
Scientia Iranica B (2013) 20(4), 1221{1227

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

Sensitivity analysis of vibration modes of rectangular
cantilever beams immersed in uid to surface sti�ness
variations

A.F. Payam�

School of Electrical & Computer Engineering, University of Tehran, Tehran, Iran

Received 13 March 2012; received in revised form 27 November 2012; accepted 6 May 2013

KEYWORDS
Atomic force
microscope;
Cantilever;
Sensitivity;
Surface sti�ness;
Inviscid uid.

Abstract. In this paper, the sensitivity of exural and torsional vibration modes of a
rectangular cantilever immersed in a uid to surface sti�ness variations has been analyzed
and a closed-form expression is derived. To represent this sensitivity, we use analytical
formulas for the vibrational resonant frequencies of a rectangular cantilever beam immersed
in an inviscid uid. The e�ect of the surface contact sti�ness on both exural and torsional
sensitivities in a uid is investigated and compared with cases in which the cantilever
operates in air. The results show that in low surface sti�ness, the �rst mode is the most
sensitive. As sample surface sti�ness is increased, higher resonant frequencies show a larger
shift, compared with lower resonant frequencies. In addition, comparison between modal
sensitivities in air and uid shows that the resonance frequency shifts in air are greater
than resonant frequency shifts in uid.
c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Dynamic analysis of cantilever beams immersed in
uids is necessary for numerous applications, including
environmental sensing [1], micro/nano electromechan-
ical system designing [2], and high resolution imag-
ing [3]. In comparison with air or vacuum environ-
ments, cantilever dynamics in uid remain much less
understood and, thus, require more investigation [4].

By increasing cantilever size, the e�ect of viscosity
on the dynamic response of the cantilever immersed in
a uid is decreased, and the uid can be considered
inviscid [5]. This assumption signi�cantly simpli�es
analysis of cantilever dynamics in uid. Based on this
assumption, Chu [6] presented a simple expression for
the exural resonant frequency of a cantilever in uid.
The presented expression shows an acceptable agree-
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ment with experiments for macroscopic cantilevers,
especially for fundamental and the next few modes [7].

Based on Chu's work [6], Elmer and Dreier [8]
proposed an expression for exural modes of arbitrary
mode numbers. Based on the work carried out in [8]
and [9], Eysden et al. [5] proposed an explicit analyt-
ical formula for both exural and torsional resonant
frequencies of a rectangular cantilever beam immersed
in an inviscid uid.

Jensen and Hegner recently undertook work to
calculate the exural resonance frequency in a uid
environment [10], and used the compressible uid
model of Van Eysden and Sader in [5] to calculate the
exural resonance frequencies of the micro cantilever.

The motion of the cantilever beam can be a�ected
by the interactive sti�ness of a cantilever with the
sample surface [11].

Much research work has been carried out to
study the vibration response of a cantilever beam to
the interaction between the cantilever and the sample
surface [12-19].
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As a pioneer work in this �eld, Turner and
Wihen, in [12], have proposed analytical expressions
to calculate the sensitivity of exural and torsional
micro cantilevers to surface sti�ness variations for both
rectangular and V-shaped cantilevers. However, all
these studies are carried out in an air environment.
In this paper, following the method presented in [12]
for an air environment, we study the sensitivity of
exural and torsional vibration modes of a cantilever
beam immersed in a uid. We consider the inviscid
uid environment and use the analytical expression for
the exural and torsional resonance frequencies of the
cantilever derived in [5]. Based on this assumption, we
derive expressions for the vibration mode sensitivity of
a cantilever beam immersed in uid.

In Sections 2 and 3, analytical formulas for ex-
ural and torsional vibrations are derived. Numerical
results are presented in Section 4 and, �nally, a
conclusion is provided in Section 5.

2. Flexural Vibration

For the exural modes of vibration, the governing
equation for elastic deformation is:

EI
@4y(x; t)
@x4 + �cA

@2y(x; t)
@t2

= F (x; t); (1)

where y(x; t) is the deection function of the beam, E
is the modulus of elasticity, I is the area moment of
inertia, �c is the volume density, and A is the uniform
cross section area of the cantilever. F (x; t) is the
external applied force per unit length of the beam.
The schematic of the cantilever beam is depicted in
Figure 1.

