
Scientia Iranica B (2013) 20(6), 1765{1772

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

Some operators acting on weighted sequence spaces and
applications

C. Lizama

Department of Mathematics and Computer Science, Faculty of Sciences, University of Santiago de Chile (USACH), Avda. Las
Sophoras 173, Santiago, Chile.

Received 28 November 2012; received in revised form 22 April 2013; accepted 7 September 2013

KEYWORDS
Weighted sequence
spaces;
Chebyshev
polynomials;
Nonautonomous
Cauchy problem;
Operator theory;
Bloch equation;
Magnetic resonance
imaging.

Abstract. This paper considers the problem of constructing an evolution family for the
linear nonautonomous Cauchy problem:

(�) @
@t
u(t)�A(t)u(t) = 0; u(�1) = x 2 RN ;

where A 2 C([�1; 1], RN�N ). The essence of the method is that the evolution family is
sought in the form of a series of Chebyshev polynomials. Then, by de�ning appropriate
weighted sequence spaces and matrices of linear operators, we are able to obtain a su�cient
condition - based only in the given data - for the representation of the solution of the initial
value problem (*). The method is motivated for practical considerations in the context of
Magnetic Resonance Imaging.
© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

This paper aims to present a functional analytic frame-
work for an original method to compute the solution u
of the general equation:(

u0(t) = A(t)u(t); t 2 [�1; 1]
u(�1) = x; x 2 RN (1)

where fA(t)gt2[�1;1] is a family of continuous N � N
real-valued matrices de�ned on a �nite interval. The
method is based on a series expansion of the solution in
terms of Chebyshev polynomials. Through this trans-
form, Eq. (1) is changed into an in�nite system of linear
di�erential equations with constant coe�cients, the
unknowns being the coe�cients of the series expansion
of u, to obtain a representation of the solution. Such a
problem is motivated by Magnetic Resonance Imaging,

*. Corresponding author. Tel.: 56-2-7182035;
Fax: 56-2-6813125
E-mail address: carlos.lizama@usach.cl

where typically N = 3 and matrix A(t) is not suited
for resolution of the di�erential system by numerical
methods, see [1].

When the matrix A(t) is continuous and has
periodic coe�cients, according to Floquet theory, the
fundamental solution, u(t), for the di�erential system,
(Eq. (1)), has the expression u(t) = Q(t)etF , where
Q is a matrix with continuous and periodic coe�-
cients and F is a constant matrix. However, Floquet
theory gives no practical information about the way
to compute matrices Q and F , and, actually, there
exists no general method to compute them. In order
to exploit the Floquet structure of u(t), the usual
procedure is to perform a Fourier expansion of the
fundamental solution, leading with an in�nite system of
linear di�erential equations with constant coe�cients.
Then, resolution of a truncated system furnishes an
approximate solution.

It is well known that classical orthogonal polyno-
mials satisfy second order linear homogeneous di�eren-
tial equations of the form:
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a(x)y00(x) + b(x)y0(x) + �ny(x) = 0;

where a(x) and b(x) are polynomials of degrees 2
and 1, respectively, which are independent of n, and
�n is independent of x. They have many properties
in common. One is that they satisfy a di�erential-
di�erence relation of the form:

�(x)p0n(x) = (�nx+ �n)pn(x) + 
npn�1(x):

For example, Hermite polynomials satisfy:

H 0n(x) = 2nHn�1(x);

and Chebyschev polynomials satisfy:

Tn(x) =
1

2n
�
T 0n+1(x)� T 0n�1(x)

�
; x 2 [�1; 1]:

Surprisingly, the last recursive formula have recently
come up in a very attractive problem in Magnetic
Resonance Imaging; see [2] for this work. In that paper,
the Bloch equation, which has no closed-form solution,
is expanded in a Chebyshev series, which can be solved
using a sparse linear algebraic system.

The goal of the present paper is to construct
a functional analytic framework for the method de-
veloped in [2], so that the in�nite system given by
the series expansion becomes a well-posed problem
in an appropriate weighted sequence space. To the
knowledge of the author, this study has not been
addressed in the literature in this way. One of the
main di�culties that appear, is that the operators that
naturally arise here are, in general, unbounded in the
l2-norm, and, hence, it was required to de�ne them
in appropriate weighted l1-spaces. As an application
of our framework, we are able to �nd a theoretical
spectral condition - based only on the data - under
which, not only is the representation of the solution for
the Bloch equation, in terms of a Chebyshev expansion
of u, always possible, but also for the general Eq. (1).

