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Abstract. In this paper, ongoing studies to investigate nonlinear Ordinary Di�erential
Equations (ODE) are extended by presenting a new concept in non-dimensionalization
process. This concept is illustrated with a practical example of nonlinear ODEs, which
cannot reliably solve using the numerical methods. In this paper, two perturbation
techniques are used to solve the problem. E�ect of varying the dimensionless initial
displacement on the accuracy of solution is investigated. It is shown that if the process
of non-dimensionalizing is done appropriately, the calculated results will be extremely
accurate. Moreover, a new concept called \behavior of results" is proposed to �nd accurate
results.
© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Mathematical modeling can be used to simulate the
behavior of the practical systems and provide a better
understanding of them [1]. Theoretical investigations
are useful for drawing general conclusions from simple
models [2]. In reality, every physical process is a
nonlinear system and should be described by nonlinear
equations. Kerschen et al. studied the sources of
nonlinearity, and classi�ed them [3].

Nowadays, there is a large tendency toward nu-
merical simulation of nonlinear systems [4-6]. The
reason for this interest lies in the growth of powerful
computers. However, it should be considered that
the numerical methods require a considerable number
of iterations in order to approach the true solution,
and it is necessary to provide initial estimates of the
unknowns [7]. Due to the limitations of numerical
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methods, it is necessary to �nd analytical solutions for
nonlinear problems.

In spite of linear problems, it is very di�cult
to �nd analytical solution for nonlinear equations.
Consequently, many e�orts have been made to develop
the methods of studying nonlinear systems. Nayfeh
and Mook [8], Verhulst [9] and Rand [10] studied
nonlinear equations.

Perturbation methods provide powerful tools to
analyze nonlinear problems [11-14]. Ganji et al.
applied the perturbation methods to solve nonlinear
equations in 
uid mechanics problems [15-17]. They
also evaluated a nonlinear engineering system, using
the so-called amplitude-frequency formulation, which
overcomes the di�culty of computing the periodic
behavior of such systems [18]. But, as well as other
nonlinear techniques, the perturbation methods have
several limitations. Nayfeh [19] and O'Malley [20]
investigated the restrictions of perturbation methods.
Usually, before using the perturbation methods, this
question may be arisen: \which technique, out of
presented perturbation methods, is better than the
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others?" Finding an answer for this question is not
easy, because some special nonlinear problems may
be accurately solved using a particular perturbation
technique [21,22]. The main motivation of the present
work is to �nd a reasonable answer for the above
question.

Consider a plasma tube in which the magnetic
�eld is cylindrical and increases toward the axis in
inverse proportion to the radius. A nonlinear equation
describes the motion of injected electrons into the dis-
cussed plasma tube. In this paper, the nonlinear equa-
tion is solved using two perturbation techniques [23].
Parameterized perturbation and iteration perturbation
methods are used to solve the nonlinear ODE. It is
shown that wavelength of the motion can be exactly
approximated using the iteration perturbation method.
Finally, e�ects of the process of non-dimensionalizing
on the accuracy of solution, which is obtained using the
parameterized perturbation method, are investigated
and discussed.

2. Mathematical modeling

The orbit of a charged particle q moving in an electric
and magnetic �eld can be formulated using the Lorentz
force equation [24]. This equation can be shown as
follows:

F = q(E + v �B); (1)

where F is the Lorentz force, E is the electric �eld, B is
the magnetic �eld and v is the instantaneous velocity of
the particle. Consider the uniform magnetic �eld (E =
0) in a plasma tube in which the magnetic �eld changes
cylindrically and increases toward the axis in inverse
proportion to the radius. Therefore, the Lorentz force
equation can be simpli�ed to the following form:

F = qvC=r; (2)

where C is a constant, which relates to the magnetic
�eld (B). Variable r is the distance to the center line
of the plasma tube. According to the Newton's second
law, motion of the charged particle injected into the
plasma tube can be given by:

mr;tt + Cqvr�1 = 0; (3)

where m is the mass of the charged particle. For
convenience, the above equation can be rewritten as
the following relation:

r;tt + �r�1 = 0: (4)

In the above equation � = Cqv=m. Consider u = r=r0
and � = !0t, where r0 is the characteristic distance
and !0 is the natural circular frequency of vibration.