The corresponding boundary conditions are given
by:

y(0; t) = 0;
@y(0; t)
@x

= 0;

@2y(L; t)
@x2 = 0; EI

@3y(L; t)
@x3 = Kny(L; t); (2)

Figure 1. Schematic of a rectangular cantilever.

where Kn is normal contact sti�ness. Following the
analysis given in [5], the resonant frequencies in the
uid of a rectangular cantilever beam are given by:

!(n)
uid = !(n)

vac

�
1 +

��fa
4�cb

�f (kn)
��1=2

; (3)

where:

!(n)
vac =

2
n
L2

s
EI
�cA

; (4)

where n is the mode order and n is the nth positive
root of the following characteristics equation:

C(n; �f ) =3
n (cos n cosh n + 1)� �f

(sinh n cos n � sin n cosh n) = 0; (5)

where �f = Kn
EI=L3 , �f is the density of the uid, a is the

cantilever width and b is the cantilever height. Also,
the hydrodynamic function, �f (kn), is given by [5]:

�f (kn)=
1 + 0:74273kn + 0:14862k2

n
1+0:74273kn+0:35004k2

n+0:058364k3
n
;

(6)

where kn = n aL .
The exural sensitivity of the cantilever can be

calculated from the derivative of the exural frequency
with respect to the exural surface sti�ness, �f .

For the exural mode, the frequency is given by:

fuid;n = fvac;n
�
1 +

��fa
4�cb

�f (kn)
��1=2

; (7)

where:

fvac;n =
2
n

2�L2

s
EI
�cA

: (8)

So, based on Eqs. (7) and (8), we have:

@fuid;n

@�f
=
@fuid;n

@n
@n
@�f

: (9)

From Eq. (7), we have:

@fuid;n

@n
=
@fvac;n
@n

�
1 +

��fa
4�cb

�f (kn)
��1=2

� ��fa
8�cb

�
1 +

��fa
4�cb

�f (kn)
��3=2

� @�f (kn)
@kn

@kn
@n

; (10)

where: Eqs. (11)-(13) are shown in Box (I).
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@fvac;n
@n = n

�L2

q
EI
�cA ; (11)

@�f (kn)
@kn = (0:74273+0:29724kn)(1+0:74273kn+0:35004k2

n+0:058364k3
n)�(1+0:74273kn+0:14862k2

n)(0:74273+0:70008kn+0:175092k2
n)

(1+0:74273kn+0:35004k2
n+0:058364k3

n)2 ;

(12)
@kn
@n = a

L : (13)

Box (I).

On the other hand, @n=@�f can be calculated
from:

@n
@�f

= �@C=@�f
@C=@n

: (14)

So, based on the characteristics Eq. (5), we have:

@n
@�f

= (cos n sinh n � sin n cosh n)

��32
n (1+cos n cosh n)+2�f sin n sinh n

+3
n (cos n sinh n � sin n cosh n)

	�1 :
(15)

Therefore, by substituting Eqs. (11)-(13) into Eq. (10),
@ffluid;n
@n is obtained, and by substituting Eq. (15) and

the obtained @ffluid;n
@n into Eq. (9), @ffluid;n

@�f is calculated.
Finally, the dimensionless form of exural sensi-

tivity can be calculated by:

�f;n =
@fuid;n=@�f

1
2�L2

q
EI
�cA

: (16)

3. Torsional Vibration

The governing equation for the torsional oscillations is:

G�
@2�(x; t)
@x2 � �cJ @

2�(x; t)
@t2

= M(x; t); (17)

where �(x; t) is the angle of torsion of the cross-
sectional area, shown in Figure 1, M(x; t) is the applied
torque per unit length of the beam, G is the shear
modulus, J is the polar moment of inertia, and � is
the torsional parameter for a rectangular beam, which
is given in [20]:

� =
1
3
h3a

�
1� 0:63

h
a

�
: (18)

The corresponding boundary conditions are:

�(0; t) = 0;

G�
@�(L; t)
@x

= �Kth2�(L; t); (19)

where Kt is lateral surface sti�ness and h is tip height.
Following the analysis given in [5], the torsional reso-
nant frequencies in the uid of a rectangular cantilever
beam are given by:

!(n)
uid = !(n)

vac

�
1 +

3��fa
2�cb

�t(kn)
��1=2

; (20)

where:

!(n)
vac =

n
L

s
G�
�cJ

m; (21)

where n is the mode order and n is the nth positive
root of the following characteristics equation:

C(n; �t) = n cos n + �t sin n = 0; (22)

where �t = Kth2L=G�. Also, the hydrodynamic
function, �t(kn), is given by [5]:

�t(kn) =
1
16�

1 + 0:37922kn + 0:072912k2
n

1 + 0:37922kn + 0:088056k2
n + 0:010737k3

n

�
; (23)

where kn = n aL .
The exural sensitivity of cantilever can be calcu-

lated from the derivative of frequency, with respect to
surface lateral sti�ness, �t.

For the exural mode, the frequency is given by:

fuid;n = fvac;n
�
1 +

3��fa
2�cb

�t(kn)
��1=2

; (24)

where:

fvac;n =
n

2�L

s
G�
�cJ

: (25)
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So, based on Eqs. (24) and (25), we have:

@fuid;n

@�t
=
@fuid;n

@n
@n
@�t

: (26)

From Eq. (25), we have:

@fuid;n

@n
=
@fvac;n
@n

�
1 +

3��fa
2�cb

�t(kn)
��1=2

� 3��fa
4�cb

�
1 +

3��fa
2�cb

�t(kn)
��3=2

@�t(kn)
@kn

@kn
@n

; (27)

where: Eqs. (28)-(30) are shown in Box (II).
On the other hand, @n

@�t can be calculated from:

@n
@�t

= � @C=@�t
@C=@n

: (31)

So, based on the characteristics of Eq. (22), we have:

@n
@�t

=
sin n

n sin n � (1 + �t) cos n
: (32)

Therefore by substituting Eqs. (28)-(30) into Eq. (27),
@ffluid;n
@n is obtained, and by substituting Eq. (32)

and the obtained @ffluid;n
@n into Eq. (27), @ffluid;n

@�t is
calculated.

Also, the dimensionless form of torsional sensitiv-
ity can be obtained as:

�t;n =
@fuid;n=@�t

1
2�L

q
G�
�cJ

: (33)

4. Results

In this section, the sensitivity of the vibrational modes
of a rectangular cantilever immersed in uid has been
analyzed. The cantilever parameters are listed in
Table 1.

Table 1. Parameters for a cantilever.

Elastic modulus E (GPa) 170
Shear modulus G (GPa) 66.4

Density of the cantilever �c (kg/m3) 2330
Density of the Fluid �f (kg/m3) 1000

Length L (�m) 445
Width a (�m) 44

Thickness b (�m) 2.18
Tip length h (�m) 10

Figure 2. Comparison between the cantilever exural
modal sensitivity in air and uid.

The exural sensitivity of the �rst �ve modes
for the rectangular cantilever in uid is plotted in
Figure 2. Also, for the purpose of comparison with
an air environment, the numerical results of the air
environment are added to this �gure.

When the cantilever is more compliant than the
sample surface, the �rst mode is most sensitive to
surface sti�ness. By increasing sample sti�ness, the
sensitivity of the �rst mode is decreased, and when �f
is about 25, the second mode is the most sensitive.
Also, when �f is in the range of 200, the third mode
is the most sensitive. By increasing �f , higher modes
become more sensitive than lower ones. In other words,
when �f is small, the �rst resonance frequency has the
largest shift among all resonance frequencies.

By increasing sample sti�ness, higher resonance

@fvac;n
@n = 1

2�L

q
G�
�cJ ; (28)

@�t(kn)
@kn = (0:37922+0:145824kn)(1+0:37922kn+0:088056k2

n+0:010737k3
n)�(1+0:37922kn+0:072912k2

n)(0:37922+0:176112kn+0:032211k2
n)

(1+0:37922kn+0:088056k2
n+0:010737k3

n)2 ;

(29)
@kn
@n = a

L : (30)

Box (II).
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frequencies show more frequency shift in comparison
with lower resonance frequencies. As shown in Fig-
ure 2, cantilever sensitivity in air is greater than
cantilever sensitivity in uid. In other words, the
frequency shifts (changes) due to the variation of
surface sti�ness in uid are less than those in the air.
Also, comparing the sensitivity of mode 2 of uid with
mode 3 of air shows that for low values of surface
sti�ness, they are very close to each other, but when
surface sti�ness is increased, the sensitivity of mode 3
of air is greater than the sensitivity of the second mode
of uid. Also, for the any value of surface sti�ness,
the sensitivity of mode 4 in air is greater than the
sensitivities of modes 3 and 4 in uid. In other words,
the frequency shift of the fourth resonance frequency
in air is greater than the frequency shifts of the third
and fourth resonance frequencies in uid.

