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Abstract. In this paper, a stable �nite volume formulation of the lattice Boltzmann
method is used to study time-dependent 
ows. For simulation purposes, a cell-centered
scheme is implemented to discretize the convection operator and weighting factors are used
as 
ux correctors to enhance the stability. Also, additional lattices at the edge of each
boundary cell are used, which allow a much better description of the actual geometrical
shape. Compared with previous �nite volume formulations, the proposed approach resulted
in a wider domain of stability and faster convergence. The scheme is validated through
simulations on 
ow over a circular cylinder and mixing layer 
ow. The results show that
the method is a promising scheme for simulating time-dependent 
ows.
© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, there has been considerable research
in developing and expanding the Lattice Boltzmann
Method (LBM) for solving di�erent 
uid dynamics
problems. The LBM was �rst introduced by McNa-
mara and Zanetti [1] as an improvement to the method
of Lattice Gas Automata (LGA). Later, it was shown
that the Lattice Boltzmann Equation (LBE) could
be derived from the continuous Boltzmann equation
by choosing an appropriate set of discrete velocities,
based on some special discretization schemes. This
approach helped for better understanding of the basis
of LBM, and provided a solid theoretical foundation for
LBM [2].

The fundamental idea of the LBM is to construct
simpli�ed kinetic models that incorporate the essential
physics of microscopic or mesoscopic processes, so that
the macroscopic averaged properties obey the desired
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macroscopic equations. The basic premise for using
these simpli�ed kinetic-type methods for macroscopic

uid 
ow is that the macroscopic dynamics of a 
uid
are the result of the collective behavior of many mi-
croscopic particles in the system and that macroscopic
dynamics are not sensitive to the underlying details
in microscopic physics. By developing a simpli�ed
version of the kinetic equation, it is not required to
solve complicated kinetic equations such as the full
Boltzmann equation, and it is not needed to follow each
particle as in molecular dynamics simulations [2].

LBM is based on a microscopic picture but fo-
cuses on the averaged macroscopic behavior of the

uid. That gives simplicity of implementation, a clear
physical picture and fully parallel algorithm. Brie
y,
the advantages of the LBM over the conventional CFD
schemes can be summarized as:

I) Simple explicit algorithm;

II) Parallelization capability for doing massively
parallel simulations;

III) Ability to handle complex geometries;
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IV) Robust simulations for complex 
uids and
etc. [3].

The standard BGK approximation of LBM, based
on Single-Relaxation-Time (SRT), was introduced by
Qian et al. [4], the latter being based on the original
idea of Bhatnagar et al. (1954) [2]. Due to its extreme
simplicity, the lattice BGK equation has become the
most popular LB model. But, the standard BGK-LBM
su�ers from numerical instabilities that can induce a
local blowup of the computation [5]. So, in recent
years, intensive studies on stability analysis regarding
di�erent lattice Boltzmann models have been carried
out by various researchers.

The Multiple-Relaxation-Time (MRT) model
[6,7], based on the original matrix, a formulation of
the LBM, has been proposed as an alternative to
the standard BGK model by D'Humieres [6]. In
this model, the collision step is performed in moment
space, whereas the propagation step is done in discrete
velocity space. The MRT models are considerably more
stable than the standard SRT model and overcome
some obvious defects in the standard BGK model,
such as the �xed ratio between the kinematic and bulk
viscosities [8]. However, the stability properties of the
MRT-LB models are still not satisfactory [9]. Thus, the
MRT-LBM has been persistently pursued, and much
progress has been made [10].

Recently, in order to improve the stability and ac-
curacy of the LB schemes, with regards to rough mesh,
the Entropic Lattice Boltzmann Method (ELBM) has
been developed. The goal of this approach, proposed
by Ansumali et al. [11-13], is construction of a
scheme that: I) satis�es the Boltzmann H-theorem
and II) shows a higher non-linear stability. In this
approach, an entropy function is de�ned for the kinetic
equation and it is ensured, at each iteration step,
that the entropy of the system remains non-decreasing
(Boltzmann H-theorem). This simple idea renders the
method thermodynamically consistent and makes the
simulations non-linearly stable. However, ELBM were
known only on highly symmetric lattices, such as the
27 velocity lattice (D3Q27). So, in order to increase the
speed of simulations, it is required that the number of
discrete velocities be reduced [14].

