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Abstract. A closed-loop control methodology is investigated for stabilization of
a vibrating non-classical micro-scale Euler-Bernoulli beam with nonlinear electrostatic
actuation. The dimensionless form of governing nonlinear Partial Di�erential Equation
(PDE) of the system is introduced. The Galerkin projection method is used to reduce the
PDE of system to a set of nonlinear Ordinary Di�erential Equations (ODE). In non-classical
micro-beams, the constitutive equations are obtained based on the non-classical continuum
mechanics. In this work, proper control laws are constructed to stabilize the free vibration
of non-classical micro-beams whose governing PDE is derived based on the modi�ed strain
gradient theory as one of the most inclusive non-classical continuum theories. Numerical
simulations are provided to illustrate the e�ectiveness and performance of the designed
control scheme. Also, the results have been compared with those obtained by the classical
model of micro-beam.
© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Many micro-cantilever beams based on MEMS instru-
ments have drawn growing attention in modern tech-
nology, such as vibration and shock sensors, Atomic
Force Microscopes (AFM), micro-switches, mass sen-
sors, and chemical sensors [1-3]. One of the most
recurrent actuating and sensing methods in MEMS
systems is based on electrostatic force because of its
high e�ciency and simple structure and manufactur-
ing. The combination of the electrostatic actuation
and micro-beam structure has many applications in
industrial and scienti�c �elds like mass sensing systems,
micro pressure sensors, micro 
exible joints, micro rate
gyros and ink injection printers [4-6].

*. Corresponding author. Tel.: +98 21 66165504;
Fax: +98 21 66000021
E-mail addresses: rvatankhah@mech.sharif.edu (R.
Vatankhah); farzad.karami@gmail.com (F. Karami);
salarieh@sharif.edu (H. Salarieh); aalasti@sharif.edu (A.
Alasty)

Some papers were dedicated to derive the gov-
erning equation of motion of electrostatically actuated
beams, while some others considered the vibration
analysis of them [7-9]. Pull-in instability has also
drawn much attention in the literature. Several works
were also dedicated to predict pull-in voltage and its
properties [9-11].

Since mechanical vibration can be a main source
of damage and restricts the performance and resolution
of micro-scale instruments, the necessity for existence
of a high performance control system has emerged
in recent decades. Vibration control of a clamped-
free micro-beam made of stainless steel was studied
by Cunningham et al., and the �rst two modes of
vibration were actively suppressed [12]. In 1998,
Wang considered a feedback control form to suppress
mechanical vibration in a micro-cantilever beam by
nonlinear electrostatic actuators via a switching con-
troller [13]. Active vibration isolation of a stroke
scanning probe microscope was accomplished by Yen
et al. by using discrete sliding mode control to



R. Vatankhah et al./Scientia Iranica, Transactions B: Mechanical Engineering 20 (2013) 1824{1831 1825

treat e�ectively the unavoidable ground vibration [14].
Zhang et al. used the Rayleigh{Ritz method to reduce
the order of the dynamical model of micro-cantilever
beams and proposed a rational linearizing feedback
controller with a high gain observer to eliminate the
unwanted de
ection of the micro-cantilever beam sys-
tem [15]. Many investigations considering feedback
control problem of electrostatically actuated micro-
systems have used lumped parameters assumption to
simplify the governing PDEs of motion. Using this
simpli�cation, Vagia designed a switching PID control
in 2008 [16]. In 2012, he suggested a sliding mode
control to handle nonlinearity and uncertainty in the
system parameters [17].

In various applications of MEMS-based micro-
beams, the beam thickness is typically on the order
of microns and sub-microns. In the recent decades, the
size e�ect in micro-scale beams have been experimen-
tally investigated in some metals and polymers such as
those reported in [18-20]. These experiments signi�ed
that the classical strain-based mechanics theories can-
not be used to describe the microstructure-dependent
size e�ect. Hence, conventional continuum mechanics
needs to be extended by using higher order continuum
theories to interpret the size dependence phenomenon
at small scale.

The e�ects of the strain gradients in linear elas-
ticity were �rstly investigated by Mindlin in 1964 [21].
As a common type of higher-order continuum theory,
an improved version of the strain gradient theory
was proposed by Fleck et al. in 1994 [18]. In
2003, a modi�ed strain gradient elasticity theory as
one of the most successful and inclusive higher-order
continuum theories was elaborated by Lam et al. [22].
Recently, this theory has been broadly used to obtain
the new governing equations and boundary conditions
of micro-scale beams such as investigations illustrated
in [23-25]. Also, a large number of publications
and investigations in the �eld of micro-scale beams
have been devoted to study the static and dynamic
behaviors of strain gradient micro-beams [26-29]. It
can be seen from the literature that, although several
investigations and analyses have been initiated to
discuss the static and dynamic behavior and vibration
analysis of non-classical strain gradient micro-beams in
recent years, vibration control of non-classical micro-
beams, such as strain gradient ones, has been excluded
absolutely.

