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Abstract. The Matched Pole-Zero (MPZ) model is a widely used technique for discrete-
time approximation of continuous-time controllers. In this article, a new state-space
representation for the (MPZ) model is presented. The new formulation can be used for
direct discretization of state-space controllers, and can be easily automated on a digital
computer. The most important advantage of the proposed representation is that it preserves
the dynamic structure of the original continuous-time realization, i.e. the physical meaning
of the states and the direction of eigenvectors remain unchanged. In fact, the new method
provides, exactly, the same dynamic state equations as the step-invariant model, together
with some modi�cations on the static output state equation.

Up to now, due to the lack of such eigenstructure-preserving state-space representa-
tions, most of the time domain studies on the e�ects of discrete approximation of analog
controllers were mostly performed using the step-invariant model, although that method
is seldom used for actual discretization of controllers. The new formulation paves the way
for extending those studies to the case of the more widely used MPZ method.
c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Despite the existence of numerous methods and lit-
erature on the direct design of sampled-data control
systems ([1-7] etc.), there remain motivations to use the
more conventional digital redesign methods (indirect
methods) in which a predesigned analog controller is
approximated by a digital one. These motivations
include better physical insight and availability of a
wide spectrum of continuous control design meth-
ods. There exists a number of well known methods
for discretization of �nite-dimensional continuous-time
controllers/plants [8-10]. Other methods also exist for
discretization of in�nite-dimensional controllers [11],
nonlinear systems [12] and multi-rate controllers [13].
One group of such methods, including the method of
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Tustin, are based upon numerical approximation of
the integration operator, which can be used for dis-
cretization of controllers. The other group, including
the step-invariant model, provides an exact discrete
model for a plant with a given hold element. The
Matched Pole/Zero (MPZ) discretization technique is
yet another method which is not directly motivated
by the numerical approximation of integrators or the
concept of hold equivalence. In this method, the zeros
and poles of the continuous system are mapped by
the relation, esh, where s is a pole or zero, and h is
the sampling period. The MPZ technique has been
extensively used and proved to be e�cient for discrete
approximation of continuous-time controllers [8]. This
method also plays a central role in a new closed-
loop digital redesign method, called the Plant-Input
Mapping (PIM) method ([14,15], which guarantees
closed-loop stability for all nonpathological sampling
periods.

Unfortunalety, however, unlike methods such as
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Tustin's and zoh-equivalent models, no state-space
algorithms were introduced for the MPZ method until
recently. This fact seems to be the main reason for
most research to ignore usage of the MPZ method for
analytical studies of sampled-data systems.

A number of attempts and studies have been re-
ported on state-space algorithms for the MPZ method.
An interesting interpretation of the MPZ model, based
on the generalized hold equivalence concept, was pro-
posed in [16,17]. This method, however, involved
tedious hand calculations, which could not be easily
performed, even for low order systems. A simpler state-
space algorithm was introduced in [18]. That method
had two drawbacks:

1. It was only applicable to systems with a realization
in the observable canonical form;

2. It involved inversion of some controllability matri-
ces which are known to be ill-conditioned for higher
order systems ([19], page 105).

Among common discretization methods, the only
one used to preserve the structure of original continu-
ous realization was the step-invariant method. In other
words, the step-invariant model exceptionally preserves
the physical meanings of the states and the direction
of system eigenvectors. That is why most time-domain
studies on the properties of discretized sampled-data
systems are based on controllers which are discretized
using the step-invariant method (e.g., see [2,3]). This
is despite the fact that the step-invariant method is
seldom used for discretization of controllers in practice.
The main objective of this paper is to provide a state-
space realization, with similar advantages, for the MPZ
model. The new formulation should pave the way for
further time-domain studies with the more widely used
MPZ method, which, compared to the step-invariant
method, is much better suited for discretization of
controllers.

