REFINES M
CONSTANTS CN
PROPERTIES PropertiesN
VARIABLES VN
INVARIANT InvN
INITIALIZATION InitN
OPERATIONS

y op(x)=
PRE Preop, N

THEN Defop, N
END

� � �
END
Now, the proof obligations in B to prove that Re�ne-
ment N re�nes Machine M are as follows (if S is a
statement, and P is a predicate, then the notation [S]P
denotes a predicate which is true of a given state
precisely when executing S in that state is guaranteed
to reach a �nal state in which P is true [19]):

1. Constraints ^ PropertiesM ^ PropertiesN !9(VM,VN) � (InvM ^ InvN)

2. Constraints ^ PropertiesM ^ PropertiesN ! [InitN]
: [InitM] : InvN

3. Constraints ^ PropertiesM ^ PropertiesN ^ InvM^ InvN ^ Preop, M ! Preop,N ^ [Def0op,N]
: [Defop,M] : (InvN)

It is worth noting that the third proof obligation should
be repeated for each speci�ed operation.

3.3. Details of correspondences
Now, we de�ne correspondences mentioned in steps 1
and 2 of our proof methodology in order to enable
Atelier-B to customize the three proof obligations given
in Subsection 3.2. At �rst, we should consider the
following cases in order to customize the third proof
obligation:

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1965

Figure 2. Our proof methodology.

� Case 1 (proof obligation 3.1): operation op is de�ned
in the form of operation schema whose container
class is a child class, and none of its parent classes
has an operation with the same name as this
operation. The proof of the two other cases which
we considered in order to propose the mapping of
operation schema in [14] (when the container class
is not a child class, or operation op has delta-list
and declaration part in its de�nition) can be done
similarly by removing the predicates related to the
parent class.

� Case 2 (proof obligation 3.2): operation op is de�ned
in the form of operation schema and has the same
name as inherited operation schemas.

� Case 3 (proof obligation 3.3): operation op is de�ned
in the form of op =̂ op1

0
9 op2; also, op1 and op2 are

in the form of operation schema.
� Case 4 (proof obligation 3.4): operation op is de�ned

in the form of op =̂ op1 O op2; also, op1 and op2
are in the form of operation schema, and O is the
conjunction or parallel composition operator.

� Case 5: operation op is de�ned in the form of op
=̂ op1 [] op2; also, op1 and op2 are in the form of
operation schema.

� Case 6 (proof obligation 3.6): operation op is de�ned
in the form of op =̂ : op1 in which op1 is in the form
of operation schema.

1. Correspondence between Object-Z speci�cations
and machines in B. Before presenting the corre-
spondence, we should mention the following used
conventions:
1.1 \Class�" denotes the class in Object-Z speci�-

cation for which the given proof obligations are
being proved. To simplify the proof, we assume
that \Class�" has only one parent class.

1.2 \Declaration�" denotes the outputs of the op-
eration whose de�nition is put before `n'.

1.3 \Operation" indicates the de�nition of op-
eration op. Similarly, \Operation1" and
\Operation2" denote the de�nition of opera-
tion schemas op1 and op2, respectively.

Now, the correspondence is as follows. Cases 1 to 6
in parts Preop,M and Defop,M are related to Cases 1
to 6 considered at the beginning of this subsection
(Figure 3 shows part of the corresponding machine
in Atelier-B):

Constraints = true

X PropertiesM = Class�.LocalDe�nition.
AxiomaticDe�nition.PredicateList ^
GlobalParagraph.AxiomaticDe�nition.
PredicateList ^ GlobalParagraph.
AbbreviationDe�nition ^ Class�.
LocalDe�nition.AbbreviationDe�nition.
PredicateList ^ GlobalParagraph.Schema.
PredicateList ^ GlobalParagraph.
GenericDe�nition.PredicateList ^
GlobalParagraph.Predicate

X InvM = Class�.State.PredicateList ^
Class�.InheritedClass.State.PredicateList

X Preop, M =
(1): 9 (Class�.State)0 �Class�.Operation n

Declaration�
(2): (9 (Class�.State)0 � Class�. Operation

n Declaration�) ^(9 (Class�.
InheritedClass.State)0 �Class�.
InheritedClass.OperationnDeclaration�)

(3): (9 (Class�.State)0 � Class�.Operation1nDeclaration�) ^ (9 (Class�.State)0 �
Class�.Operation2 nDeclaration�)

(4): (9 (Class�.State)0 �
Class�.Operation1 n Declaration�) ^ (9
(Class�.State)0 � Class�.Operation2 n
Declaration�)

1966 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

Figure 3. Part of the corresponding machine in Atelier-B.

(5): (9 (Class�.State)0 � Class�.Operation1n Declaration�) _(9 (Class�.State)0 �
Class�.Operation2 n Declaration�)

(6): 9 (Class�.State)0 � Class�. : Operation
n Declaration�

X InitM = Class�.InitialState.PredicateList ^
Class�.InheritedClass.InitialState.PredicateList

X Defop,M =
(1): Class�.Operation.PredicateList
(2): Class�.Operation.PredicateList ^

Class�.InheritedClass.Operation.
PredicateList

(3): Class�.Operation1.PredicateList ^
Class�.Operation2.PredicateList

(4): Class�.Operation1.PredicateList jj
Class�.Operation2.PredicateList

(5): Class�.Operation1.PredicateList []
Class�.Operation2.PredicateList

(6): Class�.:(Operation.PredicateList)
X CM = Class�.LocalDe�nition.