The present work intends to investigate the prob-
lem of vibration suppression of a non-classical elec-
trostatically actuated micro-cantilever using nonlinear
control theory. For attaining this goal, �rst, the
dimensionless form of the governing nonlinear partial
di�erential equation of an electrostatically actuated
Euler{Bernoulli micro-beam is determined based on
the modi�ed strain gradient theory introduced by

Lam et al. and then Galerkin projection method is
employed to reduce the order of the system. The
�rst mode of the system is considered in the model
of dynamics to design the controller and the �rst four
modes are chosen to apply the proposed controller
and check the performance of the closed loop sys-
tem.

2. Dynamic modeling

Based on the modi�ed strain gradient theory pro-
posed by Lam et al. [22], for a linear Euler-Bernoulli
clamped-free micro-beam with uniform cross-section
A and length L, the governing PDE of motion and
corresponding boundary conditions are derived with
the aid of Hamilton's principle as follows [23,30]:
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where x and t represent the independent spatial and
time variables, respectively, � indicates the beam
density and w(x; t) denotes the lateral de
ection. Fur-
thermore,
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where I is the area moment of inertia of the beam
cross-section, E is the Young modulus and � is the
shear modulus. Moreover, l0, l1 and l2 appeared in
higher order stresses in the modi�ed strain gradient
theory [22], illustrate the additional independent ma-
terial parameters.

Here, an electrostatically actuated non-classical
strain gradient micro-beam formulation is attained
using the Galerkin projection method. The beam
is subjected to electrostatic force at its free end as
stabilizing force. The electrostatic force is inherently
unidirectional and one electrode is not able to exert
force in both directions. So we need two opposite
electrodes to produce both attracting and repelling
forces. The suggested con�guration is depicted in
Figure 1.
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Figure 1. An electrostatically actuated micro-beam.

It must be noticed that it is not mandatory to
place electrodes at the tip of the beam; they could be
placed in every location along the length of the can-
tilever. The proper point for the location of electrodes
can be obtained by controllability consideration which
is beyond the scope of this study. For convenience, it
is assumed that the electrodes are located at the tip.

The following equations show the magnitude of
the electrostatic actuation force. When the electric
potential is established between the electrode and the
beam, a pulling force is founded and the beam is
attracted toward the electrode.
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1
2
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 (x)V 2
l (t)

(d� w (x; t))2 ;
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where d, b and " are initial distances between electrode
and the beam, overlapping width of the beam and
electrode and vacuum permittivity, respectively.  
is a spatial weighting function which is aimed to
determine magnitude of the electrostatic force with
respect to spatial independent variable. In the present
work, a step function is used as a spatial weighting
function in order to model the discontinuous geometry
of electrodes. V is the applied voltage to the electrodes
and w is the lateral displacement of the beam which
is a function of temporal and spatial independent
variables. \u" and \l" notations demonstrate the force
that is generated due to upper and lower electrodes,
respectively. To produce full control over the tip
displacement of beams, each electrode has separate
electrical circuit and di�erent voltages are applied to
each electrode. To avoid exerting opposite forces to
the beam at once, each electrode is charged only if the
other one is o�ine. It means that at each instant only
one electrode is charged.

Using the modi�ed strain gradient theory in well-
known Euler-Bernoulli beam model, and the proposed
electrostatic actuation terms, the following equation of
motion is obtained.
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The �rst term in the right hand side of the equation
represents the attracting force of the bottom electrode
and the second term is corresponded to the upper elec-
trode whose minus sign shows the opposite direction of
the force [7].