2. MPZ technique

2.1. Transfer function version
Consider a strictly stable SISO transfer function:

g(s) =
Qm
i=1(s� �i)Qn
i=1(s� �i) ; m � n: (1)

The MPZ discrete-time approximation technique is
partly motivated by the z-transform method in which
the poles of g(s) are mapped to the z-plane, according
to the relation z = ehs, where h is the sampling period.
In fact, the MPZ technique extends such a mapping
to the case of zeros as well as poles. In particular,
the discrete system, gd(z), is obtained by the following
procedure [9]:

1. All of the poles and �nite zeros of g(s) are mapped
with the relation z = ehs;

2. All but one of the in�nite zeros, if any, are mapped
to the points f�1g (The relative degree of 1 ensures
the physical realizability of gd(z));

3. The dc-gain of the two transfer functions are
matched, such that:

lim
s!0

g(s) = lim
z!1

gd(z):

2.2. Proposed state-space version
Consider a stable SISO continuous-time system with
a minimal state-space realization, G := fA; b; c; dg,
where A 2 Rn�n, b 2 Rn�1, c 2 R1�n, and d is a
scalar. The objective is to �nd a state-space realization,
Gd := fAd; bd; cd; ddg such that the (transmission)
zeros and the eigenvalues of G are mapped according
to the procedure described in Section 2.1.

The proposed state-space algorithm for the above
problem is introduced below.

3. Proposed state-space algorithm

3.1. Bi-proper system
For the time being, assume that, g(s) is bi-proper,
i.e. m = n. Let us de�ne the matrix Ad as Ad =
eAh. This assures that the eigenvalues (poles) of the
discrete system, i.e. f�1; �2; � � � ; �ng, are mapped by
the relation e�ih, as desired.

Provision of a state-space formulation for similar
mapping of the zeros is more subtle and needs some
elaboration. Following the well-known MATLAB syn-
tax, let us de�ne the tzero operator as the operator
acting on system G and providing the �nite (transmis-
sion) zeros of G, i.e.:

� = [�1; �2; � � � ; �n] = tzero(G); (2)

where � is the vector of �nite zeros of G. Robust
algorithms exist for computing the zeros of LTI systems
([20], for example). By de�nition of the MPZ model,
the �nite zeros of Gd are required to be at the locations
given by the vector:

�d := [exp(�h)]; (3)

where exp(�h) is the element-wise exponential of vector
�h.

It can be shown that the following expression
relates the state-space realization of Gd to its transfer
function, gd(z); (see [21], page 651):

gd(z) =
det(zI�eAh+bdcd)+(dd�1)det(zI�eAh)

det(zI � eAh)
:
(4)

Now, by arbitrarily �xing dd as dd = 1, the zero-
placement problem is converted into the problem of
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�nding bd and cd, such that the eigenvalues of matrix
[eAh � bdcd] are placed at the locations given by the
elements of vector �d. Let us also �x bd, as bd =
b. Now, the problem reduces to �nding cd, such
that the eigenvalues of [eAh � bdcd] are placed at �d.
This is a standard eigenvalue placement problem for
which robust algorithms exist [19,22]. Existence of the
solution for cd is guaranteed by controllability of the
pair feAh; bg, which is obvious due to the controllability
of the pair fA; bg and the fact that A and eAh share
the same set of eigenvectors ([21], page 661).

Finally, in order to match the steady-state gains
of the two systems, the �nal vector, cd, and also dd are
obtained by multiplying the previous cd and dd by a
gain correction factor, kd, given by:

kd =
c(�A)�1b+ d

cd(In �Ad)�1bd3 + dd
: (5)

Remark 1. Instead of selecting bd, and then cal-
culating cd, one may �x cd, and then calculate bd
accordingly. This, in fact, provides an extra exibility
to the method which can prove useful in practice, as
it allows the designer to preserve the structure of the
discrete system, from the point of view of actuators
or sensors, respectively. In either case, the transfer
function of the discrete system remains the same.

3.2. Strictly proper system
When the relative degree of the continuous system is
not zero (i.e., when m < n), the eigenvalue assignment
of [eAh�bdcd] at the locations of �d is not meaningfule,
because dim(�d) < n: In order to resolve this problem,
Eq. (3) is replaced by:

�d := [�1=�;�1; � � � ;�1| {z }
n�m�1

; exp(�h)]; (6)

where � is an arbitrarily selected, very small, positive
number. The implication is that with dd = 1 and
Eq. (4):

gd(z)=
(z+ 1

� )(z+1) � � � (z+1)(z�eh�1) � � � (z�eh�m)
det(zI � eAh)

:
(7)

Also, from Eq. (5):

kd =
g(s)js=0

gd(z)jz=1
; (8)