AxiomaticDe�nition.Declaration,
GlobalParagraph.AxiomaticDe�nition.
Declaration,GlobalParagraph.
AbbreviationDe�nition.Abbreviation,
GlobalParagraph.Schema.Declaration,
GlobalParagraph.GenericDe�nition.Declaration

X p = Class�.FormalParameters
X VM = Class�.State.Declaration, Class�.

InheritedClass.State.Declaration,
GlobalParagraph.Schema.Declaration, Global-
Paragraph.GenericDe�nition.Declaration

2. Correspondence between C++ code and re�ne-
ments in B. Before presenting the correspondence,
we should mention the following used conventions:

2.1 \Operation1" and \Operation2" denote the

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1967

Figure 4. Part of the corresponding re�nement in Atelier-B.

de�nition of operation schemas op1 and op2,
respectively.

2.2 \Class�.attributes�" denotes the attributes of
C++ class obtained from the mapping of
Class� except the constant attributes.

2.3 We substitute check Identi�er () in the map-
ping of axiomatic de�nition, when it is
in the form of constant de�nition, with
const method.

2.4 We also substitute the method resulted from
the mapping of generic de�nition, when it is
not in the form of operator de�nition, with
gen method.

2.5 IO denotes the inputs and outputs of op.
Also, IO1 and IO2 denote the inputs and
outputs of op1 and inputs and outputs of op2,
respectively.

Now, the correspondence is as follows. Cases 1 to 6
in parts Preop,M and Defop,M are related to Cases 1
to 6 considered at the beginning of this subsection
(Figure 4 shows part of the corresponding re�ne-
ment in Atelier-B):
X PropertiesN= const method &&

check SchemaName (SchemaName s) &&
gen method && K
(GlobalParagraph.Predicate)

X InvN= Class�.check stateschema ()

X Preop,N=
(1): Class�.check stateschema () && K (9

(Class�.State)0 �
Class�.OperationnDeclaration�)

(2): Class�.check stateschema () &&
K (9 (Class�.State)0 �
Class�.OperationnDeclaration�) &&
Class�.InheritedClass.op (IO)

(3): Class�.check stateschema () && op1
(IO1) && op2 (IO2)

(4): Class�.check stateschema () && K (9
(Class�.State)0 �
Class�.Operation1 nDeclaration�) &&
K (9 (Class�.State)0 �
Class�.Operation2 n Declaration�)

(5): Class�.check stateschema () && (K (9
(Class�.State)0 �
Class�.Operation1 n Declaration�) jj K
(9 (Class�.State)0 �
Class�.Operation2 n Declaration�))

(6): Class�.check stateschema () && K (9
(Class�.State)0 �
Class�.:OperationnDeclaration�)

X InitN= Class�.INIT ()
X Defop,N=

(1): K (Class�.Operation.PredicateList);
if (Class�.check stateschema ()) return

1968 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

true;
return false;

(2): K (Class�.Operation.PredicateList);
if (Class�.check stateschema ()) return
true;
return false;

(3): if (Class�.check stateschema ()) return
true;
return false;

(4): op1 (IO1) jj op2 (IO2)
(5): Any v

v:=0 [] v:=1
if (v==0) then return op1 (IO1);
else return op2 (IO2);

(6): K (Class�.:(Operation.PredicateList));
if (Class�.check stateschema ()) return
true;
return false;

X CN=constant Class� attributes, global con-
stants

X VN=Class�.attributes�

3.4. Proof in Atelier-B
Using the correspondences mentioned in the previous
subsection, we introduced the resulting machine and
re�nement into Atelier-B. Then, Atelier-B made three
proof obligations and proved the obtained proof obli-
gations. To simplify the proof, in all proof obligations,
we assumed that a correct method is used for mapping
predicates from Object-Z to C++. We also assumed
that an operation call with a Boolean return value is
equivalent to a predicate with the same value.

4. Case study

In this section, we �rst present a speci�cation of credit-
card bank accounts system [14] in Object-Z. Then, we
use our translation method in order to obtain C++
code from this speci�cation.

4.1. Speci�cation of credit-card bank accounts
system

The aim of the credit-card bank accounts speci�cation
is to capture the basic functionality of credit-card
account objects and their interactions. At �rst, the
following global abbreviation and types are needed
in the speci�cation: Free type \Status" has two
constants, namely \valid" and \invalid", and is used
as a type to model validity of credit cards. Basic
type \CUSTOMER" will be used later as a type to
model holder(s) of credit card(s); \limitvalue" ab-
breviates for a set containing possible values which
the account(s) cannot be overdrawn beyond them.

