
Scientia Iranica D (2013) 20(6), 1939{1952

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

Formal ambiguity-resolving syntax de�nition with
asserted shift reduce sets

G. Jaberipura;b;� and M. Dorrigiva

a. Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran.
b. School of Computer Science, the Institute for Research in Fundamental Science (IPM), Tehran, Iran.

Received 4 April 2012; received in revised form 27 November 2012; accepted 19 February 2013

KEYWORDS
Parsing;
Shift reduce parsers;
Parser generators;
Ambiguous grammars;
Programming
languages;
Compilers.

Abstract. There are parser generators that accept ambiguous context-free grammars,
where ambiguities are resolved via disambiguation rules, with the outcome of smaller parse
tables and more e�cient parsers. However, the compiler writers are expected to develop
compact ambiguous grammars and extract ambiguity-resolving information from the syntax
and semantics of the language. The aforementioned tasks require considerable expertise,
not often owned by casual compiler writers, or even expert programmers who are assigned
a serious compiler-writing task, while programming language designers are usually capable
of providing a concise and compact ambiguous description of the language that may include
ambiguity-resolving information. In this paper, we aim to provide a powerful notation for
syntax de�nition, which enables the language designer to assert some shifts and reduce
sets associated with each production rule of the possibly ambiguous grammar. These sets
of language tokens guide the parser generator to resolve the parse table conicts that
are caused by the ambiguities in the grammar or by other sources. The practicality of
the proposed asserted shift reduce notation is supported by several examples from the
constructs of contemporary programming languages, and is tested to work properly via
developing a parser generator that constructs conict-free LALR (1) parse tables.
c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Parsers, or syntax analyzers, are used in computer
science, linguistics and other disciplines as enumerated
in [1]. They commonly serve as the principal sub-
program in conventional compiler construction. The
state of the art in compiler construction uses table-
driven parsers, where all the syntactic information,
which is needed for parsing, is provided in the parse
table. Parsing algorithms often simulate the generation
of a parse tree in a top-down (e.g., LL parsing) or
bottom-up (e.g., LALR parsing) process. For example,

*. Corresponding author. Tel.: +98 21 29904165;
Fax: +98 21 22431804
E-mail addresses: jaberipur@sbu.ac.ir (G. Jaberipur) and
Dorrigiv@sbu.ac.ir (M. Dorrigiv)

Table 1 summarizes how both methods are used in
actual compiler projects, which we have extracted
from [2].

Parse tables are normally generated by programs,
called parser generator, that are easily available (e.g.,
LLGen [3] for LL parsing and Yacc [4] for LALR).
Although \Yacc is dead" has been chosen as the title
of a paper [5], both LL and LR parser generators go
on to serve as the principal compiler writing tools [6],
where it appears that the most commonly used parsing
method in the domain of programming languages is
LALR (1) and its parser generator [7]. Nevertheless,
since LL parsing o�ers some unique advantages [8,9],
despite the weakness of LL grammars, to cover some
particular language constructs, there are parser gener-
ators that generate LL parsers with facilities to resolve
conicts including switching to a small LR parser.

1940 G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952

Table 1. Parsing approach in actual compiler projects.

Approach
Top-down Bottom-up

Recursive-descent LL (1) LALR (1)

P
ro

je
ct

Java (Sun/Oracle) X
Java (Eclipse) X
Go (Google) X X
GCC X
C++ (GCC 3.4.0) X
C/Objective-C (GCC 4.1.0) X
Python X
Ruby X
PHP X
Haskell X X

Such experiences, as surveyed in [6], have appeared
in [6,10,11].

The LALR (1) parsing algorithm, like any other
deterministic parser, requires an unambiguous context-
free grammar in order to parse the input in time and
space linearly-dependent on the input length, where
the linear behavior of the parser is vital to the overall
compiler performance. On the other hand, ambiguous
grammars lead to conicting actions in some entries of
the parse table which in turn, result in an undesirable
over-linear behavior of the parser. Nevertheless, they
give shorter description of syntax with considerably
fewer production rules and nonterminals, as compared
to unambiguous grammars for the same language [12].
This generally leads to smaller parse tables and faster
parsers [7,13], which has motivated the use of ambigu-
ous grammars for deterministic parsers, although it
is well-known that ambiguity and determinism cannot
coexist [14]. The trick is to keep only one of the
conicting actions in the relevant entries of the parse
table [13]. This is usually decided upon with the help of
ambiguity-resolving information (e.g., operator prece-
dence [15-17]) or disambiguating rules. For example,
three rules for disambiguating grammars are proposed
in [18]; namely reduce as soon as possible, use the
production with the shortest right hand side, and use
the �rst listed production. This technique resolves
shift-reduce conicts in favor of reducing [19], but it
fails whenever a shift is desirable. The same task can
be trusted to the parser generator itself to dynamically
prompt the user to decide.

On the other hand apparently, based on this belief
that shift-action is the right one to choose on most
shift-reduce conicts, Yacc's default decision is in favor
of shift on conicts that are not resolved by Yacc's user.

Other bene�ts of ambiguous grammars, besides
smaller parse tables and faster parsers, include ease of
comprehension and smaller and more understandable

semantic rules. There are several parser generating
techniques [13,18,20-23], and parser generator tools
that facilitate user/parser generator interaction (e.g.,
Yacc [4], GNU Bison [24], CUP [25], Bertha [26],
SAIDE [27], Tris [28], Elkhound [29], eyacc [30],
Eli [31], Tatoo [32], LISA [33], YAJCo [34], and
two others that are not speci�cally named [35,36]).
Although some language descriptions use ambiguous
grammars with ambiguity resolving description in En-
glish [37], many misunderstandings of exact de�nition
of some language constructs have been reported on
the part of compiler writers, which have resulted in
incompatibilities between di�erent implementations of
the same language description [38-42]. Therefore,
notwithstanding the very helpful role of the aforemen-
tioned facilities, the compiler constructor is usually
faced with three uneasy tasks in developing a parser:

1. Converting the syntax description provided by the
language designer to a concise ambiguous grammar;

2. Extracting the ambiguity-resolving rules from the
syntax and semantic description of the language;

3. Transforming the latter to the special format re-
quired by the parser generator.

These tasks are error-prone and the compiler con-
structor may easily make mistakes in doing task 1
and be induced to wrong or inaccurate perceptions
of the syntax and semantics of the language, while
undertaking task 2, and be annoyed by the not very
user-friendly input format of the conventional parser
generators in task 3. Some automated tools spawned
by Tomita's Generalized LR (GLR) algorithm like
SDF [43], Elkhound [29] or GNU Bison [24] actually
try to ease the latter tasks for the compiler writers.
However, they usually provide an over-linear parser
when operating in full automation mode, or otherwise
need expertise help of the user (e.g., the two operation

G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952 1941

mode of GNU Bison [24]). Several programming
languages have been originally implemented by the
language designers (e.g., Pascal [44], Modula-2 [45],
Python [46], Lua [47], Ruby [48], Java [49]). In
fact, the task of designing a programming language
requires skills and knowledge that are far more than
required for compiler writing. This may suggest that
it is more appropriate to expect language designers
to take the burden of performing the preliminary
static tasks listed above, indeed, on behalf of compiler
designers [18]. Therefore, we are motivated to design
an augmenting notation for context-free grammars,
which can be used by the language designer to describe
the language with a concise ambiguous grammar, and
provide disambiguation rules in a formal way, which
may be directly used by an automatic parser generator
to resolve possible conicting actions in the parse table
(e.g., a shift-reduce conict in LALR (1) parsing). In
such an environment, the compiler constructor would
not be faced with any of the above three di�cult
tasks nor would have any interaction with the parser
generator. The rest of this paper is organized as
follows: In Section 2, we review the construction of
standard LALR (1) parsers, where the familiar reader
might prefer to fast-forward the following section.
Conventional use of ambiguous grammars is taken
up in Section 3. Auxiliary functions for description
of ambiguity-resolving information are introduced in
Section 4; namely the proposed last, followed-by, and
look-afore sets, in contrast to the conventional �rst,
follow and look-ahead sets, respectively. Then we
de�ne and explain the computation of no-shift and
reduce sets for each production rule of the grammar.
Section 5 briey describes our special parser generator
written to accept the proposed formal notation, and
Section 6 concludes the paper.

2. The LALR (1) parsing algorithm

The syntax of a programming language is normally
described by a context-free grammar, i.e., a quadruple
G = (S; V; T; P), where:

� S 2 V is the start symbol,
� V is the set of nonterminals,
� T is the set of terminals or tokens of the program-

ming language,
� P is the set of production rules of the form A!i �,

where A 2 V , the direction of replacement in the
application of production i is shown by \!i", and
� 2 (V [T)� is a string of zero or more terminals
and nonterminals.

Example 1. (Three equivalent grammars for simple
arithmetic expressions). Figure 1 depicts sets of

Figure 1. Three equivalent context-free grammars for
simple arithmetic expressions.

production rules P1, P2, and P3, for three equivalent
context-free grammars, G1, G2, and G3, respectively.
They describe simple arithmetic expressions with +
and �, as operators, and standard parenthesizing,
where id (for identi�er) is an anonymous variable name,
� denotes a null string and grammar quadruples are:

G1 = (E; fE;E0; T; T 0; Fg; f+; �; id; (;)g; P1);

G2 = (E; fE; T; Fg; f+; �; id; (;)g; P2);

G3 = (E; fEg; f+; �; id; (;)g; P3):

A parser or a syntax analyzer is a computer program,
which decomposes an input program to its syntactic
constructs in order to guide the process of syntax
directed translation of the input program. A compre-
hensive coverage of parsing techniques can be found
in any compiler construction textbook (e.g., [1,7,12]).
In this section, we briey describe the dominating
technique; the bottom-up LALR (1) parsers and parser
generators.

2.1. LALR (1) parsing
We begin with two reminder de�nitions on the �rst and
follow sets.

De�nition 1 (First set). Consider all strings x, of
terminals, derivable from a given string of terminals
and nonterminals. Then First () is the set of tokens
that can start any of the strings x, or more formally:

First ()=

8>>><>>>:
� if = �
a if = a�
First (A)[
(if A)� � then First(�)) if = A�

where a 2 T , � 2 (V [T)�, A 2 V ,)� means zero or
more steps of a derivation and:

First (A) = [A!� First (�):

De�nition 2 (Follow set). The set of all terminals
that can appear after a grammar symbol (i.e., terminal
or nonterminal) B in any string of terminals and

1942 G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952

nonterminal, derivable from the start symbol, is called
Follow (B) or constructively:

Follow (B) = [A!�B� First (�)

[(if �)� � then Follow (A));

where �, � 2 (V [T)�, A 2 V , and B 2 V [T .
It is postulated that $ 2 Follow (S), where S is the
starting symbol of the grammar, and $ is a virtual token
marking the end of input.

The LALR (1) parsing algorithm builds up a parse
tree in a bottom-up manner starting from the leaves
(i.e., the input tokens) up to the root (i.e., the starting
symbol), which is equivalent to producing a backward
rightmost derivation of the input. Figure 2 depicts
a rightmost derivation of id + id � id under G2 of
Figure 1, where the newly generated nonterminals are
underlined.

The LALR (1) parser is derived by a parse table.
To generate the latter, the LALR (1) parser generator
produces a state diagram representing the states of
a push down automata [14]. It then derives a parse

Figure 2. Rightmost derivation of id+ id � id under
grammar G2.

table, where each row represents one of the states of the
state diagram, and each column represents one of the
grammar symbols (i.e., terminals and nonterminals).
For example, the LALR (1) state diagram for grammar
G2 is shown in Figure 3, where each state consists of
one or more LALR (1) items (to be de�ned below) and
Table 2 is the corresponding parse table.