=
(�1) � � � (�m)
(�1) � � � (�n)

� (1� eh�1) � � � (1� eh�n)
(1+ 1

� )(1+1) � � � (1+1)(1�eh�1) � � � (1�eh�m)

� 1: (9)

This implies that for the scaled discrete system,
kdgd(z), it turns out that dd ! kddd = kd � 1 h 0; for
small enough �; and also cd ! kdcd:

The proposed algorithm is summarized as below:

Algorithm 1. (shift form)

1. Set Ad := eAh.
2. Set bd := b.
3. If n = m, set dd := 1, otherwise set dd = 0.
4. Find the vector � as in Eq. (2).
5. If n = m, set the vector �d as in Eq. (3), otherwise

as in Eq. (6).
6. Find cd such that the eigenvalues of Ad � bdcd are

assigned at �d.
7. Set cd := kdcd, and dd := kddd where kd is given by

Eq. (5).

In order to make the discrete representation of the
model more similar to its continuous counterpart, and
for better numerical properties when h is too small, one
may prefer to use the � operator, where � = q�1

h , and q
is the common shift operator. Clearly, the �-operator is
intuitively closer to a continuous-time derivative than
the common q operator [23,24]. That is, we may
want to consider the discrete state-space system in the
following form:

�x[kh] = A�x[kh] + b�u[kh];

y[kh] = c�x[kh] + d�u[kh]: (10)

The state-space algorithm for this case can be formu-
lated as below:

Algorithm 2. (� form)

1. Set A� := (eAh � I)=h.
2. Set b� := b.
3. If n = m, set d� := 1, otherwise set d� = 0 (by

Remark 1).
4. Find the vector � as in Eq. (2).
5. If n = m, set the vector �� := [exp(�h � I)=h],

otherwise, set:

�� := [�1=�;�1=h; � � � ;�1=h| {z }
n�m

; exp(�h� I)=h]:

6. Find c� such that the eigenvalues of A� � b�c� are
assigned at ��.

7. For a very low arbitrary frequencey, �, �nd k� from
the following:

k� =
c(�I �A)�1b+ d

c�(�I �A�)�1b+ d�
: (11)
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8. Set c� := k�c�, and d� := k�d�.

The following lemma characterizes a connection
between the continuous and discrete realizations for
small sampling periods.

Lemma 1. The discrete realization obtained by the
MPZ algorithm (in � form) converges to its original
counterpart, when the sampling period is decreased,
i.e.:

1. limh!0 A� ! A;
2. limh!0 c� ! c;
3. limh!0 d� ! d.

Proof

1. Obvious, because A� = (eAh� I)=h;
2. By noting that b� = b, and due to the uniqueness of

the solution to the eigenvalue assignment problem
in Item 6 of Algorithm 2, based on which, c� is
obtained;

3. Due to Items 1 and 2 above, and Eq. (11), which
implies that limh!0 k� ! d and, hence, d� ! d. �

4. Time domain properties

Consider the general sampled-data set up shown in
Figure 1, with G being a LTI asymptotically stable
system, and G� the MPZ discrete-time model of G.
Here, S and H are synchronized ideal sampling and
zero-order hold operators, respectively, and W is a
�nite-dimensional, linear and time-invariant, stable
and strictly causal pre�lter. As shown in the �gure, �
is the discretization error operator. In the sequel, k:k1
denotes the L1 norm of a signal and k:kL1 denotes
the L1 induced norm of an operator acting on L1
signals.

Inclusion of W in this setup provides a su�cient
condition for k(I � HS)WkLp to be �nite for every
1 � p � 1; and, furthermore, (I � HS)W converges
to zero as h tends to zero in the sense of these norms
(by Theorem 9.3.3 in [1]).

Figure 1. Discretization error in a sampled-data setting.

In this study, we will mostly utilize the lifting tech-
nique for comparing the time response of a continuous-
time system with its discretized counterpart. In a
broad sense, the lifting technique is a method for
rearranging a continuous-time periodic system, in such
a way that its periodicity can be viewed as discrete-
time shift invariance [4].

We will limit our discussion to the case of bounded
continuous-time signal space, L1[0;1).