CreditCard
�(limit, expiry-value, balance, INIT,
withdraw, deposit, withdraw Avail, newday,
reissue, status, holder)

limit: N
limit 2 limitvalue

expiry-value: N

balance: Z
holder: CUSTOMER
expiry: Z
�
status: Status

balance + limit >= 0
status = invalid , expiry = 0

INIT
balance = 0 ^ expiry = expiry-value

reissue
� (expiry)

status = invalid
expiry 0 = expiry-value
status 0 =valid

withdraw
� (balance)
amount?: N
amount? <= balance + limit
status = valid
balance 0 = balance - amount?

deposit
� (balance)
amount?: N
status = valid
balance 0 =balance + amount?

withdrawAvail
� (balance)
amount!: N
status = valid
amount!= balance + limit
balance 0 = - limit

newday
� (expiry)
expiry 0 =expiry-1

limitvalue = = f1000, 2000, 5000g
Status ::= invalid j valid
[CUSTOMER]

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1969

Next, the class of a credit-card account object in
isolation is speci�ed: this class encapsulates the details
of the state of a credit card and the operations it can
undergo. Also, this speci�cation introduces axiomatic
de�nitions in the form of constant de�nition (i.e., the
declaration of limit and its associated predicate list
and also the de�nition of expiry-value). This class
records four numbers, one an integer denoting the
current balance of the account (this balance is of
course often negative, indicating that the account is
overdrawn) and the others are a natural number (a non-
negative integer) denoting a �xed limit: the account
cannot be overdrawn beyond this credit limit and the
natural number denoting the �xed number of days
before credit card expiration (i.e. expiry-value) and the
integer number denoting how many days remained until
credit card expiration (i.e. expiry), respectively. It is
worth mentioning that expiry will be initialized with
expiry-value in \INIT". Also, this class contains one
more primary variable holder, which denotes the holder
of credit card and secondary variable status, which
denotes whether credit card is valid or not. If credit
card is expired, then the status will become \invalid";
otherwise, it will be \valid". Finally, this class has the
following operations:

1. \reissue": reissuing the credit card.
2. \withdraw": using the credit card to obtain funds

for some purpose, e.g. to purchase goods.
3. \deposit": depositing money supplied by the envi-

ronment (as variable amount?) into the account.
4. \withdrawAvail": withdrawing the total amount

currently available (i.e., balance + limit).
5. \newday": decrementing the value of expiry.

The following speci�cation (CreditCardCon�rm class
schema) uses inheritance to extend CreditCard class
schema with additional features. This speci�ca-
tion also introduces the sequential composition op-
erator. This class schema de�nes two operations
\fundsAvail" and \withdrawCon�rm" that are not
inherited from class CreditCard. The former re-
sults in the available funds, i.e., balance + limit.
The overall consequence of the latter is to withdraw
some amount from the account and output the value
of the available funds that remain in the account.

CreditCardCon�rm
� (limit, balance, INIT, withdraw, deposit,
withdrawAvail, witdrawCon�rm)
CreditCard

fundsAvail
funds!: N
funds!= balance + limit

withdrawCon�rm =̂ withdraw 0
9 fundsAvail

The following speci�cation (CreditCardCount class
schema) uses the notion of operation renaming and
rede�nition when inheriting CreditCard class schema.
Also, the class CreditCardCount introduces the con-
junction operator. This class schema de�nes one state
variable, i.e. withdrawals, which keeps the number
of times the operation \withdraw" has been applied.
CreditCardCount also de�nes two operation \incre-
mentCount" and \withdraw". The overall consequence
of the latter is to withdraw some amount from the
account and increment the value of withdrawals.

CreditCardCount
�(limit, balance, INIT, withdraw, deposit,
withdrawAvail)
CreditCard [oldWithdraw/withdraw]

withdrawals: N
INIT

withdrawals = 0
incrementCount

� (withdrawals)
status = valid
withdrawals 0 = withdrawals +1

withdraw =̂ oldWithdraw ^ incrementCount

The following speci�cation (CreditCards class schema)
speci�es a banking system consisting of an aggregate
of credit-card account objects (of class CreditCard),
each with the same limit on the magnitude of the
overdraft permitted. Also, this speci�cation introduces
scope enrichment and parallel composition operators
and uses operation promotion. This class schema has
one state variable, i.e. cards whose value is a set
of identities of objects of CreditCard. It also has
a number of operations: \add" which speci�es the
addition of a new credit-card account object to cards,
\delete" which speci�es the deletion of an object from
cards, \transferAvail" whose role is simply to specify
the selection from cards of two distinct credit-card
account objects between which funds transfer is to
occur; the other operations is applied to particular
credit-card account objects similar to the operations
of CreditCard.

4.2. Obtaining C++ code
Now, we use our translation method in order to
map the speci�cation presented in Subsection 4.1
into a C++ code. We map each class schema to
a C++ class with the same name as its associated
class schema name. In this section, we only pro-
pose the C++ code for global data types and Cred-
itCard class schema; see Appendix B for mapping
of other classes. Also, as we said in our previous

1970 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

CreditCards
�(commonlimit, INIT, add, delete, withdraw,
deposit, withdrawAvail, transferAvail, newday,
reissue)

commonlimit: N
commonlimit 2 limitvalue

cards: P CreditCard c
8 c:cards � c.limit = commonlimit

INIT
cards = �

add
� (cards)
card?: CreditCard
customer?: CUSTOMER
card? =2 cards
card?.limit = commonlimit
card?.INIT
card?.holder = customer?
cards0 = cards [fcard?g
delete