The torsional sensitivity of the �rst �ve modes
for the rectangular cantilever in uid is plotted in
Figure 3.

As seen from Figure 3, torsional modal sensitivity
shows similar behavior with the exural modal sensi-
tivity. For smaller lateral surface sti�ness, the �rst
mode is the most sensitive. For the sti�er sample, the
sensitivity starts to decrease as �t is increased; the shift
in the resonance frequencies of higher torsional modes
becomes larger than that of the lower modes.

Comparison shows that the torsional sensitivity
in air is greater than in uid. Also, the sensitivities
of the third mode of the cantilever in air, is greater
than the second mode sensitivity in uid. We can
conclude that, generally, the frequency shifts of the
torsional resonance frequencies of a cantilever in air
are signi�cantly greater than those in uid.

Moreover, for the purpose of investigating the
e�ect of a uid environment on the sensitivity of a
cantilever, other numerical analyses are carried out.
As shown in Figures 4-6, for the �rst three modes
of exural vibration, and in Figures 7-9 for the �rst
three modes of torsional vibration, if the density of
the uid is increased, the sensitivity of the cantilever

Figure 3. Comparison between the cantilever torsional
modal sensitivity in air and uid.

Figure 4. First exural modal sensitivity, �f , as a
function of normal contact sti�ness for di�erent uids.

Figure 5. Second exural modal sensitivity, �f , as a
function of normal contact sti�ness for di�erent uids.

Figure 6. Third exural modal sensitivity, �f , as a
function of normal contact sti�ness for di�erent uids.

is reduced, which means that for AFM imaging in a
uid environment, imaging in an environment with
higher density leads to a decrease in image contrast,
and, based on the sti�ness of the sample, excitation of
higher eigenmodes as the driving frequency is recom-
mended.
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Figure 7. First torsional modal sensitivity, �t as a
function of lateral contact sti�ness for di�erent uids.

Figure 8. Second torsional modal sensitivity, �t, as a
function of lateral contact sti�ness for di�erent uids.

Figure 9. Third torsional modal sensitivity, �t; as a
function of lateral contact sti�ness for di�erent uids.

5. Conclusion

In this paper, we have employed an analytical expres-
sion for the exural and torsional resonance frequency
of a rectangular cantilever beam immersed in uid. We
derived analytical formulas for the exural and tor-
sional sensitivity of a cantilever immersed in an inviscid

uid to surface sti�ness variations. It was concluded
that for the lower value of normal and lateral sti�ness,
the sensitivity of the �rst mode is dominant, but, as
sti�ness is increased, the sensitivity of the �rst mode
is decreased and the higher vibration modes become
more sensitive. Comparison between the vibrational
mode sensitivity of air and uid shows that the modal
sensitivity in air is greater than that in uid, i.e the
frequency shifts in the resonance frequencies of the
cantilever to the variation of surface sti�ness in the
air are greater than those in uid. Thus, if we use
the cantilever for imaging, the image contrast in air is
better than that in uid for a similar mode and similar
cantilever.

Nomenclature

y(x; t) Deection function of the beam
E Modulus of elasticity
I Area moment of inertia
�c Volume density
A Uniform cross section area of the

cantilever
F (x; t) External applied force per unit length

of the beam
Kn Normal contact sti�ness
�f Density of uid
a Cantilever width
b Cantilever height
�f Flexural surface sti�ness
�(x; t) Angle of torsion of the cross-sectional

area
M(x; t) Applied torque per unit length of the

beam
G Shear modulus
J Polar moment of inertia
� Torsional parameter for a rectangular

beam
Kt Lateral surface sti�ness
h Tip height
�t Surface lateral sti�ness
�(kn) Hydrodynamic function
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