This paper is organized as follows: Section 2 is
devoted to recalling Chebyshev polynomials, their main
properties, which we will use, and a result from the
theory of (unbounded) operator matrices. In Section 3,
the mathematical features of the method are presented
and developed. Given A 2 C([�1; 1];RN�N ), our main
result says the following: De�ning the operator B =
diag(B0) with B0 : l10(Z+)! l10(Z+) given by:

(B0x)(n) =

8>><>>:
1
2

1P
k=0

a(k)x(k); n = 0;

1
2n (x(n+ 1)� x(n� 1)); n � 1;

a(0) := �1, a(1) := 1=2 and a(n) := 2(�1)n
n2�1 , n � 2,

and de�ning the operator:

A = (Akl)k;l=1;��� ;N � L(l2(Z+); l10(Z+));

where:

Aklx(n) =
1X
j=0

hAT kj ; T lnix(j); n 2 Z+; (2)

being a vector of N coordinates, which consists of
Chebyshev polynomial Tn(t) in the l-position and zeros
everywhere else. We prove that if I �BA is invertible,
then the initial valued system (*) has a unique solution,
u 2 C([�1; 1];RN ), such that u0 2 C([�1; 1];RN )
(Theorem 4). Moreover, the components of the solution
are given by:

ul(t) =
1X
n=0

xl(n)T ln(t); t 2 [�1; 1]; (3)

for each l = 1; � � � ; N , where:

xl = Projectionl(I � BA)�1	0: (4)

In Section 4, as an application, we are able to solve the
Bloch equation for the special case:

A(t) =

0@ 0 
g(t) 0
�
g(t) 0 !(t)

0 �!(t) 0

1A ; (5)

of the matrix A(t). In particular, we formalize and re-
cover the results in [2] obtaining, in addition, a spectral
condition to guarantee the existence and uniqueness
of the solution for the corresponding problem (Theo-
rem 5).

2. Preliminaries

The Chebyshev polynomials of the �rst kind can
be de�ned by the trigonometric identity, Tn(x) =
cos(n arccosx), x 2 [�1; 1], n 2 Z+ (see [3,4] for the
main properties). It is known that set fTn;n 2 Z+g
is orthogonal and complete in L2([�1; 1], R, d�), with
respect to the measure, d�(x) := (1 � x2)�1=2. More
precisely, we have:

Z 1

�1
Tn(x)Tm(x)d�(x) =

8><>:0 if n 6= m
� if n = m = 0
�
2 if n = m 6= 0

(6)

As an immediate consequence, a basis of the vector-
valued Lebesgue space L2([�1; 1];RN ; d�) is de�ned in
the standard way by the set of vectors:

fT lk; k 2 Z+; l = 1; � � � ; Ng; (7)

where, for each x 2 [�1; 1], T lk(x) is a vector of N coor-
dinates, which consists of the Chebyshev polynomial,
Tk(x), in the l-position and zeros everywhere else.
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Given f , g 2 L2([�1; 1];RN ; d�), recall that
a canonical internal product on the vector-valued
Lebesgue space L2([�1; 1];RN ; d�) is de�ned by:

hf; giL2(RN ) =
Z 1

�1
hf(x); g(x)iRNd�(x)

=
Z 1

�1

NX
k=1

fk(x)gk(x)d�(x);

where fk and gk are the kth component of f and g,
respectively.

Recall that C1([�1; 1];RN ) denotes the space of
all continuously di�erentiable functions. Clearly:

C1([�1; 1];RN ) � C([�1; 1];RN )

� L2([�1; 1];RN ; d�):

We will also use the following result due to Nagel [5].

Lemma 1. Let E and F be Banach spaces and A 2
L (E), D 2 L (F ), B 2 L (F;E) and C 2 L (E;F ).
Consider A 2 L (E � F ), where:

A =
�
A B
C D

�
:

If A and D are invertible then the following assertions
are equivalent:

(a) A is invertible in L (E � F );

(b) A�BD�1C, hence, I �BD�1CA�1 is invertible
in L (E);

(c) D � CA�1B, hence, I � CA�1BD�1 is invertible
in L (F ).