Another limitation of the standard LBM is the
use of uniform Cartesian grids. This limitation is par-
ticularly severe in many practical applications where
the complex geometry of boundaries cannot be well
�tted by regular lattices. In order to overcome such
limitation and increase computational e�ciency, locally
embedded uniform grids [15,16] and interpolated grid
stretching [17,18] have been proposed.

In locally embedded uniform grids, Cartesian
meshes are used and grid spacing is divided by an
integer (or level of re�nement) to the next re�ned

grid level. In this scheme, re�ned uniform grids and
the main coarse grids live on di�erent space and time
scales. The consequence is that one needs to perform
less time steps on the coarse grid than on the �ne
grid, because also, time is re�ned locally [19]. In the
interpolated grid stretching scheme, interpolations are
used at the interface between two connected meshes
of di�erent grid spacing and at solid boundaries [20].
With the interpolated grid stretching method, one
can use the simple bounce-back boundary conditions
with body-�tted meshes. However, this method re-
quires an extra computational e�ort for interpolation
at every time step and it also has a strict restric-
tion on the selection of interpolation points, which
requires upwind 9 points for 2D problems and upwind
27 points for 3D problems if a structured mesh is
used [21].

Among recent advances in LB research to handle
complex 
ows, a particularly remarkable option is
represented by changing the solution procedure from
the original `stream and collide' to a Finite Volume
(FV) formulation. The �rst attempt to combine the
FV method with LBM is attributed to Nannelli and
Succi [22]. They obtained a FV-LBM for the volume-
averaged coarse-grain distribution function, starting
from the discrete velocity Boltzmann equation. Peng
et al. proposed a cell-vertex �nite volume scheme [23].
This method allows for an arbitrary decomposition of
the computational domain into triangular or quadri-
lateral elements, with no structural limitations for the
mesh. Using the mapped or non-uniform grid for the
structured grid is another advantage of this method,
which results in a decrease in the number of grid nodes
and iterations for desired accuracy.

For the FV-LB methods, one needs to select
e�cient approaches, such as upwind schemes, to do
numerical discretization, in order to get a stable so-
lution [24]. Numerical research has shown that these
methods have good capabilities in real applications.
However, most of the presented FV schemes have
several drawbacks with respect to numerical stabil-
ity [25].

The primary motivation of this research is to
develop a stable FV formulation of the LBM to study
global time-dependent 
ows. The introduction of
upwind weighting factors allows overcoming instability
and accelerating the convergence process. In this
paper, we extended the method to simulate the 
ow
past a circular cylinder and mixing layer 
ow to study
the instability of these 
ows. The abundant literature
on these classical 
ow problems allows us to carry
out extensive benchmarking for this new formulation.
Here, we �rst describe the LBE, the proposed cell-
centered �nite-volume scheme and boundary condi-
tions. Then, the computational results are presented,
followed by the concluding remarks.
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2. Lattice Boltzmann-�nite volume
formulation

2.1. Discrete lattice Boltzmann equation
The Boltzmann equation discretized in velocity space,
and the collision term modeled with BGK [2] approx-
imation, is usually written in the following di�erential
form:

@fi
@t

+ ~vi:rfi = �1
�

(fi � feqi ) i = 1; :::; n; (1)

where n is the number of di�erent velocities in the
model, feq is the particle equilibrium distribution
function associated with motion along the ith direction
in velocity space, ~vi is the velocity in the ith direction,
� is the relaxation time and the right hand side of the
equation is the collision operator.