De�nition 3 (LALR (1) item). An LALR (1) item
\A ! � � �;L" in some state of a LALR (1) state
diagram represents a parsing status, where that part of
the input tokens, which are derivable from the string
�, has been so far read and the parser is expected to
reduce a string of next input tokens to �. The look-

Table 2. LALR (1) parse table for G2.
+ � id () $ E T F

1 S5 S6 G2 G3 G4

2 S7 A
3 R2 S8 R2 R2

4 R4 R4 R4 R4

5 R5 R5 R5 R5

6 S5 S6 G9 G3 G4

7 S5 S6 G10 G4

8 S5 S6 G11

9 S7 S12

10 R1 S8 R1 R1

11 R3 R3 R3 R3

12 R6 R6 R6 R6

Figure 3. LALR (1) state diagram for G2.

G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952 1943

ahead set L (to be formally de�ned in Section 4) is
extraneous unless � = �, in the case in which the
reduction by production rule A ! �� is valid only
on input tokens that belong to L.

The parser starts in State 1, and a correct input
leads it to a special accepting state (ACC in Figure 3).
Two parsing actions, called shift and reduce are possi-
ble in each state, which are described as follows:

- Shift: This action occurs if there is an exiting arc
labeled by the current token. The action is composed
of the following subtasks:
� Advancing the input by one terminal token, nor-

mally by a call to scanner.
� Following the aforementioned arc to the next

state.
- Reduce: This action takes place if a dotted produc-

tion rule ends with a � (marking that the entire
right context has been read from the input), and the
current token exists in the corresponding look-ahead
set. The action consist of the following subtasks:
� Invoking a semantic action hooked to the reduce

production (e.g., generation of code for addition
in State 10).

� Returning to the state where the same LALR
(1) item exist, but with the dot located before
the leftmost symbol of the right hand side (e.g.,
returning from State 10 to State 1 or 6).

� Following the arc labeled with the nonterminal in
the left hand side of the reduce production (e.g.,
following the arc labeled E from State 1 or 6 to
State 2 or 9, respectively).

To facilitate the parser actions, the parser generator
produces a parse table, where each cell contains the
appropriate parsing action.

Table 2 depicts the LALR (1) parse table derived
from the state diagram of Figure 3, where Ri and Sj
per the de�nitions above mean reduction by production
i and shift to State j, respectively. However, an
intermediate action Gk is used to guide the third step of
a reduce action in forwarding the parser to State k. For
example, the third step of R1 in State 10 can be G2 (see
the third step of reduce action above). Empty entries
indicate a parsing error, and A signals a successful
parse.

3. Using ambiguous grammars

Ambiguous grammars are not theoretically desirable
because they lead to nondeterministic parsers. How-
ever, some programming constructs, when described by
an ambiguous grammar, consume fewer nonterminals
and productions and often ambiguous grammars are
more concise and readable [13]. The parse table

Figure 4. The content of a conicting LALR (1) state for
grammar G3.

generated by an LALR (1) parser generator includes
conicting actions in some entries when the input
grammar is ambiguous.

Example 2 (Ambiguous grammar for simple ex-
pressions). G3 in Figure 1 is an ambiguous grammar
for simple expressions. One conicting state of the
LALR (1) state diagram for G3 is shown in Figure 4.
There are two shift-reduce conicts, that is the parser
may perform a reduction with production 1 on inputs
+ and �, or a shift on the same inputs.

3.1. Resolving the ambiguity conict
The classical approach for resolving conicts in some
cells of an LALR (1) parse table is that either the
user [13,50] or the parser generator [4], using extra
syntactic or semantic information about the language
construct that is not embedded in the ambiguous
grammar, edit the contents of conicting cells. For
example, the reduce (shift) action on input � (+)
may be permanently removed from the conicting cells
related to the conicting LALR (1) state of Figure 4,
due to precedence of � over + (left associativity of +).

3.2. Advantage of parsing ambiguous
grammars

Ambiguous grammars are normally shorter, which
leads to smaller parse tables. But the main advantage
is the parser speed-up that may be gained, as in Ex-
ample 3, where two derivations for the same expression
shows that number of derivation steps is 24% less in
case of ambiguous grammar.

Example 3 (Parsing speed-up by using am-
biguous grammars). Recalling grammar G2 and
its ambiguous equivalent G3, rightmost derivations of
simple expression a� a+ t� a� b+ b� b are given in
Figure 5, where 17 and 13 derivation steps are required,
respectively. In case of an arbitrary expression with
p + operators, m � operators, and p+m+1 identi�ers
(e.g., p = 2, m = 4, and there are 7 id occurrences in
the expression of Figure 3), there would be p + m + 1
derivation steps with production 5, p with 1, m with
3, p + 1 with 4, and 1 with 2 (i.e., 3p + 2m + 3 steps
ensemble), while similar elaboration for G3 leads to
2p+2m+1 derivation steps (i.e., more than 25% parser
speed-up for m+ p > 7).

Case 1, in Section 4, shows a grammar for arith-
metic, Boolean and relational expressions with only one
nonterminal. This super-ambiguous grammar could

1944 G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952

Figure 5. Derivation of a� a+ t� a� b+ b� b under G2 (a), and G3 (b).

also lead to an LALR (1) parse table with resolved
conicting cells due to precedence and error rules.

The above conventional ambiguity-resolving ap-
proach, whether done by the user or the parser gen-
erators (e.g., Yacc [4]), requires specialized knowledge
on the part of the user of the parser generator. The
OCFG notation [26, 51], in contrast to Yacc, associates
at most one disambiguation rule to a production rule of
the ambiguous grammar, such that the associativity or
precedence of a given operator may di�er in di�erent
contexts corresponding to di�erent production rules.
This approach can be further empowered to associate
the disambiguation information to each token in each
production. This is actually what we carry on in
the next section, where we design a notation for
augmenting each production rule of the grammar with
ambiguity-resolving or other restricting information,
which is meant to force the language designer to
explicitly provide such information. Then we describe
how our special parser generator uses the augmented
ambiguity-resolving information to adjust the conict-
ing cells of the parse table.

4. The new disambiguation formal notation

To introduce our new disambiguation formalism, we
need to formally de�ne some new (e.g., look-afore) and
existing (e.g., look-ahead) auxiliary sets of grammar
symbols. The look-ahead sets, in LALR (1) parsing,
are computed as a subset of follow sets to determine the
look-ahead tokens, for which a reduce action is justi�ed.