3. Some operators acting on weighted
sequence spaces

De�ne the following space of weighted summable series:

l10(Z+) :=

(
x = (x(n)) � R=

1X
n=1

1
n2 jx(n)j <1

)
:
(8)

Observe that l10(Z+) is a Banach space endowed with
the norm:

jjxjj0 :=
1X
n=1

1
n2 jx(n)j:

In particular, note that the Banach space of all null
sequences, c0(Z+), and the Hilbert space, l2(Z+), are
contained in l10(Z+). The following lemma will be very

important for our purposes.

Lemma 2. Let f 2 C1([�1; 1];RN ) be given. For
all k 2 N and l = 1; � � � ; N we have:

2khf; T lkiL2(RN ) = hf 0; T lk�1 � T lk+1iL2(RN ): (9)

Proof. Using integration by parts, we obtain:

hf 0; T lk�1 � T lk+1iL2(RN )

=
Z 1

�1

NX
j=1

f 0j(x)[(T lk�1)j(x)� (T lk+1)j(x)]d�(x)

=
Z 1

�1
f 0l (x)[Tk�1(x)� Tk+1(x)]d�(x)

=
Z �

0
f 0l (cos(�))[cos((k�1)�)�cos((k+1)�)]d�

=
Z �

0
f 0l (cos(�))2 sin(k�) sin(�)d�

= 2

"
� sin(k�)fj (cos(�))j�0

+ k
�Z

0

fl(cos(�)) cos(k�)d�

#
= 2k

Z �

0
fl(cos(�)) cos(k�)d�

= 2k
Z 1

�1
fl(x) cos(k arccos(x))d�(x)

= 2k
Z 1

�1
fl(x)Tk(x)d�(x)

= 2k
nX
j=0

Z 1

�1
fj(x)(T lk)j(x)d�(x)

= 2khf; T lkiL2(RN ): �
Given y 2 C1([�1; 1];R), we denote y1(n) := hy; Tni
and y01(n) := hy0; Tni. With the above notation,
Lemma 2, in case N = 1, reads as follows:

y1(k) =
1
2k

[y01(k � 1)� y01(k + 1)]; (10)

for all k 2 N. We note the very remarkable fact that
the value of y1(0) is unknown in the above recurrence
formula. However, we are able to recover this value
as data. More precisely, we obtain the following result,
which is the key for the subsequent development of this
paper.
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Lemma 3. Let y 2 C1([�1; 1];R) be given and
denote y(�1) = y0. Then:

y1(0) = y0 +
1
2

1X
n=0

a(n)y01(n); (11)

where a(0) := �1, a(1) := 1=2 and a(n) := 2(�1)n
n2�1 ,

n � 2.

Proof. Since y 2 C([�1; 1];R), we have the represen-
tation:

y(x) =
1X
n=0

hy; TniTn(x) =
1X
n=0

y1(n)Tn(x);

for all x 2 [�1; 1]. Hence, for all x 2 [�1; 1], we have:

y(x) = y1(0)T0(x) +
1X
n=1

y1(n)Tn(x):

In particular:

y0 = y(�1) = y1(0) +
1X
n=1

y1(n)Tn(�1); (12)

since T0(�1) = 1. On the other hand, multiplying
Eq. (10) by Tn(�1) we obtain:
1X
n=1

Tn(�1)y1(n) =
1X
n=1

1
2n
Tn(�1)y01(n� 1)

�
1X
n=1

1
2n
Tn(�1)y01(n+ 1)

=
1X
n=0

1
2(n+ 1)

Tn+1(�1)y01(n)

�
1X
n=2

1
2(n� 1)

Tn�1(�1)y01(n)

=
1X
n=2

�
1

2(n+ 1)
Tn+1(�1)

� 1
2(n� 1)

Tn�1(�1)
�
y01(n)

+
1
2
T1(�1)y01(0) +

1
4
T2(�1)y01(1):

Finally, since Tn(�1) = (�1)n, we get from Eq. (12):

y0 =y(�1) = y1(0)� 1
2
y01(0) +

1
4
y01(1)

