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Abstract. An analytical study using Variational Iteration Method (VIM) is carried out
in order to investigate the vibrations of electro-statically actuated double-clamped and
simply-supported microbeams. E�ects of applied voltage and residual axial load on the
nonlinear natural frequency and de
ection of the microbeams are studied. It shows that
pre-compression in microbeams increases the amplitude of de
ections for a speci�c applied
voltage. Also, an increase in pre-tension motivates the microbeam to show more nonlinear
behavior in an applied voltage. Predicted results are compared with the experimental data
available in the literature and also with numerical results which shows a good agreement.
It is concluded that the second order approximation of the VIM leads to highly accurate
solutions which are valid for a wide range of vibration amplitudes.
© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Electrostatically actuated microbeams are often en-
countered in high precision applications and microelec-
tromechanical systems (MEMS) such as signal �ltering,
resonant sensors and mass sensing [1]. An electrostat-
ically actuated microbeam comprises a beam-shaped
element and a �xed rigid plate electrode. When the
applied voltage to the microbeam exceeds a critical
value, which is called pull-in voltage, the resulting
electrostatic force may lead to the instability and
vibration of the system [2,3].

It should be noted that the governing equations
of vibration of these systems are essentially nonlinear.
Generally, in a given nonlinear problem, it is often
di�cult to �nd an analytical solution, unless a number
of di�erent simplifying assumptions is considered. Oth-
erwise, application of di�erent numerical techniques
is unavoidable. However, it is hard to have a com-
plete and indispensable understanding of a nonlinear
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problem out of these numerical results. In addition,
numerical di�culties appear if a nonlinear problem has
singularities or multiple solutions.

Vibrations and natural responses of MEMS have
been the subject of several analytical studies in the
past. Azrar et al. [4] developed a semi-analytical
approach to the nonlinear dynamic response problem,
based on Lagrange's principle and the harmonic bal-
ance method. An analytical method for determin-
ing the vibration modes of geometrically nonlinear
beams under various edge conditions was presented by
Qaisi [5]. Gou and Zhang [6] investigated nonlinear vi-
brations of thin beams, based on sextic cardinal spline
functions and a spline-based Di�erential Quadrature
Method (DQM). Also, Kung and Chen [7] used the
DQM to calculate the natural frequencies of a �xed-
�xed shaped beam. They considered the e�ects of the
mid-plane stretching, axial residual stress and electrical
�eld fringing.

Moreover, pull-in instability has been a subject
of study in analysis of electrostatic beams. Zhang
and Zhao [8] studied the pull-in instability of mi-
crostructures under electrostatic loadings. They used
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the Taylor series to expand the electrostatic loading
term in the one-mode analysis method to derive the
analytical solution. Zhang et al. [9] presented an
analytical method for the snap-through and the pull-in
instabilities of an arch-shaped beam under electrostatic
loading. Because of the Taylor series expansion error,
they introduced a compensated form of the Taylor
series expansion on the electrostatic loading term, and
modi�ed the solution.

Nonlinear modal analysis approach based on in-
variant manifold method was utilized to obtain the
nonlinear normal modes of a clamped-clamped beam
for large amplitude displacements by Xie et al. [10].
Nayfeh and Nayfeh [11] obtained the nonlinear modes
and natural frequencies of a simply-supported Euler-
Bernoulli beam resting on an elastic foundation with
distributed quadratic and cubic nonlinearities, using
the method of multiple scales and the invariant man-
ifold approach. Also, Nayfeh and Younis [12] and
Younis and Nayfeh [13] used perturbation technique to
solve the nonlinear problem of MEMS. Pirbodaghi et
al. [14] used the �rst-order approximation of the homo-
topy analysis method to investigate the nonlinear free
vibration analysis of Euler-Bernoulli beam. Moghimi
Zand et al. [15] have used homotopy analysis method to
�nd semi-analytic solutions to the vibrations of double-
clamped microbeams subjected to suddenly applied
step voltages. They have considered the e�ect of mid-
plane stretching and residual stress in their analysis.

Among several analytical methods, Variational
Iteration Method (VIM) is one of the most accurate
and e�cient methods of studying vibrations of nonlin-
ear systems [16]. In [17], this method was employed
to analyze the large amplitude free vibration and
post-buckling of unsymmetrically laminated composite
beams on elastic foundation, and the accuracy of
the method was investigated. Recently, Baghani [18]
employed a modi�ed version of VIM in solving a
nonlinear boundary value problem. He analytically
studied the size-dependent static pull-in voltage of mi-
crocantilevers, using the modi�ed couple stress theory.
He also showed that the results predicted by VIM are
in excellent correspondence with the numerical results,
as well as the experimental data. Baghani et al. [19]
also employed this method to investigate the nonlinear
response for free vibration of a conservative oscillator.