We also de�ne `L1[0;h] to be the space of all
sequences that take their values in the Banach space
L1[0; h]. Next, we de�ne `1L1[0;h] as the subspace of
bounded sequences in `L1[0;h].

We will use the notation Lh : L1[0;1) !
`L1[0;h] to denote the norm preserving lifting operator.
Suppose G is a stable linear continuous-time operator:
L1[0;1) ! L1[0;1). The lifted version of G, noted
as G, is the linear discrete-time system acting on
lL1[0;h], i.e., G : lL1[0;h] ! lL1[0;h].

Considering the norm preserving property of the
lifting operator, we will convert the setup of Figure 1
into an equivalent setup, as shown in Figure 2.

For the linear continuous-time system, G:
fA;B;C;Dg, it can be shown [1] that the lifted system
is given by G: fA;B;C;Dg, where:

A : Ax = eAhx;

B : Buk =
Z h

0
eA(h��)Buk(�)d�;

C : (Cx)(t) = CeAtx;

D : (Duk)(t) = Duk(t) +
Z t

0
CeA(t��)Buk(�)d�:

(12)

The kth component of the lifted output of the lifted
system is given by [1]:

ŷ[kh+ t] =
k�1X
l=0

h
CAk�1�lBw[kh+ t]

i
+Dw[kh+ t];

Figure 2. Equivalent discretization problem in a lifted
setting.
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where:

0 � t < h: (13)

Now, consider the discretized MPZ model, Gd. In order
to make the discrete-time behavior of the MPZ model
comparable with its continuous counterpart, we prefer
to use the � operator. Using the results speci�ed in
Algorithm 2, the discrete-time output of Gd, for a given
input w[kh], can be written as:

yd[kh] =
k�1X
l=0

�
c�(hA�+I)k�1�l(hb�)w(lh)

�
+ d�w(kh): (14)

If yd[kh] is passed through a zero order hold element,
the output would be a staircase (semi) continuous
signal, which, in lifted form, can be represented as:

y[kh+ t] =
k�1X
l=0

�
(c�)(hA� + I)k�1�lh(b�)w[lh]

�
+ (d�)w[kh]; (0 � t < h): (15)

Consider the setup of Figure 1, and a bounded contin-
uous input, u(t) 2 L1. De�ne w[kh + � ] as the kth
component of the discrete vector obtained by lifting
of w(t). Also, de�ne �w[kh + � ] as the deviation of
w[kh+ � ] from its staircase equivalent, i.e.:

w[kh+ � ] = w[kh] + �w[kh+ � ];

0 � � < h: (16)

Clearly:

lim
h!0

�w[kh+ � ] = 0: (17)

Lemma 2. Let us de�ne the kth component of the
lifted error signal as:

e[kh+ t] , ŷ[kh+ t]� y[kh+ t];

0 � t < h: (18)

Under the above assumptions, the following property
holds:

lim
h!0

ke[kh+ t]k1kw[kh+ t]k1 = 0: (19)

Proof (This proof closely follows the method of [25],

which is partially motivated by [26].) Since the lifting
operator, Lh, is norm preserving, we will work with
the equivalent discretization problem in a lifted setting
(Figure 2). Using Eqs. (13) and (15), the lifted outputs
of G and HGdS can be, respectively, written as:

ŷ[kh+t]=
k�1X
l=0

�
ceAt(eAh)k�1�l

hZ
0

eA(h�s)bw[lh+s]ds
�

+
tZ

0

ceA(t�s)bw[kh+ s]ds+ dw[kh+ t];

(0 � t < h);

y[kh+t]=
k�1X
l=0

�
(c+�c)(h(A+�A)+I)k�1�lh(b)w[lh]

�
+ (d+ �d)w[kh];

(0 � t < h);

where f�A; �c; �dg ! 0, when h ! 0, by Lemma 1.
With repeated use of the triangle inequality, and
also, addition/subtraction of terms to allow suitable
factorizations, it is tedious yet straightforward to show
that the L1 norm of the error is:

kŷ[kh+ t]� y[kh+ t]k1kw[kh+ t]k1 = max
t2[0;h)

(Z t

0

��ceAsb�� ds
+ jdj k�w[kh+ t]k1kw[kh+ t]k1 + j�dj

+
+1X
l=0

"��c(eAh)lh(b)� c(h(A+ �A) + I)lh(b)
��

+
���c(h(A+ �A) + I)lh(b)