De�nition 4 (Look-ahead set). The look-ahead
set L of an LALR (1) item A ! �, L, in a State
i, is de�ned as follows, where j !� i indicates that
there exist a path from State j to i via � 2 (V [T)�.

LAi(A! �) = [B!��A�2i(First (�)[

(if �)� � then [j (LAj(B ! ��A�jj !� i))):

Example 4 (Look-ahead set). Consider E ! E +
T�; f$;+;)g in State 10 of Figure 3. The look-ahead
set is the union of f$;+g and f+;)g, from E ! �E +
T; f$;+g in State 1, and E ! �E + T; f+;)g in State
6, respectively.

4.1. Asserted reduce set
The conventional ambiguity-resolving approach of Sec-
tion 3, would lead to deleting some look-ahead tokens
from the look-ahead set of a reduce con�guration in
LALR (1) parsing. To select a token to be deleted
from the look-ahead set, one uses the syntactic or
semantic characteristics of the language. The language
designer could take this decision on deletion of some
token (s) from the look-ahead set. He or she, on
describing the language by a context-free grammar,
could use an ambiguous syntax, but in order to resolve
the ambiguity, predict the tokens to be deleted from the
look-ahead set of the LALR (1) item. Therefore, each
production may be augmented by the set of remaining
look-ahead tokens, each of which on appearing as the
next input token validates a reduce action; hence the
name asserted reduce set.

Example 5 (an asserted reduce-set grammar).
Figure 6 depicts an asserted reduce-set version of

Figure 6. An asserted reduce-set grammar for simple
expressions.

G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952 1945

grammarG3. A reduction by production E ! E+E on
look-ahead �, is not allowed due to the precedence of �
over +. Therefore, � is not included in the asserted
reduce set of that production, while an LALR (1)
parser generator would signal a reduction by E !
E + E, on look-ahead �.

Provision of the asserted reduce set for each
production helps in automatic resolution of an LALR
(1) reduce-reduce conict, or a shift-reduce conict,
when it is to be resolved by removing the reduce action.
This is the case in Figure 6 for LALR (1) item E ! E+
E; f$;+;)g, which can lead a parser generator to delete
� from the set of valid look-ahead tokens for reduction.
Nonetheless, the asserted reduce-set cannot help when
the conict should be resolved by deleting a shift action
from an LALR (1) parse table. For example, consider
the LALR (1) State 10 of Figure 7. The �rst item
justi�es a reduction on +, and the second item leads to
a shift on +. The left associativity rule for + operator
requires the shift action to be deleted in this case. This
decision is to be supported by some knowledge of the
previously read input (e.g., whether a + has been read
just before the input string reduced to E). Therefore,
we need a mechanism to inform the parser generator
of the possible left context. We propose, below, the
notion of look-afore and no-shift sets.

4.2. Look-afore sets
The conventional look-ahead set for any LALR (1)
item, based on a production A! �, is always a subset
of Follow (A). In contrast to the follow sets, we can
de�ne the followed-by sets with the help of an auxiliary
function Last.

De�nition 5 (Last and Followed-by sets). Last
of a string, composed of terminals and nonterminals,
is the set of rightmost terminal tokens derivable from
the given string. Followed-by set of a terminal or
nonterminal is the set of terminal tokens that can
precede it in any string derivable from the start symbol.
More formally:

Followed-by (B) = [A!�B� Last (�)[
(if �)� � then Followed-by(A)); where :

Last is de�ned as follows, where, a 2 T , �, � 2 (V [T)�,
A 2 V , and B 2 (V [T).

Last (�) =

8>>>>><>>>>>:
� if � = �
a if � = �a
[A!(Last ()) if � = A
Last (A)[
(if A)� � then Last (�)) if � = �A

We postulate that $ 2 Followed-by (S), where S is the
starting symbol of the grammar.

Table 3. Follow and followed-by sets.

Symbol Follow set Followed-by set

E $;+;) $; (
T $;+;); � $;+; (
F; id $;+;); � $;+; (; �
+; � id; (id;)

) $;+;); � id;)
(id; ($;+; (; �

Example 6 (Follow and followed-by sets in G2).
Table 3 shows the follow and followed-by sets for the
symbols of grammar G2 of Figure 1.

De�nition 6 (Look-afore set). The look-afore set
of an LALR (1) item A! �, L, in a State i, is de�ned
as follows, where j !� i indicates that there exist a
path from State j to i via � 2 (V [T)�.

LFi(A! �) = [B!��A�2i(Last (�)[
(if �)� � then [j (LFj(B ! ��A�jj !� i))):

Note that the look-afore set is a subset of the corre-
sponding followed-by set.

Example 7 (Look-afore set). The LALR (1) dia-
gram, augmented with look-afore (LF) sets for the left
hand side nonterminal of each LALR (1) item is shown
in Figure 7. If the string preceding a right hand side
symbol of an item is nullable (e.g., � in De�nition 6),
the given LF set can be used in computing the LF set
of the right hand side symbol.

In LALR (1) parsing, an undesirable shift opera-
tion might be suggested, on input a, by an LALR (1)
item A ! � � a�, L. To help the parser generator to
ignore such shifts, we introduce and use the no-shift
sets through the following example.

De�nition 7 (No-shift set). For each production
rule A!j �a�, and a token a in its right hand side, a
no-shift set nsaj � T is de�ned, such that no shift, on
token a 2 nsaj , from State i, holding an LALR (1) item
A!j ��a�, is allowed i� LFi(A!j ��a�)\nsaj 6= �.

Example 8 (Use of no-shift sets). Consider States
1 and 4 in Figure 7. The last input token, before the
parser enters State 4 is � and this state suggests a shift
on another � (see the last item in State 4). Suppose
the occurrence of two consecutive � tokens, in the
input, is to be considered wrong. Therefore, a shift
from this state on � is not desirable. But an input
expression in State 1 starts with �, which correctly
quali�es a shift on it. Note that the LF4(E ! �� E),
for the last item, includes �, but LF1(E ! ��E) does

1946 G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952

Figure 7. LALR (1) parsing diagram for simple expressions with unary minus.

not. As another example, assume that other arithmetic
operators besides � (e.g., +), are not allowed to appear
just before �. Then such a faulty input may lead the
parser to State 6 of Figure 7, where LF6(E ! ��E) is
f+g. To guide the parser generator to delete a wrong
shift on �, one may provide the parser generator with
a set of no-shift tokens. The no-shift token set, in this
case, is shown within the last production rule of the
augmented grammar G4 in Figure 8.