The discrete velocities and the equilibrium distri-
bution functions must be chosen appropriately, such
that the mass and momentum are conserved and some
symmetry requirements are satis�ed. Here, we choose
the 2D nine-bit (D2Q9) model with the equilibrium
distribution function de�ned as:

feqi (~x; t) =wi��
c1 + c2(~vi:u) + c3(~vi:u)2 + c4(u:u)

�
; (2)

where c1 = 1; c2 = 1=c2s; c3 = 1=2c4s; c4 = �1=2c2s and
wi is the weighting factor and equals 4/9 for i = 0, 1/9
for i = 1 � 4 and 1/36 for i = 5 � 8. The discrete
velocities are given by ~vo = 0 and ~vi = �i(cos �i; sin �i)
with �i = 1; �i = (i � 1)�=2 for i = 1 � 4 and
�i =

p
2; �i = (i� 5)�=2 + �=4 for i = 5 � 8 and cs =

c=
p

3 = 1=
p

3 is the speed of sound in the model [2].
The macroscopic density, � and velocity, u, of the

uid are determined by � = �ifi and �u = �ifi~vi;
respectively. Also, the corresponding kinematic shear
viscosity isrelated to the relaxation time by v = c2s� ,
and macroscopic pressure is given by p = c2s� [25].

2.2. FV formulation of LBM
According to Figure 1, the integration of the �rst term
in Eq. (1), based on the cell-centred �nite-volume
scheme, is approximated as:Z
abcd

@fi
@t
dA �

�
@fi
@t

�
I;J

AI;J ; (3)

where AI;J is the area of abcd. In the above equation,
fi is assumed to be constant over the area abcd, thus
avoiding a set of equations to be solved. This is a
common practice in the �nite volume methods [26].

A standard integration of the second term of the
left-hand side of Eq. (1) gives the 
ux associated with
the streaming operator of the ith particle distribution

Figure 1. Schematic of the FV discretization with
cell-centered lattice.

function through the four edges ab; bc; cd and da. As vix
and viy are constant, the following equation is obtained
after applying Green's theorem:Z
abcd

vi:rfi dA =
Z
abcd

�
@(vix:fi)
@x

+
@(fi:viy)
@y

�
dx dy

=
I

around I;J

(vix fi dy � viy fi dx)

� [fi]I;J + [fi]I+1;J

2
vi:Nab

+
[fi]I�1;J + [fi]I;J

2
vi:Nbc

+
[fi]I;J + [fi]I;J+1

2
vi:Ncd

+
[fi]I;J�1 + [fi]I;J

2
vi:NdaA: (4)

In the above equation, Nk = (�y�i��x�j)k is the
outward unit vector normal to the edge, and k =
ab; bc; cd; da. This formulation is named the 
ux
averaging scheme, which would diverge if the 
ux term
be weak [27]. This could be avoided by using the
divergence theorem and applying an upwind scheme.
In this case, the integration of the second term of the
left-hand side of Eq. (1) results as follows [24]:

Z
abcd

vi:rfi dA =

(
[fi]I;J vi:Nab if vi:Nab � 0
[fi]I+1;J vi:Nab if vi:Nab < 0
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+

(
[fi]I;J vi:Nbc if vi:Nbc � 0
[fi]I;J+1 vi:Nbc if vi:Nbc < 0

+

(
[fi]I;J vi:Ncd if vi:Ncd � 0
[fi]I�1;J vi:Ncd if vi:Ncd < 0

+

(
[fi]I;J vi:Nda if vi:Nda � 0
[fi]I;J�1 vi:Nda if vi:Nda < 0

�X
k

~vi:Nk(fi)k: (5)

Now, the following weighting factors are employed in
the convective 
uxes of Eq. (1):

�ab =
�pabP
phorizental

; �bc =
�pbcP
p tvertical

;

�cd =
�pcdP
phorizental

; �da =
�pdaP
pvertical

: (6)

where:X
phorizental =

X
(pI+1;J + 2pI;J + pI�1;J) ;X

pvertical =
X

(pI;J+1 + 2pI;J + pI;J�1) ;

and:

�pab = pI+1;J � pI;J ; �pbc = pI;J+1 � pI;J ;
�pcd = pI;J � pI�1;J ; �pda = pI;J � pI;J�1:

The idea of introducing these factors to improve nu-
merical stability without adding arti�cial viscosity is
related to the fact that the macroscopic pressure, p,
acts as a driving force for the 
ow between the two
cells [28]. So, according to the above relations, the
convective 
uxes may be written as follows:

Si =
Z
~vi:rfidA � ~vi:Nab��ab[fi]I;J

+ (1� �ab)[fi]I+1;J
�

+ ~vi:Nbc
�
�bc[fi]I;J + (1� �bc)[fi]I;J+1

�
+ ~vi:Ncd

�
�cd[fi]I;J + (1� �cd)[fi]I�1;J

�
+ ~vi:Nda

�
�da[fi]I;J

�
+ (1� �da[fi]I;J�1

�
: (7)

The heuristic meaning of these coe�cients is to enhance
transport downhill the pressure gradient and reduce
it uphill [29]. Assuming a linear behavior of fi; feqi

within internal cells, the integration of the collision
term (right-side term of Eq. (1)) is performed through
the following formulation:

Qi �=� AI;J
�

�
1
4

[fnei ]I;J +
1
8

�
[fnei ]I+1;J

+ [fnei ]I;J+1 + [fnei ]I�1;J + [fnei ]I;J�1

�
+

1
16

�
[fnei ]I+1;J�1 + [fnei ]I+1;J+1

+ [fnei ]I�1;J+1 + [fnei ]I�1;J�1

��
; (8)

where fnei = fi�feqi is the non-equilibrium component
of the distribution function. Note that the integration
of the collision terms in boundary cells reduces to the
following form:

Qi �= �AI;J�
h
(fi)I;J � (feqi )I;J

i
: (9)

As we know truncation or round-o� causes error in the
numerical solution of partial di�erential equations, the
solution may go unstable in typical cases (such as 
ows
with strong gradients) unless arti�cial dissipation is
explicitly added to the calculation. Note that arti�cial
dissipation is the direct result of even order derivatives
in modi�ed equation [30]. So, in 
ux modeling,
especially at high Reynolds numbers or in the presence
of strong gradients, the addition of arti�cial dissipation
is inevitable to perform a stable simulation. Therefore,
in order to damp out spurious oscillations the fourth-
order arti�cial dissipation takes the following form:h

D(4)fi
i
I;J

=�x � (r�)2
x � [fi]I;J

+ "y � (r�)2
y � [fi]I;J ; (10)

where "x and "y are damping factors in x and y
directions, respectively, and the integration over each
cell is the sum of 
ux the time updating. These
damping factors were adjusted to achieve the desired
numerical stability and convergence. In Eq. (10),
the fourth-order gradient operator (Nabla-Delta) was
discretized in x and y directions as follows:

(r�)2
x � [fi]I;J = [fi]I+2;J � 4 [fi]I+1;J + 6 [fi]I;J

� 4 [fi]I�1;J + [fi]I�2;J ;

(r�)2
y � [fi]I;J = [fi]I;J+2 � 4 [fi]I;J+1 + 6 [fi]I;J

� 4 [fi]I;J�1 + [fi]I;J�2 : (11)
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A modi�ed �fth order, Runge-Kutta time di�erenc-
ing scheme is used to advance the computations in
time [28]. Therefore, the new-time particle distribution
function is calculated as follows:

fn+1
i = fni + �l

�t
AI;J

�
Sl�1
i +Ql�1

i
�
; (12)

where n denotes the time step, �1 = 0:0695; �2 =
0:1602; �3 = 0:2898; �4 = 0:5; �5 = 1 and l = 1; :::; 5.

2.3. Boundary conditions
In order to transform hydrodynamic boundary con-
ditions to the boundary conditions for the distribu-
tion functions, additional lattices at the edge of each
boundary cell are introduced. Then, boundary nodes
are treated like internal nodes, except that the 
uxes
over boundary edges also have to be evaluated. The
inlet boundary conditions at I = 1 are given by (see
Figure 2):

f1 = f3 + 2uin=3;

f5 = f7 + 0:5(f4 � f2) + uin=6;

f8 = f6 + 0:5(f2 � f4) + uin=6: (13)

The above described scheme is also known as Zou and
He boundary conditions, suggesting the name of the
original authors proposing this idea. At the outlet
boundary, i.e. I = Nx, the distribution functions are
extrapolated as follows:

fi(I =Nx; J) = 1:5fi(I = Nx � 1; J)