The main objective of this paper is to use the VIM
to study the vibrations of electrostatically actuated
double-clamped and simply supported microbeams.
Analytical expressions for the nonlinear fundamental
natural frequency and de
ection of these microbeams
are obtained using the VIM. The e�ects of the applied
voltage and residual axial load on the nonlinear natural
frequency and de
ection of the microbeams are studied.
Results are compared with those available from the
literature and also with the results of numerical study,

to show the performance of the proposed analytical
solution.

The paper is organized as follows: In Section 2,
the mathematical problem formulation is developed.
Section 3 deals with a brief introduction to the VIM.
Results of the mathematical solution for both double-
clamped and simply supported microbeams are re-
ported in Section 4. The obtained results are compared
with the numerical results, as well as the experimental
data available in the literature. We �nally present a
summary and draw conclusions in Section 5.

2. Problem formulation

Schematics of double-clamped and simply supported
microbeams are shown in Figure 1(a) and (b), respec-
tively. Employing von-Karman nonlinearity concept
for mid-plane stretching, the de
ection of both types
of microbeams resulted from electrostatic force can be
obtained using the following relation:

Ytt +
EI
�bh

Yxxxx � (Ni +Ns)
�bh

Yxx =
b
�bh

Fes; (1)

where b and h are width and thickness of the mi-
crobeam, respectively; � is the density; I is the
moment of inertia of the cross-section about the z-
axis; subscripts x and t stand for derivative with
respect to the location and time, respectively; E is the
e�ective Young's modulus of the beam, and Fes is the
electrostatic force induced from the applied voltage V
between the microbeam and the substrate plate. Fes is
expressed as:

Fes =
"0V 2

2(d0 � Y (x; t))2

�
1 + �

(d0 � Y (x; t))
b

�
; (2)

Figure 1. Schematic of the microbeams: (a)
Double-clamped; and (b) simply supported.
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where "0 is the vacuum permittivity; d0 is the air initial
gap. � is a parameter describing the e�ect of fringing
�eld due to the �nite width of the beam, and depends
on the type of the microbeam. Also, in Eq. (1), Ni is
the residual axial load and Ns is the axial load resulted
from mid-plane stretching, which is given by:

Ns =
Ebh
2L

LZ
0

Y 2
x dx: (3)

The boundary conditions for a double-clamped mi-
crobeam can be written as:

Y (0; t) = 0; Yx(0; t) = 0;

Y (L; t) = 0; Yx(L; t) = 0: (4)

Also, for a simply supported beam, the boundary
conditions are as follows:

Y (0; t) = 0; Yxx(0; t) = 0;

Y (L; t) = 0; Yxx(L; t) = 0: (5)

And the initial conditions are:

Y (x; 0) = 0; Yt(x; 0) = 0: (6)

In order to solve the di�erential Eq. (1), subject to
the boundary and initial conditions (4), (5) and (6),
method of separation of variables is applied in which
the de
ection of the beam is expressed as:

Y (x; t) =  (x)w(t); (7)

where w(t) is a function of time and  (x) is the
�rst eigenmode, which satis�es the boundary con-
ditions. For double-clamped and simply supported
microbeams,  (x) is given by Eqs. (8) and (9), respec-
tively.

 (x) =
� sin�(L� x)� sin(�x) cosh(�L)

cos(�L)� cosh(�L)

+
cos(�x) sinh(�L)� sinh(�x) cos(�L)

cos(�L)� cosh(�L)

� sinh�(L� x) + cosh(�x) sin(�L)
cos(�L)� cosh(�L)

; (8)

 (x) = sin(�x); � =
�
L
: (9)

In Eq. (8), � is calculated based on linear vibration of
the beam [8]. Substituting Eqs. (8) and (9) in Eq. (1)

and using the Taylor expansion of Fes, we have [15]:

T (Y ) = Ytt +
EI
�bh

Yxxxx

� 1
�bh

0@Ni +
Ebh
2L

LZ
0

Y 2
x dx

1AYxx

� "0bV 2

2�bh

�
1
d2

0
+

2Y
d3

0
+

3Y 2

d4
0

+
4Y 3

d5
0

+
5Y 4

d6
0

+� � �
�

� "0�V 2

2�bh

�
1
d0

+
Y
d2

0
+
Y 2

d3
0

+
Y 3

d4
0

+
Y 4

d5
0

+� � �
�

= 0:
(10)

Using the Galerkin method, the governing equation of
motion is obtained as follows:

wtt+
w+Q+Rw2+Sw3+Gw4+Jw5+Pw6 =0:
(11)

Coe�cients 
;Q;R; S;G; J and P are presented in
Appendix A.