In the above equation, h demonstrates the beam
thickness. The dimensionless form of Eq. (5) can be
obtained as below:
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The solution of Eq. (6) can be represented by a series
of in�nite terms. Using the decomposition of temporal
and spatial parts of the preceding equation solution,
the lateral displacement of the beam can be written in
the following form:

ŵ(x̂; t̂) =
1X
i=1

ui(t̂)�i(x̂); (8)

where ui is the temporal part of the ith mode of the
solution and �i is the assumed mode shape of the ith
mode. The functions �is must satisfy dimensionless
form of six boundary conditions of the beam given
in Eq. (2) and are preferably orthogonal to decouple
thoroughly the linear part of Eq. (6) for di�erent
modes. To apply classical methods of nonlinear control
theory for designing a stabilizing control, the PDE of
motion should convert into a set of ODEs in which
every equation of this set corresponds to one mode of
the system. The Galerkin projection method is used
to convert Eq. (6) into a desired set of ODEs. To
use the Galerkin method, the actuation terms must be
expanded using Taylor series as follows:
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Substituting Eq. (8) and the result of Eq. (9) into
Eq. (6) and using the Galerkin method lead to the next
equation:
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Orthogonality of the mode shapes brings about the
decoupling of the linear parts of the equation of motion,
but because of the nonlinear terms which correspond
to actuation forces, the ODE of each mode contains
some temporal terms of the other modes. Integrating
Eq. (10) leads to the following ODE:
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where � is de�ned as:
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3. Control system

The objective of this section is deriving a feedback con-
trol law to stabilize undesired vibration of the micro-
cantilever beam with taking into account the e�ect of
strain gradient phenomenon. The design is based on
the set of ODEs of motion which was derived in the
previous section. The aim of the control system is to
stabilize the advert vibrations of the micro-cantilever
and restore it to its rest point. The �rst mode of
the strain gradient micro-cantilever is considered in the
model for controller design. This mode dominates the
dynamic response of the beam, and stabilization of this
mode would stabilize signi�cantly the entire vibration
of the beam. On the other hand, including the higher
modes imposes need of more electrodes to actuate the
beam. The actuation force is approximated by its �rst
four terms of Taylor expansion. This approximation

is used only for controller model, but in the plant
model the right hand side of Eq. (11) is integrated
directly over spatial domain, without approximation by
Taylor expansion. It can be interpreted that the whole
terms of the Taylor series are considered in the plant
model. This method signi�cantly improved accuracy
of the numerical solution in the expense of increasing
calculations. Simulations show that approximation by
four terms has enough accuracy and increasing the
terms would not improve the response of the system.
The equation of motion for the �rst mode is depicted
as follows:
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The controller will convert the characteristic equation
of the closed loop system into the following form:

�u1 + c1 _u1 + c2u1 = 0; (14)

where c1 and c2 are positive coe�cients that must be
chosen in a way to ensure the stability of the system.
To do so, a feedback linearization method is used to
eliminate the nonlinear part of the equation and form
Eq. (14). Doing some math the actuating voltage is
obtained in the form of:
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1
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where ais are coe�cients which are obtained by inte-
grating the left part of Eq. (13) with respect to x̂. They
are de�ned as follows:
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Substituting Eq. (15) in Eq. (13) would convert
Eq. (13) into Eq. (14). The controller can be tuned
by choosing proper c1 and c2 coe�cients. To generate
force in the opposite side (upward force) one must use
the upper electrode as well. From Eq. (15), it is obvious
that the left side of the equation must be positive to
have physical meaning; this arises from unidirectional
nature of the electrostatic actuation. When the left side
term becomes negative, it means that upward force is
needed. The upper electrode can generate this upward
force by applying a voltage that is speci�ed by using
the below model:

�u1 + �u1 =�
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 V̂ 2
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2
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1�
3
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To convert the above equation into asymptotic stable
form of Eq. (14), the following voltage is derived:

V̂ 2
u = � �c1 _u1 � c2u1 + �u1

a1 � a2u1 + a3u2
1 � a4u3

1
; (18)

where ais are de�ned in Eq. (16). A supervisory control
would decide which control voltage is valid based on
the sign of the left parts of Eqs. (15) and (18). The
positive sign is the criterion of applying the voltage to
electrode.

4. Simulation results

In the previous section, a controller was designed
to stabilize the vibration of a strain gradient micro-
cantilever. In this part of the present work, numerical
simulations are used to validate the proposed feedback
control system. The parameters of the micro-cantilever
which is modeled as plant of the system are shown in
Table 1. To investigate the e�ect of unmodeled dy-
namics on controller performance, the plant is modeled
by �rst four modes of the beam. So, the robustness
of the proposed system will be tested by assuming
higher modes and unmodeled fast dynamics of the
system in simulations. In this research, it is assumed
that all necessary states of the system are available
via a proper estimation system, but the observation
system is not included in present simulations. In
future investigation, the authors will consider a state
estimation system by designing a proper nonlinear
observer. The observabillity of similar nonlinear system
was proved in pervious works [31-32].

In the �rst simulation, the vibration of the beam
due to a constant voltage is investigated. The input
voltage is applied as a step function. The simulation
is carried out for both classical and strain gradient
Euler-Bernoulli micro-beam models. Figure 2 shows
the result of the simulation in this case.