� 0:5fi(I = Nx � 2; J): (14)

For the free slip boundary condition (Figure 2), the
unknown distribution functions are calculated as f8 =
f5, f4 = f2 and f7 = f6. This implies no tangential mo-
mentum transfer to the boundary, as required for a free

Figure 2. Physical boundaries of the solution domain
and lattice model on typical boundaries.

slip 
uid motion [31]. Wall boundary conditions are in
LB simulations usually implemented by applying the
so-called bounce-back rule, which means that incoming
particle portions are re
ected back towards the nodes
they came from, and which gives second-order accuracy
for straight walls [21]:

f6 = f8; f2 = f4; f5 = f7: (15)

For the arbitrary shaped solid wall, � suggests the
selection of appropriate fis for extrapolation pur-
poses.

3. Simulation results

First, we applied the model to 
ow over a circular
cylinder and then in the second part, the results for
simulating a time-dependent mixing layer 
ow are
presented. In all cases, the results were compared
with available well-documented solutions in the liter-
ature.

3.1. Flow over circular cylinder
One of the basic time-dependent problems in hydro-
dynamics is the 
ow past a circular cylinder, which
has been both numerically and experimentally studied
extensively in the past, thus becoming a standard
benchmark problem. The 
ow has been numerically
simulated for Reynolds number up to 150. The
Reynolds number is calculated as Re = UD=�; U
being the inlet uniform velocity and D the cylinder
diameter.

Figure 3(a) shows a schematic of the 
ow con�g-
uration and boundary conditions simulated here. The
symmetry boundary conditions were used for top and
bottom walls. All the simulations have been performed
in a large 32D� 16D domain so as to minimize the ef-
fects of boundaries on the development of the wake. To
investigate grid independency, the Wake length (L) was
considered at three di�erent non-uniform grid points,
150 � 80; 180 � 100, and 200 � 120, at Re=40. It was
observed that the grid point of 200�120 was su�ciently
�ne to ensure a grid-independent solution for laminar

ow (see Figure 3(b)). The 
ow is impulsively started
by forcing a uniform pro�le at the inlet. Then, after
reaching the fully periodic solution, we measure and
report the length of the wake behind the cylinder, the
separation angle and the drag coe�cient.

The convergence criterion is applied to the veloc-
ity �eld to ensure that the convergence happens. If the
velocity satis�es this criterion, the program code will
go to the next step and the iterations will continue.
Generally, the proper equation de�nes the investigation
of the convergence situation for the numerical methods.
In other words, the error functions are used for assur-
ance that a parameter-like velocity converges. Here, a
relative velocity error is applied as follows:
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Figure 3. (a) Flow con�guration for simulation of 
ow past a cylinder placed symmetrically in a planar channel. (b)
Mesh grids around circular cylinder.

Table 1. Relative velocity error for di�erent 
ux modeling schemes (�nite volume formulation).

Flux modeling scheme Relative velocity error

Re = 20 Re = 40 Re = 80 Re = 100
Averaging scheme (Eq. (4)) 1.1E-04 4.5E-04 Diverged Diverged
Upwind scheme (Eq. (5)) 6.4E-04 3.3E-03 8.7E-03 Diverged
Pressured based scheme (Eq. (7)) 4.8E-05 4.6E-05 4.6E-05 4.5E-05
Averaging scheme with arti�cial dissipation ("x = "y = 5) 5.9E-05 6.4E-05 7.3E-05 diverged
Pressured based scheme with arti�cial dissipation ("x = "y = 5) 1.4E-05 1.5E-05 1.7E-05 2.5E-05

En+1 =

P
I;J

�����r�u2
I;J+v2

I;J

�n+1�
r�

u2
I;J+v2

I;J

�n�����P
I;J

�����r�u2
I;J + v2

I;J

�n+1
����� ;

(16)

where n and n+1 indicate the reference and under test
condition, respectively. Also, u and v are stream-wise
and span-wise components of the velocity, respectively.
Table 1 compares the relative velocity error of the

ow over a circular cylinder for di�erent 
ux modeling
schemes. In this table, results are presented in iteration
equal to 20000. As seen, applying the pressure based
factors enabled us to reach a more stable solution in the
mentioned Reynolds numbers. Also, a better conver-
gence was achieved by adding the arti�cial dissipation
term. This led to an improvement in the stability
and accuracy of the numerical scheme and reduction
in iteration steps.