3. The method of solution

In this method, the studied problem is initially approx-
imated with possible unknowns. Then, a corrected
functional is constructed using a general Lagrange
multiplier, which can be identi�ed optimally via the
variational theory [16]. To illustrate the basic idea of
the method, we consider the following general nonlinear
system:

L[w(�)] + N[w(�)] = g(�); (12)

where L is a linear di�erential operator, N is a nonlinear
analytic operator, and g(�) is an inhomogeneous term.

The basic character of the method is to construct
a correction functional for the system as follows:

wn+1(t) = wn(t)

+
Z t

0
�(t) fL[wn(�)] + N [ ~wn(�)]� g(�)g d�;

(13)

where �(t) is a general Lagrange multiplier which can
be identi�ed optimally via the variational theory. Also,
wn is the nth approximate solution, and ~wn represents
a restricted variation, i.e. � ~wn = 0.

3.1. Implementation of the VIM in Vibrations
of double-clamped and simply supported
micro beams

In view of Eq. (12), the governing Eq. (11) can be
rewritten as:

d2w(t)
dt2

+ 
2w = �N[w]; (14)
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where:

L[w] =
d2w(t)
dt2

+ 
2w;

N[w] =f
w(t) +Q+Rw(t)2 + Sw(t)3 +Gw(t)4

+ Jw(t)5 + Pw(t)6g � 
2w; g(t) = 0:
(15)

The correction functional can be constructed in the
form:

wn+1(t) =wn(t) +
Z t

0
�(t)

"
d2wn(�)
d�2

+ 
2wn(�) + N[ ~wn(�)]

#
d�: (16)

In Eq. (16), ~wn is considered as a restricted variation,
i.e. � ~wn = 0, hence �N[ ~wn(�)] = 0. Calculating the
variation of Eq. (16) and noting that �N[ ~wn(�)] = 0,
the following equations will be produced:

�wn+1(t) =�wn(t) +
Z t

0
�(t)

"
�
d2wn(�)
d�2

+ 
2�wn(�) + �[ ~wn(�)]

#
d�;

�wn+1(t) =�wn(t) + ��
dwn(�)
d�

����t
0
� d�(�)

d�
�wn(�)

����t
0

+
tZ

0

"
�wn(�)

d2�(�)
d�2 +
2�(�)�wn(�)

#
d�;

�wn+1(t) =�wn(t) +
�
��
dwn(�)
d�

�����
�=t

�
�
d�(�)
d�

�wn(�)
�����

�=t

+
tZ

0

"
�wn(�)

d2�(�)
d�2 +
2�(�)�wn(�)

#
d�:
(17)

Separating the coe�cients of �wn(�)j�=t and
� dwn(�)

d�

���
�=t

and also �wn(�)j�=t in the integral of
Eq. (17) leads to the following stationary conditions:8>><>>:

d2�(�)
d�2 + 
2�(�) = 0

�(� = t) = 0
1� d�(�)

d�

���
�=t

= 0
(18)

The Lagrange multiplier, therefore, can be identi�ed
as:

�(�) =
1
!

sin!(� � t): (19)

On the other hand, by taking into consideration the
relation:

tZ
0

sin!(� � t)
�
d2wn(�)
d�2 + !2wn(�)

�
d�

= �!wn(t) + !wnjt=0 cos!t+
dwn
dt

����
t=o

sin!t:
(20)

Eq. (20) can be recast as:

wn+1(t) =wnjt=0 cos!t+
dwn
dt

����
t=o

sin!t
!