It indicates that if LFi(E ! ��E), for the LALR
(1) item E ! ��E, L in any State i, has a nonempty
intersection with the no-shift set then a shift on� is not
allowed from State i. Therefore, the parser generator
will delete shifts on � in States 4, 6 and 7, because

Figure 8. Grammar G4 for simple expressions with
no-shift and asserted look-ahead sets.

LF4(E ! ��E) = f�g, LF6(E ! ��E) = f+g, and
LF7(E ! � � E) = f�g have a common token with
the no-shift set f�;+; �g, respectively. For an example
of controlling left associativity, with the help of no-
shift and look-afore sets, consider State 10 of Figure 7

G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952 1947

and G4 of Figure 8. The relevant item is f+gE !
E � +E; f$;+; �;)g. LF10(E ! E � +E) in the given
LALR (1) item is f+g, which indicates that a shift on
+ violates the left associativity. Therefore, one way to
enforce a no-shift on + is to include a no-shift set for +
in the production rule E ! E+E as in G4 of Figure 8.
Then the nonempty intersection of the no-shift set and
the LF set of the rule in the grammar lead the parser
generator not to put the shift on + from the relevant
entry of the parse table.

The latter observation on LF and no-shift sets
leads to a general method for providing the parser
generator with information it needs to ignore the unde-
sirable shifts. The language designer may associate a
set of no-shift tokens with a terminal token appearing
in the right hand side of a production. The no-shift set
is inserted just before the associated terminal symbol.

The parser generator ignores a shift on an input a,
due to an item A!i ��a�A if the last no-shift set be-
fore �a, and the look-afore set of the symbol succeeding
the no-shift set, have at least one common token.

4.3. The ASR LALR (1) grammars
We present a formal de�nition of asserted shift re-
duce grammars with some abbreviation facilities for
augmenting the productions with ambiguity-resolving
information. Each production is augmented by zero or
more no-shift sets, and one asserted reduce set.

4.3.1. The Asserted Shift Reduce (ASR) grammars
De�nition 8 (Asserted Shift Reduce (ASR)
Grammars). An asserted shift reduce grammar is
a quadruple G = (S; V; T; P), where

� S 2 V is the starting symbol,

� V is a �nite set of nonterminal symbols,

� T is a �nite set of the terminal symbols (tokens in
the language of the grammar),

� P = fA! (V �[ns]T)�V �[[�]rs].

In de�nition for P;A 2 V , ns and rs are subsets of
T [f$g, where $ is a special augmenting symbol neither
in V nor in T . The ns sets guide the parser generator
to restrict shift actions, and the rs set indicates the
look-ahead tokens for a valid reduce action. Lack of
the reduce set at the end of a production rule means
that reduction by that rule is restricted to the tokens
of the standard look-ahead set for that rule.

Similarly, shifts are allowed on a token in the right
hand side of a production rule that is not preceded by
a no-shift set. In other words, a null no-shift set need
not appear before the corresponding token. A reduce
set that is not preceded by a sign (i.e., �) means that
the rs set contains exactly the tokens on which reduce
action is allowed. A missing rs (not an empty rs as
fg), means that exact look-ahead set is the same as

Figure 9. The ASR grammar, G5, for the if-then-else
construct.

Figure 10. Grammar G6 with asserted no-shift sets and
abbreviated reduce sets.

standard LALR (1) look-ahead set. �rs means that
actual reduce set is the di�erence of standard look-
ahead set and the given rs.

Example 9 (Dangling else problem). We can
easily handle the well-known dangling else problem via
restricting the reduce set of the relevant production
rule. The look-ahead set of production rule 3 in the
ASR grammar G5 (Figure 9) does normally include
else, which is the source of shift-reduce conict. The
�felseg expression that augments production rule 3
signals the parser generator to remove else from the
reduce set, which resolves the conict.

Example 10 (ASR grammar). Grammar G6 in
Figure 10 is a reproduction of G4, with the above
abbreviating rules.

The standard LALR (1) look-ahead set for pro-
duction 1 (Figure 10), where the � symbol has reached
the rightmost position, is f$;+; �;)g as in the LALR
(1) con�guration E !1 E+E�; f$;+; �;)g of Figure 4.
Note that rs1 misses a �, which means that a reduction
by production 1 is not valid on look-ahead �. The
latter restriction guarantees the standard precedence
of � over +. To see the applicability of ns+

1 , consider
the ASR LALR (1) States 6 and 10 of Figure 7. The
look-afore set for the leftmost E in the right hand
side of con�guration E !1 Ef�;+; �g+ E;�f�g (i.e.,
Bold E) is the same as the look-afore set for the left
hand side E, which is f+g. Since the �rst no-shift set
before +, and the look-afore set of the �rst symbol after
the no-shift set, both include +, the parser generator
would not allow a shift on +. The latter restriction
guarantees the left associativity of +. Note that the
no-shift set associated to � in production 2 asserts the
shift on �. A similar (di�erent) situation for production
1 (2) arises in State 11, where the token � is shared by
the corresponding look-afore set and the no-shift set
of + (�) in production 1 (2), which signals the parser
generator to delete shift on + (�).

To better appreciate the power of ASR grammars
in providing ambiguity-resolving information, we con-

1948 G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952

Figure 11. (a) Grammar G7 with arithmetic, Boolean, and relational operators. (b) The ASR grammar, G8, for G7.

sider the following cases and o�er simple ASR gram-
mars that fully resolve ambiguities statically, where
other similar tools prompt the parser generator user
to resolve some ambiguities.