Therefore, dimensionless form of the above equation
can be written as follows:

u;tt = ��u�1; (5)

where � is equal to �=!2
0r2

0. In the present study, the
initial conditions are assumed to be u(0) = A and
u;� (0) = 0.

3. Analytical solution

3.1. Iteration perturbation method
Iteration perturbation method is a relatively new
perturbation technique coupling with the Iteration
method [25]. The iteration formula for the dimension-
less governing equation can be de�ned as follows:

(u�� )n+1 + "�(u)n+1(u)2
n = 0; (6)

where " is an introduced arti�cial parameter and
subscript n represents the nth order of solution. Com-
paring between Eqs. (5) and (6), it can be concluded
that, in this section, the arti�cial parameter (") is equal
to one. Assume that the initial approximate solution
is u0 = A cos!t, where ! is the angular frequency of
the oscillation. Therefore, Eq. (6) can be rewritten as
follows:

u;�� + 2�A�2u+ "u;�� cos(2!�) = 0; (7)

where " is an introduced arti�cial parameter. The
above equation is a sort of the Mathieu equation.
Suppose that:

u = u0 + "u1 + "2u2 + � � � ; (8)

2�A�2 = C0 + "C1 + "2C2 + � � � (9)

In the above equation it should be noted that the pa-
rameter C0 is equal to square of the angular frequency
(C0 = !2). Substituting Eqs. (8) and (9) into Eq. (7)
and equating the coe�cients of the same power of "
results in the following di�erential equation for u1:

u1;�� + !2u1 +
�
C1A� A!2

2

�
cos!�

� A!2

2
cos 3!� = 0: (10)

Vanishing secular term requires C1 = !2=2. Substitut-
ing C1 into Eq. (9) results in:

! =
2
A

r
�
3
: (11)

Therefore, the �rst approximate wavelength of the
charged particle motion is equal to:

� = 5:4414
Ap
�
: (12)
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Neglecting the secular term and solving Eq. (10) with
initial conditions u1(0) = 0 and u1;� (0) = 0 yields the
following result:

u1 =
A
16

(cos!� � cos 3!�) : (13)

Substituting Eq. (13) into Eq. (8) results in the follow-
ing relation:

u1 = A cos!� +
A
16

(cos!� � cos 3!�): (14)

If the above solution is substituted into Eq. (6) as
the 0th order solution, the following relation will be
obtained:

u;�� + 256"u�A�2(17 cos!� � cos 3!�)�2 = 0: (15)

The above equation can be rewritten as follows:

u;�� +
256
145

�A�2u+ "

 
51
58

cos 2!� � 17
145

cos 4!�

+
1

290
cos 6!�

!
u;�� = 0: (16)

Therefore, the circular frequency of motion can be
expanded, as shown in Eq. (17).

256
145

�A�2 = C0 + "C1 + "2C2 + � � � (17)

where C0 = !2. Substituting Eqs. (8) and (17) into
Eq. (16) results in the following di�erential equation:

u1;�� + !2u1 + C1u0 +

 
51
58

cos 2!� � 17
145

cos 4!�

+
1

290
cos 6!�

!
u0;�� = 0: (18)

The 0th order solution, in the above relation, can be
replaced by what is shown in Eq. (14). Therefore,
Eq. (18) changes to the following equation:

u1;�� + !2u1 +

 
17
16
AC1 � 1173

4640
A!2

!
cos!�

+

 
1
16
AC1 � 937

2320
A!2

!
cos 3!�

+
17A!2

9280

 
357
1160

cos 5!�

� 323
9280

cos 7!� +
9

9280
cos 9!�

!
=0:

(19)

Neglecting the secular term requires C1 = 69!2=290.
Regarding the parameter C1, presented in Eq. (17),
second order angular frequency can be calculated as
follows:

! =
1
A

r
512�
359

: (20)

Therefore, the wavelength of motion is equal to:

� = 5:2612
Ap
�
: (21)

For convenience, very small coe�cients in Eq. (19) can
be neglected. Therefore, this equation can be rewritten
as follows:

u1;�� + !2u1 ' 67
160

A!2 cos 3!�

� 6069
10764800

A!2 cos 5!�: (22)

The second iterative solution of Eq. (5), which is
calculated using the iteration perturbation method, is
given in Eq. (23). For convenience, the second iterative
solution of problem is brie
y named as \second order"
solution.

u(�) =
17A
16

cos!� � 147A
1280

cos 3!�

� 6069A
258355200

cos 5!�: (23)

3.2. Parameterized perturbation
Initially, Eq. (5) is multiplied by u2 , then term 0:u;�� ,
which is equal to zero is added to the left side of this
equation. Finally, all right side term of the equation is
moved to the left side. Therefore, the new presentation
for the dimensionless form of Eq. (5) can be shown as
follows:

0:u;�� + u2u;�� + �u = 0: (24)

Consider linear transformation u = "v, where " is
an introduced perturbation parameter. Therefore, the
above equation can be rewritten as follows:

0:"v;�� + "3v2v;�� + �"v = 0: (25)

Expanded form of the parameters v, � and 0 are given
by:

v = v0 + "2v1 + "4v2 + � � � (26)

� = !2 + "2!1 + "4!2 + � � � (27)

0 = 1 + "2b1 + "4b2 + � � � (28)
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Substituting Eqs. (26), (27) and (28) into Eq. (25) and
equating the coe�cients of same powers of ", yields the
following relations:

v0;�� + !2v0 = 0; v0(0) = A"�1;

v0;� (0) = 0; (29)

v1;�� + !2v1 + v2
0v0;�� + !1v0 + b1v0;�� = 0

v1(0) = 0; v1;� (0) = 0; (30)

v2;�� + !2v2 + (b2 + 2v0v1)v0;�� + (b1 + v2
0)v1;��

+ !1v1 + !2v0 = 0;

v2(0) = v2;� (0) = 0: (31)

If v0 that is calculated by Eq. (29) is substituted into
Eq. (30), the following relation will be obtained:

!1 =
�
b1 +

3
4
A2"�2

�
!2: (32)

The parameter � can be achieved by substituting the
above equation into Eq. (27).

� = !2 + "2
�
b1 +

3
4
A2"�2

�
!2: (33)

In the �rst order of solution, b1 = �"�2. Substituting
b1 into the above relation and simplifying it results in:

! =
p
�
A

r
4
3
: (34)

Therefore, the wavelength of motion is as follows:

� = 5:4414
Ap
�
: (35)

To solve Eq. (31), the variable v1 can be calculated by
Eq. (30). The variable v1 is equal to:

v1 = A3"�3(cos!� � cos 3!�): (36)

Substituting Eqs. (32) and (36) into Eq. (31) results in:

v2;�� + !2v2 +

 
�A!2b2

"
� A3!2b1

32"3 +
A5!2b2

64"5

+
A3!1

32"3 +
A!2

"

!
cos!�

+

 
19A5!2

128"5 +
9A3!2b1

32"3 � A3!1

32"3

!
cos 3!�

+

 
11A5!2

128"5

!
cos 5!� = 0: (37)

Neglecting the secular term, in the above relation,
needs to vanish the coe�cient of cos !� . Therefore,
the following equation will be constructed:

A!2 �A!2b2
"

+
A3(!1 � !2b1)

32"3 +
A5!2b2

64"5 = 0: (38)

Substituting b1 and ! (which are obtained previously
in Eq. (34)) into the above equation and simplifying it
results in:

!2 = !2
�
b2 � 5

128
A4

"4

�
: (39)

Regarding Eq. (27), the following equation can be
concluded:

� = (1 + "2b1 + "4b2)!2 +
3
4
A2!2 � 5

128
A4!2: (40)

The above relation can be simpli�ed to the following
form (Regarding to Eq. (28)):

� = !2
�

3
4
A2 � 5

128
A4
�
: (41)

The angular frequency of motion can be written as
follows:

! =
p
�
A

2p
3
q

1� 5
96A2

: (42)

Therefore, the second order wavelength of motion is
equal to:

� = 5:4414
Ap
�

r
1� 5

96
A2: (43)

Second order solution of Eq. (5), which is calculated
using the parameterized perturbation method, is as
follow:

u(�) =
�
A� A3

128
+

11A5

768

�
cos!�

�
�
A3

128
� 11A5

1024

�
cos 3!� �

�
11A5

3072

�
cos 5!�:

(44)

4. Results and discussions

A practical nonlinear ODE has been derived and solved
using two perturbation techniques. The presented
perturbation methods can be employed to solve various
kinds of nonlinear problems. Here, this question may
be posed: \why is the discussed kind of nonlinear
di�erential equations selected to be solved in this
paper?".

The reason for this selection lies in the following
facts:
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� As shown in Section 2, practical problems can be
described using the discussed nonlinear di�erential
equation.

� Numerical methods may wrongly solve the discussed
nonlinear ODE. Therefore, it is necessary to �nd
analytical solution.

� Exact wavelength of motion for the discussed prob-
lem can be calculated. This will be used to verify
the calculated results.