� (cards)
card?: CreditCard
card? 2 cards
card?.status = invalid
cards 0 = cardsn fcard?g

withdraw =̂ [card?: cards] � card?.withdraw
deposit =̂ [card?: cards] � card?.deposit
withdrawAvail =̂ [card?:cards] � card?.
withdrawAvail
transferAvail =̂ [from?, to?: cards j from? 6= to?] �
from?.withdrawAvail jj to?.deposit
newday =̂ [card?: cards] � card?.newday
reissue =̂ [card?: cards] � card?.reissue

work [14], we consider forward declaration of classes as
follows:

class CreditCard;
class objectaggregation CreditCard;
class CreditCards;
class CreditCardCon�rm;
class CreditCardCount;

Moreover, we consider an enum \Boolean" to model
return type of methods of classes globally (recall that
return types of all mappings of operation schemas are
\Boolean"). In addition, we consider an enum \Status"
as mapping of the global free type \Status". We map

basic type \CUSTOMER" to a struct whose name
is \CUSTOMER". Furthermore, we map abbreviation
limitvalue to an array and also we consider two global
methods whose names are \check limitvalue" and \ini-
tialization limitvalue" according to the mapping of
abbreviation de�nition in the form of set de�nition
when all of its elements are numeric; see Subsection 2.2.

enum Boolean ffalse, trueg;
enum Status finvalid, validg;
struct CUSTOMER fg;
int [3] limitvalue;

Boolean check limitvalue (int var)
f if (limitvalue[0] = = var jj limitvalue[1] = = var jj
limitvalue[2] = = var) return true;

return false;g
void initialization limitvalue ()
f limitvalue [0] = 1000;

Limitvalue [1] = 2000;
Limitvalue [2] = 5000;g

In order to map CreditCard class schema, we consider
a new class whose name is CreditCard. Methods and
attributes of this class are as follows:

Methods: We map each operation schema such as
\withdraw", \deposit", \withdrawAvail" to a method
whose name is the same as its associated operation
schema name. It is worth mentioning that we consider
method \INIT" for mapping Initialization schema.
Also, we consider constructor and destructor according
to their templates. It is worth mentioning that we
call \check limitvalue" in constructor according to the
mapping of global abbreviations. Note that we will
explain later why we must consider operator over-
loading `=' and \==" (we marked them with \user
interaction" because the user must herself �ll these
operator overloading).

Attributes: We map limit and its associated predi-
cate list and also expiry-value according to the mapping
of axiomatic de�nition in the form of constant de�-
nition to const attributes limit and expiry-value; the
associated predicate list of limit is mapped into the
constructor. Also, we should consider input parameters
for initializing limit and expiry-value (we name them
l and m). Moreover, we map holder to an attribute
whose name is \holder". Furthermore, we map balance
and expiry which are primary variables to attributes
whose names are \balance" and \expiry", respectively.
We map status to a macro since it is a secondary
variables obtained via the primary variable expiry.
Finally, we should consider attribute p CreditCards

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1971

according to the mapping of object containment in class
\CreditCards" (i.e., cards: P CreditCard c).
class CreditCardf

public:
/*[user interaction]*/

#de�ne status expiry=0?invalid:valid
const unsigned int limit; int balance; CUSTOMER
holder;
const unsigned int expiry-value;
virtual Boolean INIT ();
virtual Boolean withdraw (unsigned int amount);
virtual Boolean deposit (unsigned int amount);
virtual Boolean withdrawAvail (unsigned int &
amount);
virtual Boolean newday ();
virtual Boolean reissue();
CreditCard (unsigned int 1);
�CreditCard();
/*[user interaction]*/
void operator=(CreditCard a);
Boolean operator==(CreditCard a);

protected:
virtual Boolean check stateschema();
CreditCards * p CreditCards;
int expiry;g;

/*[user interaction]*/
void CreditCard::operator=(CreditCard a)
fthis!balance=a.balance;g
/*[user interaction]*/
Boolean CreditCard::operator==(CreditCard a)
fif(this!limit==a.limit && this!balance==a.balance)

return true;
return false;g

Boolean CreditCard::INIT ()
fif (check stateschema() && balance==0 &&
expiry==expiry-value && status==valid) return true;

return false;g
Boolean CreditCard::withdraw (unsigned int amount)
fif (check stateschema() && amount==balance+limit
&& status==valid)
fbalance=balance-amount;

if (check stateschema()) return true;g
return false;g

Boolean CreditCard::deposit (unsigned int amount)
fif (check stateschema() && status==valid)
fbalance=balance+amount;

if (check stateschema()) return true;g
return false;g

Boolean CreditCard::withdrawAvail (unsigned int &
amount)

fif (check stateschema() && status==valid)
famount=balance+limit;

balance=-limit;
if (check stateschema()) return true;g

return false;g
Boolean CreditCard::reissue ()
fif (check stateschema() && status==invalid)
fexpiry=expiry-value;

if (check stateschema()) return true;g
return false;g

Boolean CreditCard::newday()
fif (check stateschema())
fexpiry=expiry-1;

if (check stateschema()) return true;g
return false;g

Boolean CreditCard::check stateschema()
fif (balance+limit>=0)

return true;
return false;g

CreditCard::�CreditCard()fg
CreditCard::CreditCard (unsigned int 1, unsigned int
m):limit(1), expiry-value(m)
fif (!check limitvalue (limit))

CreditCard::�CreditCard();
else f

balance=0;
expiry=expiry-value;
status=valid;gg

5. Discussion

In our previous work [14], we compared our mapping
method with some prominent works [6-8] considering
some criteria including Formal language coverage [21],
Correctness [21], Interactivity [22], Transparency [22],
Expressiveness [14], Tool support [14] and Program-
ming language coverage [14]. Now, we update that part
of this comparison a�ected by the new version of our
mapping method.