Case 1 (Ambiguous grammar for arithmetic
and Boolean expressions). Grammar G7, in Fig-
ure 11(a), describes mixed arithmetic and Boolean
expressions as is allowed in the C programming lan-
guage. This is a super ambiguous grammar (with
only one nonterminal) which leads to 143 conicts in
the corresponding LALR (1) parse table. However,
all the conicts are resolvable by the semantics of
the language. We provide an ASR grammar G8 in
Figure 11(b) with asserted no-shift and reduce sets for
arithmetic, Boolean, and relational expression. This
ASR grammar, contrary to G7, follows the syntax of
Pascal language with conventional operator precedence
and does not accept unnecessary operators such as
a not operator preceding by another one. It is
assumed that the operands of relational and arith-
metic operators are only arithmetic expressions, and
operands of Boolean operators are Boolean or relational
expressions. The asserted no-shift and reduce sets are
chosen such that any violation of the aforementioned
assumptions will be detected as soon as they occur in
the input.

Case 2 (General precedence). The authors of [13]
have studied the problem of resolving the ambiguities
that occur when describing expressions, with n di�er-
ent operators, via a single nonterminal grammar. The
general case of this problem is described by grammar
G9 of Figure 12 borrowed from [13].

Figure 12. Generalization of single nonterminal
grammar, G9, for expressions.

Figure 13. The ASR grammar, G10, for G9.

The dynamic ambiguity-resolving rule that is used
in [13] works as follows: Assume that there are n
left associative operators �1; �2; � � � ; �n with ascending
precedence from �1 to �n. The rule states: \if i > j,
shift; otherwise, reduce." The static ASR solution,
however, does the same by the ASR grammar G10 of
Figure 13.

Case 3 (Super- and subscripted expressions).
The authors of [52] have developed a typesetting
language for mathematics, where it is desirable to have
superscripts and subscripts aligned in expressions such
as x2

i . This is described by the ambiguous grammar
G11 as in Figure 14. For example, the expression x sub
i sup 2 can be interpreted, by G11, in three ways as
((x sub i) sup 2) meaning x2

i , (x sub (i sup 2)) to mean
x2
i , or (x sub i sup 2) as the desired x2

i , which can be
achieved also by the ASR grammar of Figure 15.

Case 4 (Case Expressions in Standard ML).
Figure 16 depicts the ambiguous grammar G12,

Figure 14. Grammar G11, part of a typesetting language
for mathematics.

Figure 15. The ASR grammar for G11.

G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952 1949

Figure 16. An ML ambiguous grammar for case
expressions.

Figure 17. The ASR grammar, G13, for G12.

adapted from [35], that describes the \case" expres-
sions of ML [53]. For example, there are two parse trees
for the ML case expression, case a of b) case b of c)
cjd) d, based on G12. The standard ML de�nition
requires that the matching rule \d) d" should be
attached to \case b". The static ASR solution for the
same problem is described in Figure 17.

5. The ASR LALR (1) parser generator

The input to the ASR LALR (1) parser generator is an
ASR grammar. The ASR parser generator is able to
produce a non-conicting LALR (1) parse table, if the
following hold:

a) The possible conicts of an LALR (1) parse table
produced by a standard LALR (1) parser genera-
tor, could be resolved by editing the parse table ac-
cording to ambiguity-resolving characteristic of the
language not described by the standard context-
free grammar (without the asserted sets).

b) Asserted no-shift sets and the asserted reduce sets
resolve all the possible ambiguities of the grammar.

When the above conditions hold, the ASR LALR (1)
parser generator is basically the same as any LALR (1)
parser generator, except that decisions to �ll the parse
table entries are a�ected by the asserted sets, and the
parser generator needs to compute the look-afore sets
of the grammar symbols located immediately to the
right of a no-shift set. The shift and reduce entries are
found as follows:

� Shift entries: For any con�guration, in State i, of
the form A !j �ns � a�rs insert a shift action in
row i and column a, i� ns \ LFi(a) 6= �.

� Reduce entries: For any con�guration, in State i, of
the form A!j ��rs, insert a reduce action in row i

and all columns a, i� a 2 rs. For any con�guration,
in State i, of the form A!j ���rs (A!j ��+rs),
insert a reduce action in row i and all columns a, i�
a 2 LA (A!j ��)� rs(a 2 LA (A!j ��) [rs).

� Goto entries: These entries are �lled exactly in the
same way as any LALR (1) parser generator does.

The above description has been implemented as a tool
called ASR LALR (1) Parser Generator, based on the
open-source and java-based CUP parser generator [25],
by applying some non-structural modi�cations; for
example, adding concepts such as look-afore, reduce
and no-shift sets, and also by changing the way the
parsing table is �lled. The main reason for modifying
an existing parser generator is to show the simplicity
of the proposed method and ease of adapting an
existing parser generator via minor modi�cations. A
screenshot of the implemented tool is shown in the
Appendix.

6. Conclusions

Ambiguous context-free grammars, theoretically, lead
to nondeterministic parsers with over-linear behavior.
Nevertheless, in practice, there are parser generators
that accept shorter ambiguous grammars for program-
ming languages that are supplemented with some
ambiguity-resolving information and produce smaller
parse tables capable of deriving deterministic parsers
that operate in linear time and space. The history
of this practice, which leads to more e�cient parsers,
tracks back to hand-editing of the conicts in parse
tables, dynamically prompting the user for deciding on
a conict, and augmenting the ambiguous grammar
with disambiguation rules to help parser generators
to resolve conicts. None of the previous approaches
can generate a correct parse table solely by examining
the augmented ambiguous grammar, and more or less
require the user interaction. We proposed a more
powerful formalism for ambiguous context-free de�ni-
tion of programming languages, where each production
rule may be augmented with a reduce set and one or
more no-shift sets. The former is used by LALR (1)
parser generators to resolve reduce-reduce and shift-
reduce conicts and the latter helps in avoiding an
incorrect shift action. The corresponding asserted
shift reduce (ASR) parser generator computes a look-
afore set with the help of two computed auxiliary
functions Followed-by and Last, in the same way as
the conventional look-ahead set uses the follow and
First functions. We showed, via several examples
from the contemporary programming languages, that
the proposed formalism is powerful enough to enable
the appropriate parser generator to resolve ambiguities
based on static disambiguation rules and without any
dynamic interaction with the user (i.e., for instance

1950 G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952

compiler writer). We have developed an appropri-
ate ASR parser generator to test and support the
proposed notation. Finally, we believe that general
purpose programming language designers, presumably
with deep knowledge of parsing theory and compiler
construction, can de�ne the programming language
syntax as a concise ambiguous grammar augmented
with the required disambiguation rules, as proposed,
such that the ASR syntax can be directly used by
the ASR parser generator to provide the compiler
writer with an e�cient deterministic parser. This
would not obviate the need for a simple context-free
grammar or syntax graph that is usually provided for
guiding the programmers to write syntactically correct
programs.