As said, among the above notes, numerical methods
may be unable to solve the presented problem. The
reason for this inability may lie in the fact that
the concavity (u;�� ) approaches to in�nity when the
vibratory particle passes from the origin (u = 0).
Figure 1 shows the result of using several numerical
methods for solving the discussed problem.

For the discussed problem, the wavelength of
motion can be calculated, analytically. For this reason,
consider u;�� = u;� (u;� );u and substitute it into Eq. (5).
Therefore, the exact wavelength of motion is equal
to [22]:

�exact =
r

2
�

Z A

0

dup
LnA� Lnu

= 5:0133
Ap
�
: (45)

Wavelengths of motion, which are achieved by em-
ploying the iteration perturbation, are illustrated in
Figure 2. It should be noted that the linear wavelength
of motion (0th order) is obtained by neglecting the
nonlinear term of Eq. (24). In doing so, to �nd the
linear wavelength of motion, term u2u;�� is removed
from Eq. (24). With regard to Eq. (28), the equivalent
linear form of Eq. (24) can be re-written as follows:

u;�� +
�

1 + "2b1 + "4b2 + � � �u = 0: (46)

Note that in the linear problem, the introduced pertur-
bation parameter (") can be considered negligible, so
the equivalent linear wavelength of motion is equal to
2�A��1=2. A curve that is obtained, using the cubic

Figure 1. Result of solving the governing equation, using
several numerical method and perturbation method.

Figure 2. Behavior of the non-dimensional wavelengths
with the order of solution.

spline interpolation, is �tted to the calculated results.
The spline curve will be used to describe the so-called
\behavior of the calculated results", and it is obtained
using the curve �tting toolbox in MATLAB software.

The calculated wavelengths of motion are com-
pared with the exact solution in Table 1. As shown
in this table, increasing the order of solution leads to
�nding more accurate results.

Wavelengths of motion, which are calculated
using the parameterized perturbation method, are
presented in Table 2. As shown in this table, in
contrast with the iteration perturbation, the error
of the second order solution of the parameterized
perturbation method is variable with the parameter A.

The second order wavelength calculated, using the
parameterized perturbation method, is illustrated in
Figure 3. It can be shown that if the dimensionless
initial displacement (A) is selected between 1.120 and
2.114, the parameterized perturbation results will be

Table 1. Calculated wavelengths of motion, using the
iteration perturbation method.

Order of
solution (i)

Wavelength of
motion (�i)

Error
(%)

0 6:2832A=
p
� 25.33

1 5:4414A=
p
� 8.54

2 5:2612A=
p
� 4.94

Figure 3. Variation of the wavelength versus initial
displacement.
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more accurate than the result of the iteration pertur-
bation method. This range, which is simply named
\high accuracy zone", can be calculated regarding the
exact solution.

Variation of error of the second order solution
with varying the non-dimensional initial displacement
(A) is shown in Table 3. As shown in this table, unlike
the iteration perturbation method, error of solution
in the parameterized perturbation method varies with
changing the non-dimensional initial displacement (A).
As said before, in the high accuracy range, the error of
second order solution of the parameterized perturba-
tion method becomes lower than the error of second
order solution of the iteration perturbation method
(4.94%). Furthermore, in this table it is shown that
if A = 1:7036, the calculated wavelength of motion,
which is achieved using the parameterized perturbation
method, is equal to the exact solution.

Here, this question may be arisen: \can the so-

called high accuracy range be obtained without �nding
the exact solution?".

Finding an answer for the above question is really
important, because the exact solution cannot be found
for all nonlinear problems. To �nd the relatively exact
solution, it should be noted that the di�erence between
the higher order wavelengths of motion (which are
obtained using the perturbation method) should be
smaller than the lower order solutions. In other words,
the following conditions should be ful�lled:

(I) j�0 � �1j > j�1 � �2j
(II) j�2 � �3j < j�1 � �2j

Therefore, the di�erence between the second order
solution and the �rst order solution should be smaller
than 0:8418A��1=2 (Condition (I)). This range, which
is simply named \acceptable range for non-dimensional
initial displacement" is shown in Figure 4.

Table 2. Calculated wavelengths of motion, using the parameterized perturbation method.

Order of solution (i) Wavelength of motion (�i) Error (%)
0 6:2832A=

p
� 25.33

1 5:4414A=
p
� 8.54

2
�

5:4414
p

1� 5A2=96
�
A=
p
� 108:54

p
1� 5A2=96� 100

Table 3. Error of using the second order solution with varying non-dimensional initial displacement.