Another parameter which has an in
uence on the
accuracy of the solution is compressibility error, which
is related to the fact that the LBE recovers the Navier-
Stokes for weakly-compressible 
ows (Ma<<1). In
other words, The LB model is a quasi-compressible

uid solver. This means that it enters a slightly
compressible regime to solve the pressure equation of
the 
uid. Compressibility e�ects do, however, impact
numerical accuracy. As these e�ects scale like the
square Mach-number, Ma2, they are kept under control
by keeping the Mach number low. The Mach number
is nothing else than Uin=cs, which means that it is
proportional to the velocity in the lattice unit, Uin.
So, in all simulations, inlet velocity Uin was set to 0.03
and, consequently, Mach number was obtained equal
to Ma= 0:03�p3 �= 0:05.

The results of Figure 4 show the time history
of the relative velocity error by adding the arti�-
cial dissipation to 
ux averaging and pressure based

Figure 4. E�ect of arti�cial dissipation ("x = "y = 5) in numerical convergence of the 
ow over a circular cylinder: (a)
Flux averaging scheme at Re = 80; and (b) pressure based scheme at Re = 100.
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Figure 5. Streamline plot of 
ow past circular cylinder at
Re = 40.

Table 2. Comparison of geometrical and dynamical
parameters at Re = 40: L = length of wake, d = cylinder
radius, �s = separation angle.

Authors L=d �s CD
Coutanceau and Bouard [32] 4.26 53.5 -
Dennis and Chang [33] 4.69 53.8 1.552
Nieuwstadt and Keller [34] 4.357 53.34 1.550
He and Doolen [35] 4.49 52.84 1.499
Patil and Lakshmisha [36] 4.284 52.74 1.558
Fornberg [37] 4.48 - 1.5
Calhoun [38] 4.36 - 1.62
Ye et al. [39] 4.54 - 1.52
Ubertini et al. [40] - - 1.56

Present work 4.47 52.8 1.551

schemes. Hence, a better convergence was achieved.
To conclude, applying the pressure-biasing factors and
arti�cial dissipation term enabled us to overcome some
shortcomings, especially the numerical instability of
�nite volume formulations of the lattice Boltzmann
method.

Details of the 
ow path behind the cylinder at
the Re=40 are shown in Figure 5. We see that
the two vortices in the streamline plot are perfectly
aligned, indicating that the 
ow is stable. Table 2
compares the present numerical results with previous
experimental and computational results [32-40]. In
particular, the length of the wake behind the cylinder,
the separation angle and the drag coe�cient computed
with the present method are in good agreement with
the corresponding values available in the literature.

It is generally accepted that the wake of a cylinder
immersed in a free-stream �rst becomes unstable to
perturbations at a critical Reynolds number of about
Re = 46� 1[39]. Above this Reynolds number, a small
asymmetric perturbation in the near wake will grow in
time and lead to an unsteady wake and Von Karman
vortex shedding. This is indeed what we �nd for our
simulation at Re = 62, which has been carried out on
a 320 � 240 non-uniform mesh. Figure 6 shows the
behavior of the relative velocity error at Re = 60, 62
and 100. For Reynolds higher than 62, we see that the

Figure 6. Behavior of velocities residuals at Re = 60, 62
and 100.

Figure 7. Streamline plot of 
ow past circular cylinder:
(a) Re = 100; and (b) Re = 150.

behavior of relative velocity error is periodic. Figure 7
shows a plot of the streamline pattern for Re = 100 and
150. The vortices in the streamline plot have begun to
slide past one another, indicating the onset of vortex
shedding, and the zero-contour level has begun to warp.
The characteristic vortex shedding is clearly visible in
the plots.