��
+
Z h

0

��c(eAt � I)(eAh)leAsb
�� ds

+

�����c(eAh)l
 Z h

0
eAsbds� h(b)

!�����
+
Z h

0

��c(eAh)leAsb
�� dsk�w[kh+ t]k1kw[kh+ t]k1

#)
:

(20)

Now, we need to prove that every term in the above
equation converges to zero, when h ! 0. Since G is
asymptotically stable, all the eigenvalues of A are in
the open left half of the s plane, hence,

R h
0 eAsds < h

by the mean-value theorem. Also, all the eigenvalues of
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eAh belong to the open unit circle in the z plane and,

hence, h
+1P
l=0
keAhlk is �nite. Therefore:

max
t2[0;h)

8<: tZ
0

��ceAsb�� ds9=;�kck
0@ hZ

0

eAs ds1Akbkh!0�! 0:

As mentioned before, W provides a su�cient condition
for k(I � HS)WkLp to be �nite for every 1 � p �
1, and, furthermore, (I � HS)W converges to zero
as h tends to zero in the sense of these norms. The
implication is that:

sup
kw[kh+t]k1 6=0

k�w[kh+ t]k1kw[kh+ t]j1

= sup
kw[kh+t]k1 6=0

k(I �HS)w[kh+ t]k1kw[kh+ t]k1

= sup
kWuk1 6=0

k(I �HS)Wuk1kWuk1
h!0�! 0:

Therefore:

max
t2[0;h)

�
jdj k�w[kh+t]k1kw[kh+ t]k1

�
= jdj k�w[kh+t]k1kw[kh+ t]k1

h!0�! 0:

Also:

max
t2[0;h)

fj�djg = j�dj h!0�! 0;

and:

max
t2[0;h)

(
+1X
l=0

Z h

0
jc(eAt � I)(eAh)leAsbjds

)
� kckeAt � I +1X

l=0

eAhl!h kbk h!0�! 0;

max
t2[0;h)

(
+1X
l=0

jc(eAh)l
 Z h

0
eAsbds� h(b)

!
j
)

� kck
 

+1X
l=0

eAhl! khb� h(b)k h!0�! 0;

max
t2[0;h)

( 
+1X
l=0

Z h

0
jc(eAh)leAsbjds

! k�wk1kwk1
)

� kck
 

+1X
l=0

eAhl!hkbkk�wk1kwk1
h!0�! 0;

max
t2[0;h)

(
+1X
l=0

jc(eAh)lh(b)� c(h(A+ �A) + I)lh(b)j
)

� kck
 

+1X
l=0

eAhl � (h(A+ �A) + I)l
!hkbk

h!0�! 0;

max
t2[0;h)

(
+1X
l=0

j�c(h(A+ �A) + I)lh(b)j
)

�k�ck
 

+1X
l=0

(h(A+�A)+I)l
!hkbk h!0�! 0:

Now, since for all t 2 [0; h), all the individual terms in
Eq. (20) approach zero when h! 0, the desired result
is proven.

Taking the stability of G and Gd, the continuous
error signal, e(t) 2 L1[0;1), and its lifted version,
e 2 `L1[0;h], is de�ned as a sequence with values in
L1[0; h], denoted byfekg, where for each k, we have:

e(k) , e[kh+ t]; 0 � t < h: (21)

Furthermore:

kfekgk1 , sup
k
kekk1 ; fekg 2 `L1[0;h]: (22)

Considering the norm preserving property of the lifting
operator, it can be deduced that:

lim
h!0
ke(t)k1 ! 0: (23)

Now, since u(t) 2 L1 is arbitrary, then the following
holds:

lim
h!0
k�WkL1, lim

h!0
sup
kuk1 6=0

� kek1
kuk1 :u(t)2L1

�
!0:

(24)

This property is of practical importance when an ana-
log system is implemented digitally, because it assures
that a better performance can be attained by using a
smaller sampling period. It is interesting to note that
not all of the modern digital redesign methods provide
such a practically important property; for instance, see
the method in [27] and examples thereof. �

Example 1. With h = 0:01 sec, �nd the MPZ
discrete-time model of the continuous-time system:

A =

24�3 �0:5 �0:125
8 0 0
0 2 0

35 ; b =

241
1
0

35 ; (25)

c =
�
0 0:1818 0:909

�
; d = 0: (26)

We follow the steps described in Algorithm 2:
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Step 1:

A� = (eAh � I)=h

=

24�2:9751 �0:4938 �0:1231
7:8807 �0:0198 �0:005
0:0792 1:9999 0

35 :
(27)

Step 2: Set b� = b;

Step 3: Set d� = 0, because of the nonzero relative
degree of the system;

Step 4: � = [�11;�1];

Step 5: �� = [�1000;�10:9397;�0:9995];

Step 6: c� = [11:9349; 997:0048; 497:7565];

Step 7: k� = 1:8267e� 004;

Step 8: Set new c� := k�c� = [0:0022; 0:1821; 0:0909].

Resemblance between the discrete state-space re-
alization fA�; b�; c�; d�g and the original continuous
counterpart fA; b; c; dg is obvious from the above which
shows the advantage of the proposed algorithm com-
pared with the transfer function approach.

Example 2. Consider the RLC network shown in
Figure 3. It can be shown that the following realization
describes the dynamical behavior of this system:�

_x1
_x2

�
=
��3 1

0 �1

� �
x1
x2

�
+
�
2
1

�
u

y =
�
0 1

� �x1
x2

�
:

It can be easily seen that this system is unobservable,
therefore, the algorithm proposed in [18] is not applica-
ble. The MPZ model of this system using Algorithm 1

Figure 3. An unobservable RLC network.

can be obtained for h = 0:1 sec, as below:�
x1(k + 1)
x2(k + 1)

�
=
�
0:7408 0:0820

0 0:9048

��
x1(k)
x2(k)

�
+
�
20:2
0:1

�
u(k);

y =
�
0 1

� �x1(k)
x2(k)

�
:

It should be noted that, unlike the � form, the
realization in the shift form lacks the proprty of
resemblance between the discrete and continuous state-
space matrices. Another point is that, in this example,
use was made of Remark 1 to preserve cd instead of bd,
so that the sensor connection of the realization could
be preserved.

Example 3. Consider the following continuous sys-
tem:

g(s) =
1

s2 + s+ 1
:

In order to study the e�ect of the sampling period
on the continuous-time performance of the discretized
system, a range of sampling period h = f0:1; 0:2; � � � 1g
is considered. The input signal is considered as a unit
step function, u(t) = 1(t), which has the property
u(t) 2 L1[0;1). In order to guarantee uniform
convergence a strictly causal pre�lter is selected:

W (s) =
1

0:5s+ 1
:

Table 1 shows the values of continuous-time error
signal ke(t)k1 over the range of pre-speci�ed sampling
periods. Uniform convergence of the error norm can be
observed in the table.

5. Concluding remarks

A new state-space algorithm is introduced for the
matched pole/zero discretization technique. Unlike
previously existing methods, the new algorithm is
not limited to any speci�c realization form and can
be automated by existing software packages. The
robustness properties of the algorithm have been im-
proved considerably, compared with the algorithm
in [18], and does not include the inversion of ill-
conditioned matrices that are usually encountered with
high order systems and with very small sampling
periods.

It is also shown in this paper that the continuous-
time response of the discretized system converges to

Table 1. Norm of the error signal versus sampling perio. Uniform convergence is shown here.

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ke(t)k1 0.025 0.054 0.17 0.25 0.33 0.38 0.44 0.47 0.63 0.68
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that of the original continuous system in the L1-
induced norm sense. This means that the maximum
di�erence in the time responses of the continuous and
discretized systems, subject to any low-pass �ltered
and bounded continuous-time signal, approaches zero,
when the sampling period is decreased. This property
is of considerable practical importance, because it
assures the designer that by reducing the sampling
period, the resulting discretization error is reduced
as well. It can be shown that most of the classical
discretization techniques enjoy such a useful property,
while there are some advanced (global) discretiza-
tion methods which lack such a property. In other
words, while, for a �xed h, the performance of most
global methods could be better than that of the
local discretization methods, they may not provide
the practically important assurance of improvement
in performance when the sampling period is reduced.
The method is limited to the SISO case. Extension
to the MIMO case is not obvious and is left for future
work.
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