Parameterized perturbation
method

Iteration perturbation
method

Non-dimensional
initial displacement

(A)

Non-dimensional
wavelength
(�
p
�=A)

Error of
solution

(%)

Non-dimensional
wavelength
(�
p
�=A)

Error of
solution

(%)

High Accuracy
Range

(Error< 4:94%)

1.0 5.2978 5.67 5.2612 4.94

1.1 5.2671 5.06 5.2612 4.94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 5.2334 4.39 5.2612 4.94

1.3 5.1964 3.65 5.2612 4.94

1.4 5.1562 2.85 5.2612 4.94

1.5 5.1126 1.98 5.2612 4.94

1.6 5.0657 1.05 5.2612 4.94

1.7 5.0152 0.04 5.2612 4.94

1.7036 5.0133 0.00 5.2612 4.94

1.8 4.9611 1.04 5.2612 4.94

1.9 4.9032 2.19 5.2612 4.94

2.0 4.8415 3.43 5.2612 4.94

2.1 4.7758 4.74 5.2612 4.94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 4.7058 6.13 5.2612 4.94

2.3 4.6315 7.62 5.2612 4.94
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Table 4. Di�erence between the calculated dimensionless wavelengths.

(A) j�0 � �1jp�=A j�1 � �2jp�=A j�2 � �3jp�=A Note (I) Note (II)

1.0 0.8418 0.1436 0.5508 Satis�ed -
1.5 0.8418 0.3288 0.0398 Satis�ed Satis�ed
2.0 0.8418 0.5999 0.7807 Satis�ed -
2.5 0.8418 0.9726 1.1148 - -

Figure 4. Variation of the di�erence and the
non-dimensional wavelength versus initial displacement.

Figure 5. Behavior of the non-dimensional wavelengths
with varying the parameter A.

Regarding the above two conditions, to �nd the
so-called high accuracy range for the non-dimensional
initial displacement (A) can be calculated. E�ect
of varying the variable A on the behavior of the
parameterized perturbation results is illustrated in
Figure 5.

Di�erence between the calculated dimensionless
wavelengths of motion is presented in Table 4. As
shown in this table, if A = 1:5, both of the two
presented notes are satis�ed. Therefore, error of the
results that is obtained using the second order solution
of the parameterized perturbation method, is equal to
1.98%. This solution is more accurate than the results
which are obtained using the second order solution of
the iteration perturbation method (4.94%).

Variation of the dimensionless distance (u) versus
dimensionless time (�), which is calculated using the
second order solution of Eq. (5), is shown in Figure 6.
In this �gure, the initial dimensionless distance (A)
is equal to 1.7, and the iteration perturbation and

Figure 6. Variation of the dimensionless distance with
the dimensionless time (A = 1:7).

parameterized perturbation solutions are respectively
plotted according to Eqs. (23) and (44).

5. Conclusion

This paper studies a practical nonlinear ordinary dif-
ferential equation that describes the behavior of a
particle, which is excited in a plasma tube. The
discussed nonlinear equation cannot reliably be solved
using numerical methods. For this reason, the govern-
ing equation has been solved analytically, using two
perturbation techniques.

Both of the �rst and the second order solutions
of the iteration perturbation method provide accurate
results. Simplicity and accuracy of the iteration
perturbation method makes it appropriate for practical
applications. However, it has been shown that the so-
called \behavior of results" in the iteration perturba-
tion method, presented in this paper, is not acceptable.

Unlike the iteration perturbation method, ac-
curacy of the parameterized perturbation result is
variable with the dimensionless initial displacement. It
is shown that in a special range of the dimensionless
initial displacements, the parameterized perturbation
method provides extremely accurate results. This
range is approximated using the concept of results
behavior.

Nomenclature

A Initial dimensionless distance
B Magnetic �eld
C Constant
E Electric �eld
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F Lorentz force
P Coe�cient
B Coe�cient
M Mass of the charged particle
N Order of solution
Q Charged particle
S Independent variable
T Time
R Displacement of the charged particle
U Dimensionless distance to the center

line of the plasma tube (r=r0)
V Instantaneous velocity of the particle
X Independent variable
R Distance to the center line of the

plasma tube
r0 Characteristic distance

Greek symbols

� Cqv=m

� �=!2
0r2

0

" Coe�cient
� wave length of motion
T Dimensionless time (� = !0t)

 Circular frequency
!0 Natural frequency of system

Subscripts

0 Initial conditions
Exact Exact solution
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