5.1. Correctness
Unlike our method, none of the previous work [6-8]
paid attention to prove the correctness of the mapping
method.

5.2. Expressiveness
The previous work [6-8] represented their mapping
rules only by the use of natural language while we
presented our mapping method formally in addition to
proposing templates for mappings in C++ language.

1972 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

5.3. Tool support
Two of previous work, i.e. [6,7], have developed tools
for supporting mapping methods. Authors in [8] did
not propose any mapping rules for operation operators,
but they used them in their case studies. To compare
our method with that of [8], we can assert that we pro-
posed all of our mapping rules explicitly and formally.
Also, comparing our method with those of [6,7], we
proposed our mapping rules formally. Having explicit
and formal rules helps us to develop a supporting tool
easily; the next section describes our tool status.

6. Conclusion and future work

In this paper, we presented a formal mapping from
Object-Z speci�cations to C++ code based on the
mappings given in our previous work [12-14]. Hav-
ing the formal mapping in place, correctness of the
mapping can be proved in an easier way, and the
possibility to develop supporting tools for the approach
is increased. It is worth mentioning that we are now
in �nal stages of developing a tool which supports
our mapping method using C++ (in Visual Studio)
and MS SQL server; more precisely, we have so far
developed parts regarding the mapping of global basic
type de�nition, axiomatic de�nition, generic de�nition,
abbreviation de�nition, schema, free type de�nition
and some parts of class schema.

In continuing the paper, we have proposed the
mapping of local abbreviation de�nition when its left-
hand side is a variable name, and its right-hand side
is class union; this case has never been covered in
neither related work [6-8] nor our previous work [12-
14]. Finally, we proved the correctness of our mapping
method.

As our future work, we are going to:

1. Present appropriate rules to animate the remaining
constructs of Object-Z, such as distributed opera-
tors and free types when constructors are used in
the de�nition.

2. Finalize the development of the tool supporting our
mapping method together with doing complexity
analysis and benchmarks for the resulting tool.

References

1. McComb, T. and Smith, G. \Animation of object-Z
speci�cations using a Z animator", First International
Conference on Software Engineering and Formal Meth-
ods, pp. 191-201, IEEE Computer Society Press (2003).

2. Smith, G., The Object-Z Speci�cation Language,
Kluwer Academic Publishers, USA (2000).

3. Duke, R. and Rose, G., Formal Object-Oriented Spec-
i�cation Using Object-Z, Macmillan, UK (2000).

4. Woodcock, J. and Davies, J., Using Z: Speci�cation,
Re�nement, and Proof, Prentice Hall (1996).

5. Ramkarthik, S. and Zhang, C. \Generating Java skele-
tal code with design contracts from speci�cations in
a subset of Object-Z", 5th IEEE/ACIS International
Conference on Computer and Information Science, pp.
405-411, IEEE Computer Society Press (2006).

6. Rafsanjani, G. and Colwill, S.J. \From Object-Z
to C++: a structural mapping", Z User Meeting
(ZUM'92), pp. 166-179, Springer-Verlag (1992).

7. Fukagawa, M., Hikita, T. and Yamazaki, H. \A
mapping system from Object-Z to C++", First Asia-
Paci�c Software Engineering Conference (APSEC94),
IEEE Computer Society Press, pp. 220-228 (1994).

8. Johnston, W. and Rose, G. \Guidelines for the manual
conversion of Object-Z to C++", SVRC Technical
Report 93-14, The University of Queensland (1993).

9. Wang, Z. Xia, M. and Zhao, Y. \Transform mecha-
nisms of Object-Z based formal speci�-cation to Java",
Computational Intelligence and Software Engineering
(CiSE), pp. 1-4, IEEE Computer Society Press (2009).

10. Gri�ths, A. \From Object-Z to Ei�el: a rigorous
development method", Technology of Object-Oriented
Languages and Systems: TOOLS 18, Prentice-Hall
(1995).

11. Ni, X. and Zhang, C. \Converting speci�cations in
a subset of Object-Z to skeletal Spec# code for
both static and dynamic analysis", Journal of Object
Technology, 7(8), pp. 165-185 (2008).

12. Naja�, M. and Haghighi, H. \An animation approach
to develop C++ code from Object-Z speci�cations",
International Symposium on Computer Science and
Software Engineering, pp. 9-16, IEEE Computer So-
ciety Press (2011).

13. Naja�, M. and Haghighi, H. \An approach to develop
C++ code from Object-Z speci�cations", Accepted
in 2nd World Conference on Information Technology
(2011).

14. Naja�, M. and Haghighi, H. \An approach to animate
Object-Z speci�cations using C++", Scientia Iranica,
19(6), pp. 1699-1721 (2012).

15. Deitel, H.M. and Deitel, P.J., C++: How to Program,
5th Edn., Prentice Hall (2005).

16. M�ery, D. and Singh, N.K. \Automatic code generation
from event-B models", Second Symposium on Informa-
tion and Communication Technology, ACM Press, pp.
179-188 (2011).