For future works, the usefulness of presented ASR
approach could be investigated for Domain-Speci�c
Languages (DSLs) [54,55], and the possibility of de-
vising a similar method for LL (1) grammars can be
examined.

Acknowledgments

This research was founded in part by IPM under
Grant CS1391-2-03, and in part by Shahid Beheshti
University.

References

1. Grune, D. and Jacobs, C., Parsing Techniques:
A Practical Guide, Springer-Verlag, New York Inc.
(2008).

2. Slivnik, B. \The embedded left LR parser", Proceed-
ings of the Federated Conference on Computer Science
and Information Systems, pp. 863-870 (2011)

3. Grune, D. and Jacobs, C.J.H. \A programmer-
friendly LL (1) parser generator", Software Prac-
tice and Experience, 18(1), pp. 29-38, available at:
http://www.cs.vu.nl/�ceriel/LLgen.html (1988).

4. Johnson, S.C. \YACC-yet another compiler compiler",
Computing Science Technical Report, AT&T Bell Lab-
oratories, New Jersey (1975).

5. Might, M. and Darais, D. \Yacc is dead",
available online at CornellUniversity Library
(arXiv.org:1010.5023) (2010).

6. Slivnik, B. \LL conict resolution using the embedded
left LR parser", Computer Science and Information
Systems, 9(3), pp. 1105-1124 (2012).

7. Aho, A., Lam, M., Sethi, R. and Ullman, J., Compil-
ers: Principles, Techniques, & Tools with Gradiance,
Addison-Wesley Publishing Company, USA (2007).

8. Sippu, S. and Soisalon-Soininen, E. \LR(k) and LL(k)
parsing", Parsing Theory, II, Springer-Verlag, Berlin
(1990).

9. Scott, E. and Johnstone, A. \GLL parsing", Electronic
Notes in Theoretical Computer Science, 253(7), pp.
177-189 (2010).

10. Ford, B. \Parsing expression grammars: A
recognition-based syntactic foundation", Proceedings
of the 31st ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages POPL'04, pp.
111-122 (2004).

11. Parr, T. and Fischer, K. \LL(*): The foundation of the
ANTLR parser generator", ACM SIGPLAN Notices,
46(6), pp. 425-436 (2011).

12. Fischer, C.N., Richard, J. and LeBlanc, J., Crafting a
Compiler with C, Benjamin-Cummings Publishing Co.,
Inc. (1991).

13. Aho, A.V., Johnson, S.C. and Ullman, J.D.
\Deterministic parsing of ambiguous grammars",
Communication of ACM, 18, pp. 441-452, doi:
http://doi.acm.org/10.1145/360933.360969 (1975).

14. Hopcroft, J.E., Motwani, R. and Ullman, J.D., Intro-
duction to Automata Theory, Languages, and Compu-
tation, 3rd Edn., Addison-Wesley Longman Publishing
Co., Inc. (2006).

15. Aho, A.V. and Ullman, J.D., The Theory of Parsing,
Translation, and Compiling, Prentice-Hall, Inc. (1972).

16. Floyd, R.W. \Syntactic analysis and operator prece-
dence", Journal of ACM, 10, pp. 316-333, doi:
http://doi.acm.org/10.1145/321172.321179 (1963).

17. Presser, L. and McAfee, J. \An algorithm for
the design of simple precedence grammars",
Journal of ACM, 19, pp. 385-395, doi:
http://doi.acm.org/10.1145/321707.321708 (1972).

18. Wharton, R.M. \Resolution of ambiguity in pars-
ing", Acta Informatica, 6(4), pp. 387-395, doi:
http://doi.acm.org/10.1007/BF00268139 (1976).

19. Share, M. \Resolving ambiguities in the parsing of
translation grammars", SIGPLAN Notices, 23(8), pp.
103-109 (1988).

20. Schmitz, S. \Noncanonical LALR (1) parsing", Lecture
Notes in Computer Science, pp. 95-110 (2006).

21. Scott, E. and Johnstone, A. \Right nulled GLR
parsers", ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 28, pp. 618-624
(2006).

22. Thorup, M. \Controlled grammatic ambiguity", ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16, pp. 1024-1050 (1994).

23. Thurston, A. \A computer language transformation
system capable of generalized context-dependent pars-
ing", PhD Dissertation, School of Computing, Queen's
University at Kingston (2008).

24. Donnelly, C. and Stallman, R. \The bison manual",
Free Software Foundation (2009).

25. Hudson, S., Flannery, F., Ananian, C., Wang, D. and

G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952 1951

Appel, A. \Cup parser generator for java", Available
at: http://www2.cs.tum.edu/projects/cup/manual.
html (1999).

26. Laski, Z. \Ordered context-free grammars", Technical
Report 99-18, University of California, Irvine (2000).

27. Passos, L.T., Bigonha, M.A.S. and Bigonha, R.S. \An
LALR parser generator supporting conict resolution",
Journal of Universal Computer Science, 14, pp. 3447-
3464, doi:10.3217/jucs-014-21-3447 (2008).

28. Harford, A.G., Heurinc, V.P. and Main, M.G. \A new
parsing method for non-LR(1) grammars", Software
Practice and Experience, 22, pp. 419-437, (1992).

29. McPeak, S. and Necula, G. \Elkhound: A fast, practi-
cal GLR parser generator", Lecture Notes in Computer
Science, pp. 73-88 (2004).