+
1
!

tZ
0

sin!(� � t)fN[wn(�)]gd�: (21)

Considering the initial conditions w(0) = 0 and _w(0) =
0, the correction functional is further reduced to:

wn+1(t) =
1
!

tZ
0

sin!(� � t)fN[wn(�)]gd�: (22)

As an initial guess, w0(t) is assumed to be:

w0(t) =
Q
!2 (cos(!t)� 1): (23)

Expanding N[w0(t)], we arrive at:

�32!12N[w0(�)] = [�120SQ3!6 � 32Q!10


� 420JQ5!2 + 792PQ6 + 64RQ2!8

+ 32Q!12 + 224GQ4!4] cos(!�)

+ [240JQ5!2 � 16RQ2!8 � 495PQ6

+ 48SQ3!6 � 112GQ4!4] cos(2!�)

+ [�90JQ5!2 + 32GQ4!4 � 8SQ3!6

+ 220PQ6] cos(3!�) + [�4GQ4!4

+ 20JQ5!2 � 66PQ6] cos(4!�)

+ [12PQ6 � 2JQ5!2] cos(5!�)

+ [�PQ6] cos(6!�) + [(252JQ5!2

� 32Q!12 � 462PQ6 � 48RQ2!8

+ 80SQ3!6 + 32Q!10
 � 140GQ4!4]: (24)
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By taking into consideration the relation:

1
!

tZ
0

sin!(� � t)fcos(n!t)gd�

=

8><>:
cos(n!t)�cos(!t)

!2(n2�1) n 6= 1

t sin(!t)
�2! n = 1

(25)

to avoid secular terms in the next iterations, the
coe�cient of the cos(!�) in N[!0(�)] must be vanished.
The �rst approximation of the frequency is obtained as
follows:

�120SQ3!6 � 32Q!10
 � 420JQ5!2 + 792PQ6

+ 64RQ2!8 + 32Q!12 + 224GQ4!4 = 0: (26)

From Eqs. (23) and (25), for n = 1, the �rst-order
approximate solution is obtained as:

w1(t) = c1 cos(!t) + c2 cos(2!t) + c3 cos(3!t)

+ c4 cos(4!t) + c5 cos(5!t) + c6 cos(6!t) + c7;
(27)

where coe�cients ci's are given in Appendix B.
Substituting Eq. (27) in Eq. (22), an expression

similar to Eq. (24) is obtained. Then, by setting the
coe�cient of cos(!�) to zero, a higher order approxi-
mation for the frequency is obtained, which is given in
Appendix C. Also, the de
ections of microbeams are
calculated up to the second order approximation.

4. Results and discussion

Variational Iteration Method (VIM) is applied to study
the nonlinear frequency and de
ection of electrostati-
cally actuated double-clamped and simply supported
microbeams. Expressions for the frequency and de-

ection of the micro beams up to the second order
approximation are obtained. Also, the de
ection of the
micro beams is calculated numerically, using 4th order
Runge-Kutta method.

4.1. Double-clamped microbeam
The procedure explained in previous section is ap-
plied to study the vibrations of a double-clamped
microbeam. In order to demonstrate the accuracy
of the VIM, values of nonlinear frequency !NL of
four di�erent isotropic double-clamped microbeams
with lengths of 210, 310, 410 and 510 �m have been
obtained, and compared with previous works, which
are summarized in Table 1.

The parameters of the microbeam are as follows:

Thickness = 1.5 �m,
Width = 100 �m,
Initial gap = 1.18 �m,
Residual axial load = 0.0009 N,
� = 2332 kg/m3,
"0 = 8:854� 10�12Fm�1

E�ective Young's modulus = 166 GPa.

In Table 1, !0 is the linear frequency calculated
from the initial guess, and !1 and !2 are the values
obtained from the �rst and the second iterations,
respectively.

It can be observed that the results obtained from
the VIM and those reported by [2,7,15] are in a good
agreement. Table 1 also shows the advantage of using
this method from the convergence view point. As
shown, only a few iterations are required to calculate
the results with appropriate accuracy.

Variations of the linear and nonlinear frequencies
obtained from the �rst and second iterations with the
applied voltage for di�erent values of residual axial
load are illustrated in Figure 2. These values are
also compared with the results of [15] where a good
agreement is observed. It is shown that for values of
voltage lower than 10 V, the di�erence between the
linear and nonlinear frequencies is almost negligible.
For higher values of voltage, e�ect of nonlinearity
is dominant and has caused the linear frequency to
diverge from the nonlinear solution. Also, for voltages
greater than a critical value, no real solution can be
found for the problem. It should be noted that the

Table 1. Nonlinear frequencies at di�erent beam lengths and comparison with the previous works results and
experimental data.