17. Albalooshi, F. and Long, F. \Multiple view environ-
ment supporting VDM and Ada", IEEE Proceedings
Software, 146(6), pp. 203-219 (2002).

18. http://boost.org

19. Schneider, S., The B-Method: An Introduction,
Macmillan (2001).

20. Atelier-B tool, Available at: http://www.atelierb.eu/
en/atelier-b-tools/atelier-b-4-0/.

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1973

21. Breuer, P.T. and Bowen, J.P. \Towards correct exe-
cutable semantics for Z", Z Users Conference -ZUM,
pp. 185-209 (1994).

22. Utting, M. \Animating Z: interactivity, transparency
and equivalence", Second Asia-Paci�c Software En-
gineering Conference (APSEC), pp. 294-303, IEEE
Computer Society Press (1995).

Appendix A

Abstract syntax of Object-Z
In this section, we provide the abstract syntax of those
parts of Object-Z, in BNF notation, in which we are
concerned. For a complete account of the Object-Z
syntax, see [2]; we are only interested in those parts
used in our mapping:

In Object-Z, a speci�cation is a set of paragraphs.
The following shows what can appear in an Object-Z
speci�cation [2] (We use the notation of `��' in order
to specify optional parts of the syntax throughout the
paper):

Speci�cation
Speci�cation ::= ParagraphList
ParagraphList ::= Paragraph

jParagraph
ParagraphList

Paragraph ::= BasicTypeDe�nition
j AxiomaticDe�nition
j GenericDe�nition
j AbbreviationDe�nition
j FreeTypeDe�nition
j Schema
j Class
j Predicate

Global paragraphs
BasicTypeDe�nition ::= [Identi�erList]
Identi�erList ::= Identi�er

j Identi�er, Identi�erList

AxiomaticDe�nition ::= [Declaration �j
PredicateList�]
GenericDe�nition ::= [�FormalParameters�
Declaration �j PredicateList�]

AbbreviationDe�nition ::= Abbreviation = =
Expression
Abbreviation ::= VariableName �FormalParameters�

FreeTypeDe�nition ::= Identi�er ::= BranchList
BranchList ::= Branch

j Branch j BranchList
Branch ::= Identi�er

j VariableName �Expression�

Schema ::= SchemaHeader =̂ [Declaration �j
PredicateList�]

j SchemaHeader =̂ SchemaExpression
SchemaHeader ::= SchemaName �FormalParameters�

Class::= ClassName �FormalParameters�
[�VisibilityList�
�InheritedClassList�
�LocalDe�nitionList�
�State�
�InitialState�
�OperationList�]

FormalParameters ::= [Identi�erList]

Class paragraphs
Visibilitylist ::= �(DeclarationNameList)
DeclarationNameList ::= DeclarationName

j DeclarationName,
DeclarationNameList

InheritedClassList ::= InheritedClass
j InheritedClass,

InheritedClassList
InheritedClass ::= ClassName �ActualParameters�
�RenameList�
ActualParameters ::= [ExpressionList]
ExpressionList ::= Expression

j Expression, ExpressionList

RenameList ::= [RenameItemList]
RenameItemList ::= RenameItem

j RenameItem, RenameItemList
RenameItem ::= DeclarationName / DeclarationName
LocalDe�nitionList ::= LocalDe�nition

j LocalDe�nition
LocalDe�nitionList

LocalDe�nition ::= BasicTypeDe�nition
j AxiomaticDe�nition
j AbbreviationDe�nition
j FreeTypeDe�nition

State ::= [�Declaration� �� Declaration� �j
PredicateList�]
j [� Declaration �j PredicateList�]
j [PredicateList]

InitialState ::= INIT =̂ [PredicateList]

OperationList ::= Operation
j Operation

OperationList

Operation ::= OperationName =̂ [�DelataList�

1974 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

�Declaration� �j PredicateList�]
j OperationName =̂ [Declaration �j

PredicateList�]
j OperatioName =̂ [� PredicateList�]
j OperationName =̂

OperationExpression

OperationName ::= Identi�er

DeltaList ::= � (DeclarationNameList)

Operation expressions
OperationExpression ::=

[�DeltaList��Declaration��j Predicate�]
j [Declaration�jPredicate�] j [�Predicate�]
j Identi�er �RenameList�
j OperationExpression n(DeclarationNameList)
j OperationExpression ^OperationExpression
j OperationExpression jjOperationExpression
j OperationExpression jj!OperationExpression
j OperationExpression []OperationExpression
j OperationExpression 0

9 OperationExpression
j OperationExpression � OperationExpression
j Expression.Identi�er j (OperationExpression)

Appendix B

Mapping of CreditCardCon�rm,
CreditCardCount and CreditCards class
schemas to C++ code
To map CreditCardCon�rm class schema, we consider a
new class whose name is CreditCardCon�rm. Methods
and attributes of this class are as follows:

Methods: This class inherits all of the features of
CreditCard class. In addition to the inherited methods,
this class has two new methods \withdrawCon�rm"
and \fundsAvail" which are obtained from the mapping
of \withdrawCon�rm" and \fundsAvail" operation
schemas, respectively. The method \fundsAvail" has
one output funds which, as we stated earlier, should
be in the form of call by reference. The method
\withdrawCon�rm" has one input and one output
which are obtained from the mapping of sequential
composition operator. More precisely, the operation
schema \withdraw" has the input amount, and the
operation schema \fundsAvail" has the output funds;
merging these two parameters results in two parame-
ters amount and funds for \withdrawCon�rm".