+
1X
n=2

(�1)n

n2 � 1
y01(n);

and, hence, the conclusion follows. �
We next proceed to construct a bounded operator

on the weighted space, l10(Z+), which has the property
of transforming symbols y0l into symbols yl plus a rest.
Note that it resembles a similar property of Laplace
transforms, with respect to the �rst derivative of a
function. More precisely, we de�ne:

(B0x)(n) =

(
1
2
P1
k=0 a(k)x(k); n = 0;

1
2n (x(n� 1)� x(n+ 1)); n � 1

where a(k) is de�ned in Lemma 3, and denote:

�0(n) :=

(
1; n = 0;
0; n 6= 0:

Moreover, for each y 2 L2([�1; 1];RN ; d�), we write:

yl(n) := hy; T lni; n 2 Z+; l 2 f2; 3; � � �Ng:
Theorem 1. Let y 2 C1([�1; 1];RN ). Then, B0 2B(l10(Z+)) and for all l 2 f1; � � � ; Ng, we have:

B0y0l = yl + y0l�0; (13)

where y0l = yl(�1).

Proof. First note that:

jjT lnjj2L2 =
Z 1

�1
jjT ln(x)jj2RNd�(x)

=
Z 1

�1
jTn(x)j2d�(x) = �=2;

for all n 2 N and jjT l0jj2L2 = �. Hence, by de�nition
and the Cauchy Schwarz inequality, we obtain for each
y 2 L2([�1; 1];RN ; d�) that:

1X
n=1

1
n2 jyl(n)j =

1X
n=1

1
n2 jhy; T lnij

�
1X
n=1

1
n2 jjyjjL2 jjT lnjjL2

= jjyjjL2

p
�=2

1X
n=1

1
n2 <1: (14)

It proves that yl 2 l10(Z+) and, hence, that operator
B0 is well de�ned on the weighted space, l10(Z+). Let
x 2 l10(Z+) be given. Since the sequence (n2a(n)) is
bounded, we obtain:

1
2

1X
j=1

ja(j)x(j)j = 1
2

1X
j=1

jj2a(j)jj 1
j2x(j)j � 2jjxjj0;
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and:

jjB0xjj0 =
1X
n=1

1
2n3 jx(n� 1)� x(n+ 1)j

� 1
2

1X
k=1

1
k2 jx(k)j = 1

2
jjxjj0;

proving that B0 is bounded. It remains to prove the
identity (Eq. (13)). Let n � 1. Then, by Lemma 2:

B0y0l(n) =
1

2n
(y0l(n� 1)� y0l(n+ 1))

=
1

2n
(hy0; T ln�1i � hy0; T ln+1i)

=
1

2n
hy0; T ln�1 � T ln+1i

= hy; T lni = yl(n):

On the other hand, in case n = 0, the following identity
is obtained by Lemma 3:

B0y0l(0) =
1X
k=0

a(k)y0l(k) = yl(0) + y0l;

proving the Theorem. �
Let A 2 C([�1; 1], RN�N ) and k, l 2 f1; � � � ; Ng

be given. De�ne Akl by:

Aklx(n) =
1X
j=0

hAT kj ; T lnix(j); n 2 Z+: (15)

Note that, in general, the operators Akl are not
bounded on l10(Z+). However, we have the following
result.

Theorem 2. Let A 2 C([�1; 1], RN�N ). Then,
Akl 2 B(l2(Z+); l10(Z+)) for each k; l 2 f1; � � � ; Ng.
Proof. Since A 2 C([�1; 1];RN�N ), observe that for
each k 2 f1; � � � ; Ng �xed, we have:

sup
x2[�1;1]

NX
m=1

jAmk(x)j2 := Ck <1:

Then:

jjAT kn jj2L2 =
Z 1

�1
jj(AT kn )(x)jj2RNd�(x)

=
Z 1

�1
jjA(x)T kn (x)jj2RNd�(x)

=
Z 1

�1

NX
m=1

jAmk(x)Tn(x)j2d�(x) � 2Ck:
(16)

Hence, for x 2 l2(Z+) we have:

1X
j=0

jhAT kj ; T lnijjx(j)j

�
0@ 1X
j=0

jhAT kj ; T lnij2
1A1=20@ 1X

j=0

jx(j)j2
1A1=2

= jjAT kn jjL2 jjxjjl2 �M jjxjjl2 ;
where we made use of Cauchy-Schwarz inequality and
Parseval's identity. Therefore, there exists a constant,
C > 0, such that:

jjAklxjj0 =
1X
n=1

1
n2 jAklx(n)j

�
1X
n=1

1X
j=1

1
n2 jhAT kj ; T lnijjx(j)j

� Cjjxjjl2 : � (17)

4. Application to nonautonomous systems

Let A 2 C([�1; 1];RN�N ) be given. Suppose that
the system y0(t) = A(t)y(t) has a solution, y 2
C1([�1; 1];RN ), which satis�es the initial condition,
y(�1) = y0. Then, the system can be written as:0BBB@

y01(t)
y02(t)

...
y0N (t)

1CCCA =

0BBB@
A11(t) A12(t) � � � A1N (t)
A21(t) A22(t) � � � A2N (t)

...
...

. . .
...

AN1(t) AN2(t) � � � ANN (t)

1CCCA
0BBB@
y1(t)
y2(t)

...
yN (t)

1CCCA ;
(18)

where Alm 2 C([�1; 1];R) are the entries of the matrix
A(t).

Expanding in series y and y0 in terms of the basis
given by the Chebyshev polynomials T lj , we obtain that
the system y0(t) = A(t)y(t) can be rewritten as the fol-
lowing identity in the Hilbert space L2([�1; 1];RN ; d�):

NX
l=1

1X
j=0

hy0; T ljiT lj =
NX
l=1

1X
j=0

hy; T ljiAT lj

=
NX
l=1

1X
j=0

hy; T lji
NX
m=1

1X
i=0

hAT lj ; Tmi iTmi
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=
NX
l=1

1X
j=0

NX
m=1

1X
i=0

hy; T ljihAT lj ; Tmi iTmi

=
NX
m=1

1X
i=0

0@ NX
l=1

1X
j=0

hAT lj ; Tmi ihy; T lji
1ATmi ;

where (AT lj)(t) := A(t)T lj(t) for each j 2 Z+ and l =
1; � � � ; N . From the orthogonality of T lj , we obtain that
the above identity is equivalent to the system:

hy0; Tmk i =
NX
l=1

1X
j=0

hAT lj ; Tmk ihy; T lji; (19)

where k 2 Z+ and m = 1; : : : ; N .

Theorem 3. Let A 2 C([�1; 1];RN�N ) and y 2
C1([�1; 1];RN ) be given. The system (Eq. (19)) is
equivalent to the system:

y0m =
NX
l=1

Almyl; (20)

where m = 1; : : : ; N .

Proof. For k � 1 and m 2 f1; � � � ; Ng, we have:

y0m(k) = hy0; Tmk i;
and:

NX
l=1

Almyl(k) =
NX
l=1

1X
j=0

hAT lj ; Tmk iyl(j)

=
NX
l=1

1X
j=0

hAT lj ; Tmk ihy; T lji:

This way, the problem of solving Eq. (18) is equivalent
to solving the following.

Problem. From Eq. (20), determine yl for all l =
1; � � � ; N .

Applying the operator B0 to both sides of the
Eq. (20), we obtain the identity:

ym =
NX
l=1

B0Almyl � y0m�0: (21)

De�ne the operator matrix, A : l2(Z+)N ! l10(Z+)N ,
as follows:

A =

0BBB@
A11 A21 � � � AN1
A12 A22 � � � AN2

...
...

. . .
...

A1N A2N : : : ANN

1CCCA : (22)

De�ne now the operator matrix B : l10(Z+)N !
l10(Z+)N , as follows:

B =

0BBBBBB@
B0 0 : : : : : : 0
0 B0 0 : : : 0
... 0

. . . 0
...

...
... 0 B0 0

0 0 : : : 0 B0

1CCCCCCA : (23)

Consequently, Eq. (21) can be rewritten as a problem
of the form:

	 = BA	 + 	0; (24)

where 	 := (y1; � � � yN ) 2 l1p(Z+)N are vectors with
entries, yl, de�ned by yl(j) := hy; T lji for all j 2 Z+
and 	0 := (y01; y02; � � � ; y0N ).