Length
(�m)

Ref. [2]
Ref. [7] Ref. [15]

Present study

Measured Calculated !0 !1 !2

210 322.05 324.7 324.7 324.78 322.4036 322.3534 322.3534

310 163.22 164.35 163.46 163.16 161.9797 161.9549 161.9549

410 102.17 103.8 103.7 103.42 101.6387 101.5353 101.5354

510 73.79 74.8 73.46 74.38 73.2741 73.2200 73.2200
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Figure 2. Variation of natural frequencies with voltage
for a double-clamped microbeam with L = 210 �m and
di�erent values of residual axial load.

Figure 3. E�ect of residual axial load on de
ection of the
double-clamped microbeam at x = L=2 with L = 210 �m
at 19 V.

values of frequency obtained from the �rst and second
iterations are very close in whole studied interval of
voltage, which implies the high rate of convergence
in the VIM. It is also observed that pretension in
microbeams results in increase of nonlinear frequency.

Figure 3 shows the e�ect of residual axial load
on de
ection of the microbeam at x = L=2. Results
of the VIM obtained at 19 V for a microbeam with
L = 210 �m are compared with the numerical results
of 4th order Runge-Kutta method. A good agreement
is observed even at this relatively high voltage. Also,
it can be seen that precompression increases the am-
plitude of de
ections for a speci�c applied voltage.

4.2. Simply-supported microbeam
The VIM is applied to analyze the vibration of a simply
supported microbeam actuated by an electrostatic
force. The di�erence between the solutions obtained
for double-clamped and simply supported beams is due

to the di�erent boundary conditions, which results in
di�erent expressions for  (x).

Figure 4 depicts the variation of linear and non-
linear frequencies of the simply supported microbeam
with respect to the applied voltage. As observed in this
�gure, the values of frequencies fall to zero at higher
voltages, called pull-in voltage. In such voltages, the
instability occurs which should be considered as an
important issue in design procedures [18].

Figure 5 shows the de
ection of the microbeam
at x = L=2 with length L = 210 �m for di�erent axial
loads at voltage 10. The slight di�erence between the
results of current study and that of the numerical study
is due to the applied relatively high voltage, which
is close to the value of the critical voltage. We also
investigated the e�ect of beam length (L) and voltage
(V ) on the nonlinear frequency in Figure 6 where the
residual axial load is zero. As shown, at smaller beam
lengths, the value of frequency increases. This increase
is much more signi�cant at beam lengths smaller than
L = 100 �m.

Figure 4. Variation of natural frequency with voltage for
a simply supported microbeam with L = 210 �m and
di�erent values of residual axial load.

Figure 5. E�ect of residual axial load on de
ection of the
simply supported microbeam at x = L=2 with L = 210 �m
at 10 V.



M. Baghani et al./Scientia Iranica, Transactions B: Mechanical Engineering 20 (2013) 1499{1507 1505

Figure 6. E�ect of beam length (L) and voltage (V ) on
the nonlinear frequency where the residual axial load is
zero.

5. Summary and conclusion

Variational Iteration Method (VIM) has been applied
to study the vibrations of electrostatically actuated
double-clamped and simply supported microbeams.
The geometrical nonlinearity has been modeled using
von-Karman's assumptions. Galerkin's decomposition
method has been used to obtain the nonlinear ordinary
di�erential equation of motion. Analytical Expressions
for the nonlinear natural frequency and de
ection of
these microbeams have been obtained using the VIM.
The e�ects of the applied voltage and residual axial
load on the nonlinear natural frequency and de
ection
of the microbeams have been studied. It is shown that
by increasing the applied voltage, higher iterations are
required to �nd the results accurately. It is also con-
cluded that pretension in microbeams results in higher
values of nonlinear frequency. Also, precompression
in microbeams increases the amplitude of de
ections
for a speci�c applied voltage. Having a higher rate of
convergence and high accuracy, VIM is shown to be an
e�cient method for studying the behavior of nonlinear
systems.
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Appendix A

Coe�cients required for determining Eq. (11) are
presented as follows:

Q = � "0V 2

2Md0

�
b
d0

+ �
� LZ

0

 dx;

M = �bh
LZ

0

 2dx;

R = � "0V 2
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+ �
� LZ

0

 3dx;
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0
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�
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Appendix B

Coe�cients required for determining Eq. (27) are
presented as follows:

13440
14c1 =134640PQ6 + 26880Q
12

� 13440Q
10
 + 17920RQ2
8

� 27300SQ3
6 + 44688GQ4
4

� 76440JQ5
2;

13440
14c2 =2240RQ2
8 + 69300P
6

� 6720SQ3
6 � 33600JQ5
2

+ 15680GQ4
4;