Attributes: This class has no attribute.

class CreditCardCon�rm: public CreditCardf
public:

virtual Boolean withdrawCon�rm (unsigned int

amount, unsigned int & funds);
CreditCardCon�rm (unsigned int 1);
�CreditCardCon�rm ();

private:
virtual Boolean fundsAvail (unsigned int & funds);

g;
CreditCardCon�rm::�CreditCardCon�rm()fg
CreditCardCon�rm::CreditCardCon�rm(unsigned int 1):
limit(1)
fif (!(limit==1000 jj limit==2000 jj limit==5000))

CreditCardCon�rm::�CreditCardCon�rm();
else balance=0;g

Boolean CreditCardCon�rm::fundsAvail (unsigned int &
funds)
fif (CreditCard::check stateschema())
ffunds=balance+limit;

if (check stateschema() return true; g
return false;g

Boolean CreditCardCon�rm::withdrawCon�rm (unsigned
int amount, unsigned int & funds)
fif (withdraw(amount) && fundsAvail(funds)) return
true;

return false;g
To map CreditCardCount class schema, we con-

sider a new class whose name is CreditCardCount.
Methods and attributes of this class are as follows:

Methods: This class inherits all of the features of
CreditCard class. In addition to the inherited methods,
this class has the new method \incrementCount" which
is obtained from the mapping of \incrementCount"
operation schema. In order to map the renaming of the
operation schema \withdraw", we consider a method
whose name is \oldWithdraw" and has the same inputs
and outputs as those of \withdraw" in CreditCard
class. We map \withdraw" in CreditCardCount ac-
cording to the mapping of conjunction. Finally, this
class has the method \INIT" which is obtained from the
mapping of \INIT" in CreditCardCount considering
the inherited \INIT".

Attributes: In addition to the inherited attributes,
this class has new attribute withdrawals obtained from
the mapping of withdrawals in CreditCardCount.
class CreditCardCount: public CreditCardf

public:
virtual Boolean INIT();
virtual Boolean withdraw (unsigned int amount);

CreditCardCount(unsigned int 1);
�CreditCardCount();

private:
unsigned int withdrawals;

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1975

virtual Boolean incrementCount();
virtual Boolean oldWithdraw(unsigned int
amount);g;

CreditCardCount::�CreditCardCount()fg
CreditCardCount::CreditCardCount(unsigned int 1):
limit(1)
f if (!(limit==1000 jj limit==2000 jj limit==5000))

CreditCardCount::�CreditCardCount();
else fbalance=0;

withdrawals=0;gg
Boolean CreditCardCount::INIT()
f if(CreditCard::INIT() && withdrawals==0)

return true;
return false;g

Boolean CreditCardCount::incrementCount()
f if(check stateschema() && status==valid)
fwithdrawals=withdrawals+1;

if(check stateschema())
return true;g

return false;g
Boolean CreditCardCount::oldWithdraw(unsigned int
amount)
fif (check stateschema() && CreditCard::
withdraw(amount))
f if (check stateschema())

return true;g
return false;g

Boolean CreditCardCount::withdraw(unsigned int
amount)
f if (oldWithdraw(amount) && incrementCount())

return true;
return false;g

In order to map CreditCards class schema, we
consider a new class whose name is CreditCards.
Methods and attributes of this class are as follows:

Methods: This class has methods \add", \delete",
\withdraw", \deposit", \withdrawAvail", \transferA-
vail", \newday" and \reissue" which are obtained from
the mapping of \add", \delete", \withdraw", \de-
posit", \withdrawAvail", \transferAvail", \newday"
and \reissue" in CreditCards class schema, respec-
tively. For instance, we consider the mapping of with-
draw according to the mapping of scope enrichment.
The preconditions of the operation are the conjunction
of promo-tion and RHS of scope enrichment (We
assume that the user selects the second alternative
for mapping this operation; see Subsection 2.4). This

operation does not have any postconditions. The
method inputs are card and amount which are obtained
from merging the inputs of the left-hand side of scope
enrichment and card?.withdraw.

Attributes: We map commonlimit and its associated
predicate list according to the mapping rule for ax-
iomatic de�nitions. Also, we consider the new class
objectaggregation CreditCards for mapping of cards
which is in the form of object aggregation with object
containment. We map cards according to the mapping
of object aggregation with object containment to at-
tributes cards and p CreditCards in classes CreditCards
and CreditCard, respectively. In order to handle `='
and \==" which are needed for correct compiling and
running objectaggregation CreditCard class, we must
overload these operators for CreditCard class; hence,
we considered these operator overloading in CreditCard
class earlier.
class CreditCardsf

public:
const unsigned int commonlimit;
virtual Boolean INIT();
virtual Boolean add(CreditCard * card);
virtual Boolean delete(CreditCard * card);
virtual Boolean withdraw(CreditCard * card,
unsigned int amount);
virtual Boolean deposit(CreditCard * card, unsigned
int amount);
virtual Boolean withdrawAvail (CreditCard * card,
unsigned int & amount);
virtual Boolean transferAvail (CreditCard * from,
CreditCard * to);
virtual Boolean newday (CreditCard * card);
virtual Boolean reissue (CreditCard * card);
CreditCards(unsigned int 1);
�CreditCards();

private:
objectaggregation CreditCard * cards;
virtual Boolean check stateschema();g;