In what follows, we denote by �(S) the resolvent
set of the operator, S. We arrive at the following
theorem, which is the main result of this section.

Theorem 4. Suppose that A 2 C([�1; 1];RN�N )
and 1 2 �(BA). Then, the system

y0(t) = A(t)y(t);

with initial condition y(�1) = y0 has a unique solution,
y 2 C([�1; 1];RN ), such that y0 2 C([�1; 1];RN ).

Proof. By hypothesis and Eq. (24), there exists xl 2
l10(Z+), (l = 1; � � � ; N) such that:

	 = (I � BA)�1	0; (25)

where 	 := (x1; � � �xN ). De�ne:

yl(t) =
1X
n=0

xl(n)T ln(t); t 2 [�1; 1]:

l = 1; � � � ; N . Now, let y := (y1; � � � ; yN ), and the
conclusion follows by construction. �

5. Application to the Bloch equation

In matrix form, the Bloch equation reads [1]:

M 0(t) = A(t)M(t) + b; (26)

where:

A(t) =

0@�1=T1 
B �
By(t)
�
B �1=T2 
Bx(t)

By(t) �
Bx(t) �1=T1

1A ;

and:
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b =

0@ 0
0

�0=T1

1A :

We observe that matrix A(t) is not suited for resolution
of the di�erential system by a numerical method.
Indeed, the coe�cients 
B are of magnitude 106,
whereas the others are of magnitude 1.

Under perturbation, the matrix A(t) is not con-
stant. However, the matrix A(t) is continuous and has
periodic coe�cients (see [2]).

De�ne A 2 C([�1; 1];R3�3; d�), as follows:

A(t) =

0@ 0 
g(t) 0
�
g(t) 0 !(t)

0 �!(t) 0

1A ; (27)

where we assume that g(t) and !(t) are continuous
functions in [�1; 1].

The Bloch Eq. (26), with A(t), as in Eq. (27), was
studied in [2] in the context of Magnetic Resonance
Imaging. We �nd, after a calculation using the given
de�nitions in the previous section, that A11 = A13 =
A22 = A31 = A33 = 0 and:

A12x(n) = A21x(n)

= �

1X
j=0

�Z 1

�1
g(s)Tj(s)Tn(s)d�(s)

�
x(j);

as well as:
A23x(n) = A32x(n)

=
1X
j=0

�Z 1

�1
!(s)Tj(s)Tn(s)d�(s)

�
x(j):

De�ne G, 
 : l2(Z+)! l10(Z+) by:

Gx(n) =
1X
j=0

�Z 1

�1
g(s)Tj(s)Tn(s)d�(s)

�
x(j);

and:


x(n) =
1X
j=0

�Z 1

�1
!(s)Tj(s)Tn(s)d�(s)

�
x(j);

and, hence:

A =

0@ 0 �
G 0
�
G 0 


0 
 0

1A :

Therefore, we obtain the following matrix of bounded
operators:

I � BA =

0@ I 
B0G 0

B0G I �B0


0 �B0
 I

1A : (28)

In order to study the invertibility of the operator-

valued matrix (Eq. (29)), we use Lemma 1, obtaining
the following result.

Theorem 5. Suppose that G and 
 are bounded
operators in l10(Z+). If 1 2 �((B0
)2) and 1=
2 2
�((B0G)2), then the Bloch Eq. (26), with A(t), given
by Eq. (27) has a unique solution.

Proof. We use Lemma 1, Statement (b), with E :=
l10(Z+)� l10(Z+) and F := l10(Z+). Taking:

A :=
�

I 
B0G

B0G I

�
; B :=

�
0

B0


�
;

C :=
�
0 �B0


�
; D :=

�
I
�
;

we obtain that the operator-valued matrix (Eq. (29))
is invertible if, and only if, the operator-valued matrix:�

I 0

(B0
)2(B0G) I � (B0
)2

�
(I � 
2(B0G)2)�1;

is invertible, and hence the result follows by hypothesis
and Theorem 4.

We observe that in view of the de�nitions, we have
an explicit expression for operators B0G and B0
. For
example:

B0(Gx)(n) =
1

2n

1X
j=0

hZ 1

�1
g(s)Tj(s)[Tn+1(s)

� Tn�1(s)]d�(s)
i
x(j); n � 1:
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