In order to investigate the e�ect of Mach number
on the accuracy of simulation, the time-dependent
behavior of drag coe�cient, CD, at di�erent Mach
numbers and Re = 100, are plotted in Figure 8. Results
are compared with the incompressible �nite di�erence
solution of Calhoun [38]. From these simulations, it
is obvious that the di�erence between Ma = 0.03 and
the incompressible solution is very low. In this work,
values of drag coe�cient di�er from the incompressible
solution by a small discrepancy of about 0.86% in
the whole periodic region. The di�erence between
the incompressible result and the case for Ma = 0.08
is equal to 8.8% for average values in the periodic



A. Zarghami and P. Omidvar/Scientia Iranica, Transactions B: Mechanical Engineering 20 (2013) 1812{1823 1819

Figure 8. Time-dependent drag coe�cient at Re = 100
and di�erent Mach numbers. Results compared with
incompressible result of Calhoun [38].

Table 3. Comparison of drag coe�cient for unsteady 
ow
at Re = 100.

Authors CD
Calhoun [38] 1.330
Ding et al. [41] 1.391
Liu et al. [42] 1.350
Braza et al. [43] 1.364

Present work 1.310

region. Therefore, it is shown that the results of
the lattice Boltzmann simulation have signi�cant de-
pendence on the chosen Mach number. Thus, the
e�ect of Mach number on the accuracy of the solution
should be considered in simulations using LB methods.
Table 3 lists quantitative comparisons for the drag
coe�cient.

To determine if we are getting the proper shedding
frequency, we compute the non-dimensional shedding
frequency, or Strouhal number, given by St = fsD=U ,
where fs is the shedding frequency. To compute the
shedding frequency, the periodic evolution of the drag
coe�cient was used. We estimate a non-dimensional
Strouhal number of about 0.161 for Re = 100. By
comparison, Ding et al. [41] reports a value of St =
0.166, and Liu [42] reports a value of St = 0.164.

Figure 9 represents the St-Re relation for di�erent
schemes available in the literature. One can clearly �nd
that, although the results from the di�erent schemes
deliver very di�erent values for the Strouhal number,
they all have something in common. The reason is
that both Reynolds number and Strouhal number are
functions of the in
ow uniform velocity, U . Generally,
the quantitative agreement between our results and
other numerical/experimental results is satisfactory,
and we conclude that our scheme is correctly capturing
the transition from steady to unsteady 
ow.

Figure 9. Graphical presentation (St-Re) of former
studies compared [44-47] with the results from the present
works.

Figure 10. Schematic of mixing layer 
ow. Fast side
refers to lower stream and slow side refers to upper stream
and � refers to the thickness of the mixing layer.

3.2. Time-dependent mixing layer 
ow
The plane mixing layer is characterized by the merging
of two initially unperturbed parallel 
ow streams with
velocities U1 and U2 (see Figure 10). Downstream of
the con
uence, the two streams exchange momentum
as they come into intimate contact with each other.
The mixing layer itself is de�ned by the region in which
this merging process is occurring. In this study, the
computational domain is Lx = Ly = 80�, where �
is the theoretical thickness of the layer in x = Lx
[48]. The theoretical thickness of the mixing layer 
ow
is calculated according to analytical solution, whereas
it is estimated based on the inlet velocity pro�le for
mixing layer 
ows. The system size of the mesh grid
is 261 � 521. In the y direction, an equally spaced
grid is used in the mixing layer thickness i.e. for
35� < y < 45�, and then the grid is stretched on
both sides. Also, in the x direction, the grid is uniform
between 0 < x < 5� and then stretched.

The 
ow is initially at rest (zero speed) and is
impulsively started by forcing a hyperbolic pro�le, such
as Uinlet (y) = 0:5 f(1=�) + tanh (y)g at the inlet where
� = [U2 � U1] = [U1 + U2] represents a measure for the
intensity of the layer shearing. The 
ow has been
numerically simulated for a Reynolds number equal to
Re = �U�=� = 300, where �U = U2 � U1.
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Figure 11. (a) Mixing layer thickness at Re = 300. Curve �t using �! = 0:2875
p
x+ 12:371. (b) The variation of the

normalized u-component velocity.