30. Rodriguez-Leon, C. and Garcia-Forte, L. \Solving
di�cult LR parsing conicts by postponing them",
Computer Science and Information Systems, 8(2), pp.
517-531 (2011).

31. Gray, R., Heuring, V. and Kram, S., Sloam, A.
and Waite, W. \Eli: A complete, exible compiler
construction system", Research Reportin Univ. of
Colorado at Boulder (1990).

32. Cervelle, J., Forax, R. and Roussel, G. \A simple im-
plementation of grammar libraries", Computer Science
and Information Systems, 4(2), pp. 65-77 (2007).

33. Henriques, P.R., Pereira, M.J.V., Mernik, M., Lenic,
M., Gray, J. and Wu, H. \Automatic generation of
language-based tools using the LISA system", IEE
Proceedings Software, 152(2), pp. 54-69 (2005).

34. Porub�an, J., Forg�ac, M., Sabo, M., and B��h�alek,
M. \Annotation based parser generator", Computer
Science and Information Systems, 7(2), pp. 291-307
(2010).

35. Schmitz, S. \An experimental ambiguity detection
tool", Electronic Notes in Theoretical Computer Sci-
ence, 203, pp. 69-84 (2008).

36. Van Den Brand, M., Scheerder, J., Vinju, J. and
Visser, E. \Disambiguation �lters for scannerless gen-
eralized LR parsers", Lecture Notes in Computer Sci-
ence, pp. 143-158 (2002).

37. Paulson, L.C. \A compiler generator for semantic
grammars", PhD Dissertation, Stanford University
(1981).

38. Knuth, D.E. \The remaining trouble spots in algol 60",
Communication of ACM, 10, pp. 611- 618 (1967).

39. Poole, P.C. \Porable and adaptable compilers", Com-
piler Construction: An Advanced Course, Bauer, F.
L. and Eickel, J., Eds., Springer-Verlag, pp. 427-497
(1976).

40. Welsh, J., Snecringer, W.J. and Hoare, C.A.R. \Am-
biguities and insecurities in Pascal", Software Practice
and Experience, 7, pp. 685-696 (1977).

41. Chan, J., Yang, W. and Huang, J.W. \Traps in Java",

Journal of Systems and Software, 72(1), pp. 33-47
(2004).

42. Merril, G.H. \Parsing Non-LR(k) grammars with
Yacc", Software Practice and Experience, 23(8), pp.
829-850 (1993).

43. Heering, J., Hendriks, P., Klint, P. and Rekers, J. \The
syntax de�nition formalism sdf-reference manual-",
ACM SIGPLAN Notices, 24, pp. 43-75 (1989).

44. Wirth, N. \The programming language Pascal", Acta
lnformatica, 1, pp. 35-63 (1971).

45. Wirth, N., Programming in Modula-2, 4th Edn., ISBN
0-387-50150-9 (1989).

46. Van Rossum, G., Fred, L. and Drake, Jr., The
Python Language Reference Manual, ISBN 0-9541617-
8-5 (2011).

47. Ierusalimschy, R., de Figueiredo, L.H. and Celes, W.,
Lua 5.1 Reference Manual, Lua.org., ISBN 85-903798-
3-3 (2006).

48. Flanagan, D. and Matsumoto, Y. \The ruby pro-
gramming language", Everything You Need to Know:
Covers Ruby 1.8 and 1.9, O'Reilly, ISBN 978-0-596-
51617-8, pp. 1-429 (2008).

49. Gosling, J., Joy, B., Steele, G. and Bracha, G.,
The Java Language Speci�cation, 2nd Edn., Addison-
Wesley (2000).

50. Earley, J. \Ambiguity and precedence in syntax de-
scription", Acta Informatica, 4, pp. 183-192 (1975).

51. Tse, S. and Zdancewic, S. \Concise concrete syntax",
University of Pennsylvania (2008).

52. Kernighan, B.W. and Cherry, L.L. \A
system for typesetting mathematics",
Communication of ACM, 18, pp. 151-157, doi:
http://doi.acm.org/10.1145/360680.360684 (1975).

53. Milner, R., Tofte, M., Harper, R. and MacQueen, D.,
The De�nition of Standard ML, Revised edition, MIT
Press, 1 (1997).

54. Mernik, M., Heering, J. and Sloane, A.M. \When
and how to develop domain-speci�c languages", ACM
Computing Surveys, 37(4), pp. 316-344 (2005).

55. Kosar, T., Oliveira, N., Mernik, M., Varanda Pereira,
M.J., �Crepin�sek, M., da Cruz, D. and Henriques,
P.R. \Comparing general-purpose and domain-speci�c
languages: An empirical study", Computer Science
and Information Systems, 7(2), pp. 247-264 (2010).

Appendix

As was mentioned in Section 5, we have written and
tested a computer program in Java programing lan-
guage which receives an ASR grammar and produces
the corresponding LALR (1) parse table. A screen shot
of user interface of this ASR parser generator is found
in Figure A.1.

1952 G. Jaberipur and M. Dorrigiv/Scientia Iranica, Transactions D: Computer Science & ... 20 (2013) 1939{1952

Figure A.1. A screenshot of ASR parser generator.

Biographies

Ghassem Jaberipur is an Associate Professor of
Computer Engineering in the Department of Electrical
and Computer Engineering at Shahid Beheshti Uni-
versity, Tehran, Iran. He received his BS degree in
Electrical Engineering and PhD degree in Computer
Engineering from Sharif University of Technology in
1974 and 2004, respectively, MS degree in Computer
Engineering in Engineering from UCLA in 1976, and
MS degree in Computer Science from University of
Wisconsin, Madison, in 1979. His main research

interest is in computer arithmetic. Dr. Jaberipur is
also a�liated with the School of Computer Science,
Institute for Research in Fundamental Sciences (IPM),
in Tehran, Iran.

Morteza Dorrigiv received his BS and MS degrees
in Computer Engineering from Shahid Beheshti Uni-
versity in 2008 and 2010, respectively. Since 2010,
he has been a PhD student in the Department of
Electrical and Computer Engineering, Shahid Beheshti
University, Tehran, Iran. His research interests include
computer arithmetic and compiler design.