Boolean CreditCards::INIT()
fif (check stateschema() && cards!GetListSize()==0)

return true;
return false;g

Boolean CreditCards::check stateschema()
f /*[user interaction]*/

Boolean f=true;
for(int i = 0; i <cards!GetListSize(); i+ +)

if((cards!GetNodeValue(i))!limit==commonlimit)
f=false;

return f ;g

1976 M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977

Boolean CreditCards::add(CreditCard * card,
CUSTOMER customer)
fif (check stateschema() && !cards!SearchValue(card)
&& card!limit==commonlimit && card!INIT()

card!holder==customer)f
cards!AddToList(card);
if (check stateschema()) return true;g

return false;g
Boolean CreditCards::delete(CreditCard * card)
fif(check stateschema() && cards!SearchValue(card)
&& card!status==invalid)f

cards!RemoveFromList(card);
if(check stateschema()) return true;g

return false;g
Boolean CreditCards::withdraw(CreditCard * card,
unsigned int amount)
f/*[user interaction]*/

if(check stateschema() && cards!SearchValue(card)
&& card!withdraw(amount))f

if (check stateschema())
return true;g

return false;g
Boolean CreditCards::deposit(CreditCard * card,
unsigned int amount)
f/*[user interaction]*/

if(check stateschema() && cards!SearchValue(card)
&& card!deposit(amount))f

if(check stateschema())
return true;g

return false;g
Boolean CreditCards::withdrawAvail(CreditCard * card,
unsigned int & amount)
f/*[user interaction]*/

if(check stateschema() &&
cards!SearchValue(card)

&& card!withdrawAvail(amount))f
if(check stateschema())

return true;g
return false;g

Boolean CreditCards::transferAvail(CreditCard * from,
CreditCard * to)
f/*[user interaction]*/

unsigned int amount;
if(check stateschema() &&

cards!SearchValue(to)&&
cards!SearchValue(from) && from != to &&

from!withdrawAvail(&amount) && to!
deposit(amount))f

if(check stateschema())
return true;g

return false;g
Boolean CreditCards::newday (CreditCard * card)
fif(check stateschema() && cards!SearchValue(card)
&&card!newday())
fif(check statschema()) return true;g
return false;g

Boolean CreditCards::reissue(CreditCard * card)
fif (check stateschema() && cards!SearchValue(card)
&& card!reissue())
fif (check stateschema()) retrun true;g
return false;g

CreditCards::CreditCards(unsigned int 1):commonlimit(1)
fif (!check limitvalue (commonlimit))

CreditCards::�CreditCards();
elsef

/*[user interaction]*/
cards=new objectaggregation CreditCard(1000,
commonlimit);gg

CreditCards::�CreditCards()
fdelete cards;g
- -
class objectaggregation CreditCardf

private:
CreditCard * elements;
int size;
int max;

public:
objectaggregation CreditCard(int s, unsigned int

1);
�objectaggregation CreditCard();
void AddToList(CreditCard * value1);
void RemoveFromList(CreditCard * value1);
int GetListSize();
Boolean SearchValue(CreditCard * value1);
void Delete();
CreditCard * GetNodeValue(int index); g;

objectaggregation CreditCard::objectaggregation Credit-
Card(int s,unsigned int 1)
fmax=s;

elements=new CreditCard(1) [max];
size=-1;g

objectaggregation CreditCard::�objectaggregation Credit-
Card ()
fdelete[] elements;g

void objectaggregation CreditCard::AddToList
(CreditCard * value1)
fif(size< (max� 1))
felements[size+1]=*value1;

M. Naja� and H. Haghighi/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1953{1977 1977

size++;gg
void objectaggregation CreditCard::
RemoveFromList(CreditCard * value1)
fif(SearchValue(value1))
fint index=0;

for(int i = 0; i <=size; i+ +)
if(elements[i]==*value1)

index=i;
for(i=index; i <=size-1; i+ +)

elements[i]=elements[i+ 1];
size{;gg

int objectaggregation CreditCard::GetListSize()
freturn (size+1);g

Boolean objectaggregation CreditCard::
SearchValue(CreditCard * value1)
ffor(int i = 0; i <=size; i+ +)

if(elements[i]==*value1)
return true;

return false;g

void objectaggregation CreditCard::Delete()
fsize=-1;g

CreditCard * objectaggregation CreditCard::
GetNodeValue(int index)
fif(index(size)
freturn &(elements[index]);g
return NULL;g

Biographies

Mehrnaz Naja� received both her MSc and BSc de-
grees in Computer Engineering-Software from Shahid
Beheshti University, Iran, in 2012 and 2010. Her
research interests are formal program development and
formal veri�cation.

Hassan Haghighi is an assistant professor in the
faculty of Electrical and Computer Engineering, Shahid
Beheshti University, Tehran, Iran. He received his
PhD degree in Computer Engineering-Software from
Sharif University of Technology, Iran, in 2009. His
main research interest is using formal methods in the
software development life cycle.