When the 
ow gets steady, the results of the
simulation essentially display a laminar growth of the
boundary layer. Figure 11(a) illustrates the stream-
wise growth of the mixing layer thickness, �! =
1=(@ �U=@y)max where the average layer speed, �U =
0:5(U1 + U2), is set at 1.5. A square-root relationship
�t to these computed results is shown in the graph
reported in Figure 11(a). The layer is respondent
with classical laminar, square-root growth character-
istics [49].

A dimensionless variable that is written as a
function of a dimensionless transverse coordinate is
called self-similar if the function does not change
with the downstream position. Results in self-similar
coordinates for the mixing layer were also investigated.
The principle of self-similarity as a representation of
moving equilibrium was introduced by Townsend [50].
Free shear layers provide an excellent example of this
equilibrium, and they form one class of canonical
laminar and turbulent 
ow �elds.

In order to verify our results, the present nu-
merical results are compared to the experimental
data of Oster and Wygnanski [51]. Non-dimensional
time-averaged stream-wise velocities obtained by a
statistical method at di�erent stations are shown in
Figure 11(b). This �gure clearly shows that the self-
similarity of the mixing layer is obtained using LBM,
and indicates that the mixing layer is a 
ow with a
self-preserving state.

Now, in order to investigate the unsteady mixing
layer 
ow, the inlet velocity component is superim-
posed by some time-dependent perturbations. The
perturbations are introduced in the form of a traveling
wave. The perturbation, which consists of a com-
bination of linear Eigen-functions obtained from the
linear stability calculations, is speci�ed for the in
ow
boundary condition. In other words:

v(x; y; t) = A � Real[V (y)ei(�!t)]; (17)

where V (y) is the velocity Eigen-function correspond-
ing to the most ampli�ed mode of the two-dimensional

Figure 12. Velocity time histories at centerline for the u
component at stream-wise location, x = 100 and 200.

Orr-Sommerfeld equation, and A is the amplitude of
the two-dimensional forcing which corresponds to the
fundamental frequency [52]. Figure 12 illustrates the
time traces of the stream-wise component of velocity
at a selected location in the layer. The �gures clearly
indicate that the response of the layer is very periodic,
which is due to the periodic forcing imposed at the
inlet plane of the layer. The peak-to-peak time lapse
in these curves provides evidence of the passage of
a structure. This time lapse, �t, together with an
assumed advection speed for these structures of �U ,
allows estimation of the scale of a structure.

The mean �eld statistics for the stream-wise ve-
locity component is illustrated in Figure 13(a). Clearly,
these results are not representative of a self-similar
layer. The lack of self-similarity is apparently as a
result of the forcing imposed at the inlet plane. As
the 
ow goes downstream, the distributions become
closer together. This is indicating that the 
ow
enters the self-similar region. The Reynolds stress
statistics,

p
u0v0=�U , obtained from this simulation

are illustrated in Figure 13(b). Again, these pro�les
do not exhibit self-similar behavior. The distributions
are more likely to collapse on each other when far
downstream of the 
ow.

Finally, we reinvestigate the e�ect of the arti�cial
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Figure 13. (a) Mean �eld statistics for u-component velocity. (b) Reynolds stress distribution.

Figure 14. E�ect of arti�cial dissipation term
("x = "y = 7) in numerical convergence of the
time-dependent mixing layer 
ow at Re = 300 using
pressure based scheme.

dissipation term in simulating a time-dependent mixing
layer 
ow using a pressure based scheme. Figure 14
compares the convergence of the proposed scheme
with and without using the arti�cial dissipation term.
Clearly, results highlight the positive e�ect of the
arti�cial dissipation term on the convergence of the
solution.

4. Conclusion

A �nite volume formulation of LBM is derived, based
on a cell centered discretization scheme on structured
tessellation. For this purpose, pressure based cor-
rection factors, as well as the arti�cial dissipation
term, were used to improve stability. Also, consistent
boundary conditions have been described. The method
was validated by simulating the time-dependent 
ow
over a circular cylinder and a forced mixing layer

ow. Comparing the results to the well-documented
numerical/experimental data in the literature, good
agreement was observed. It was also shown that the
scheme is robust and promising in simulating time-
dependent 
ows.
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