13440
14c3 =4725JQ5
2 � 1680GQ4
4

� 11550PQ6 + 420SQ3
6;

13440
14c4 =�560JQ5
2+112GQ4
4+1848PQ6;

13440
14c5 = 35JQ5
2 � 210PQ6;

13440
14c6 = 12PQ6;

13440
14c7 =� 26880Q
12 � 58800GQ4
4

+ 105840JQ5
2 � 194040PQ6

� 20160RQ2
8 + 33600SQ3
6

+ 13440Q
10
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Appendix C

A higher order approximation for the frequency based
on Eq. (27), is given as:

10Jc51 + (5Jc5 + 25Jc3)c41 + (70Jc22 + (80Jc4

+ 160Jc7 + 32G)c2 + 60Jc23 + 80Jc3c5

+ 60Jc24 + (40Jc7 + 8G)c4 + 48Gc7 + 60Jc25

+ 120Jc27 + 12S)c31 + ((150Jc3 + 90Jc5)c22

+ ((360Jc7 + 240Jc4 + 72G)c3 + 240Jc4c5

+ (24G+ 120Jc7)c5)c2 + 30Jc33 + 90Jc23c5

+ (60Jc24 + (360Jc7 + 72G)C4 + 48Gc7

+ 60Jc25 + 120Jc27 + 12S)c3 + 30Jc24c5

+ (360Jc7 + 72G)c5c4)c21 + (30Jc42 + (24G

+ 120Jc7 + 80Jc4)c32 + (150Jc23 + 180Jc3c5
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+ 120Jc24 + (240Jc7 + 48G)c4 + 96Gc7

+ 240Jc27 + 120Jc25 + 24S)c22 + ((48G

+ 240Jc7 + 240Jc4)c23 + (360Jc4c5 + (480Jc7

+ 96G)c5)c3 + 60Jc34 + (240Jc7 + 48G)c24

+ (96Gc7 + 240Jc27 + 120Jc25 + 24S)c4

+ (240Jc7 + 48G)c25 + 160Jc37 + 16R+ 48Sc7

+ 96Gc27)c2 + 30Jc43 + 60Jc33c5 + (150Jc24

+ (24G+ 120Jc7)c4 + 96Gc7 + 240Jc27

+ 120Jc25 + 24S)c23 + (240Jc24c5 + (240Jc7

+ 48G)c5c4 + 60Jc35 + (96Gc7 + 240Jc27

+ 24S)c5)c3 + 30Jc44 + (96Gc7 + 240Jc27

+ 150Jc25 + 24S)c24 + 30Jc45 + (96Gc7

+ 240Jc27 + 24S)c25 + 32Rc7 + 80Jc47

+ 48Sc27 + 64Gc37)c1 + (20Jc3 + 20Jc5)c42

+ ((24G+ 120Jc7 + 80Jc4)c3 + 60Jc4c5

+ (40Jc7 + 8G)c5)c32 + (30Jc33 + 120Jc23c5

+ (90Jc24 + (240Jc7 + 48G)c4 + 48Gc7 + 60Jc25

+ 120Jc27 + 12S)c3 + 90Jc24c5 + (240Jc7

+ 48G)c5c4 + 30Jc35 + (48Gc7 + 120Jc27

+ 12S)c5)c22 + ((24G+ 120Jc7 + 60Jc4)c33

+ (180Jc4c5 + (24G+ 120Jc7)c5)c23 + (60Jc34

+ (240Jc7 + 48G)c24 + (180Jc25 + 24S + 240Jc27

+ 96Gc7)c4 + (240Jc7 + 48G)c25 + 160Jc37 + 16R

+ 48Sc7 + 96Gc27)c3 + 60Jc34c5 + (24G

+ 120Jc7)c5c24 + (60Jc35 + (96Gc7 + 240Jc27

+ 24S)c5)c4)c2 + 20Jc43c5 + (10Jc24 + (24G

+ 120Jc7)c4 + 10Jc25)c33 + (60Jc24c5 + (240Jc7

+ 48G)c5c4 + 30Jc35 + (48Gc7 + 120Jc27

+ 12S)c5)c23 + ((24G+ 120Jc7)c34 + 30Jc24c
2
5

+ ((240Jc7 + 48G)c25 + 160Jc37 + 16R+ 48Sc7

+ 96Gc27)c4)c3 + (24G+ 120Jc7)c5c34

+ ((24G+ 120Jc7)c35 + (160Jc37 + 16R

+ 48Sc7 + 96Gc27)c5)c4 = 0:
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