Comparison between the simulation results of
these two models shows signi�cant di�erences in the
frequency and amplitude of the time response. The
time response of the tip displacement of classical Euler-
Bernoulli beam model to the step input exhibits lower
frequency which is in contrast to fast response of the
strain gradient model. Also, the tip displacement
amplitude of the classical model is higher than that
of the second one. This matter can be explained
by considering the di�erence between sti�ness of the
two models. Taking the e�ect of strain gradient into

Figure 2. Tip displacement response of the beam to a
step input voltage for classical (upper) and non-classical
(lower) beam models. The thickness of the micro-beam is
17 �m.

Figure 3. Tip displacement response of the beam to a
step input voltage for classical (upper) and non-classical
(lower) beam models. The thickness of the beam is 80 �m.

account increases the sti�ness of the beam. Much
thinner the beam is, this added sti�ness is larger. In
Figure 3, the result of the same simulation is carried
out but the thickness of the beam is taken to be about
5 times greater than the �rst simulation. It is obvious
that the di�erence in response of the two models is far
less than the �rst simulation in which the thickness of
the beam was lesser. But the di�erence in amplitude
of the response is again considerable. In the second
simulation, the performance of the proposed stabilizing
control system is studied. An initial displacement is
applied at the tip of the beam and the controller would
stabilize the resulted vibration. In the simulation, the
parameters of Table 1 are used.

In Figure 4, the result of the simulation for the

Table 1. Parameters of the non-classical micro-cantilever [33].

Length Modulus of
elasticity

Width Thickness Density l0 l1 l2
Initial
gap

340 �m 1.44 GPa 34 �m 17 �m 1000 kg/m3 17.6 �m 17.6 �m 17.6 �m 3 �m
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Figure 4. (a) Tip displacement of the beam, (b) lower
electrode control voltage, and (c) upper electrode control
voltage of the stabilized micro-cantilever with
non-classical beam model.

Figure 5. (a) Tip displacement of the beam, (b) lower
electrode control voltage, and (c) upper electrode control
voltage of the stabilized micro-cantilever with classical
beam model.

beam with stabilizing feedback control laws is depicted.
The result shows smooth stabilizing of the beam. In
the next simulation, the e�ect of neglecting strain
gradient term in the model, which is used to design the
controller, is studied. Classical theory of the Euler-
Bernoulli beam is used for controller design, but the
plant is simulated as a strain gradient included beam.
In Figure 5, the result of simulation is illustrated.

The result demonstrates that the response of the

Figure 6. (a) Tip displacement, (b) lower electrode
control voltage, and (c) upper electrode control voltage of
the stabilized micro-cantilever with linear PID controller.

beam exhibits increasing in the controller signal which
is signi�cantly higher than the case where the strain
gradient is included in the controller model. The
mismatch between the actual plant and the controller
model leads to the poor controller performance. The
maximum control e�ort in the latter case is about two
times greater than the �rst case. In addition, the
higher order dynamics e�ects which are neglected in
the controller model can be observed in the form of
small oscillations in the time response of the system.

The last simulation is dedicated for a comparison
between the proposed nonlinear control scheme and
a linear controller. A PID controller is used and its
performance is indicated in Figure 6. As shown in this
�gure, the linear controller can stabilize the vibration of
the beam using very large control e�ort in comparison
to the proposed nonlinear controller. Also, the e�ect
of the higher order dynamics in the system response is
stronger than the case of using nonlinear controller.

5. Conclusion

In this research, the problem of vibration suppression of
a clamped-free strain gradient Euler-Bernoulli micro-
beam is studied. The nonlinear electrostatic actu-
ation is considered to achieve the control objective.
Nonlinear PDE of the motion of a strain gradient
micro-beam with electrostatic actuation is obtained
in dimensionless form. State space representation of
the system is instituted by employing the Galerkin
method. Then, for the obtained ODE model, a feed-
back control law is designed to stabilize the undesired
vibration of the micro-cantilever beam with taking
into account the e�ect of strain gradient phenomenon.
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Finally, computer simulation is implemented to observe
the e�ectiveness of the proposed control technique.
Numerical results obtained by considering the non-
classical model are compared with those obtained by
the classical one. Numerical simulations show signif-
icant di�erences between the results of non-classical
and classical models. These di�erences decrease and
diminish by increasing the micro-beam thickness. In
this work, the e�ect of observer errors in estimating
the needed states for the controller is ignored, and
it is assumed that the whole states are available for
feedback. In the future work, this important factor
will be studied and considered in the system perfor-
mance.
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