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Analysis of Manipulators Using SDRE: A Closed
Loop Nonlinear Optimal Control Approach

M.H. Korayem1;�, M. Irani1 and S. Rafee Nekoo1

Abstract. In this paper, the State Dependent Riccati Equation (SDRE) method is implemented on
robotic systems such as a mobile two-links planar robot and a �xed 6R manipulator with complicated
dynamic equations. Dynamic modelings of both cases are presented using the Lagrange method.
Afterwards, the Dynamic Load Carrying Capacity (DLCC), which is an important characteristic of robots,
is calculated for these two systems. DLCC is calculated for the prede�ned end-e�ector path, where motor
torque limits and tracking error constraints are imposed for this calculation. For a mobile two-links planar
robot, the stability constraint is discussed by applying a zero moment point approach. A nonlinear feedback
control law is designed for the fully nonlinear dynamics of two cases using a nonlinear closed-loop optimal
control method. For solving the SDRE equation that appears in the optimal control solution, a power
series approximation method is applied. DLCC is obtained, subject to accuracy and torque constraints,
by applying this feedback control law for the square and linear path of the end-e�ector for mobile two-
link and a 6R manipulator, respectively. Finally, simulations are done for both cases and the DLCC of
manipulators is determined. Also, actual end-e�ector positions, required control e�orts and the angular
position and velocity of joints are presented for full load conditions, and results are discussed
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INTRODUCTION

In the last few years, developments in the industrial
production of complicated parts and the importance
of rapid productions, lead to automatic manufactur-
ing. Manipulators and robot arms helped to achieve
this purpose. Furthermore, some activities, like the
transportation of heavy pieces and work in dangerous
environments and large spaces, led to the use of mobile
robots and manipulators.

Whereas mobile manipulators have a higher de-
gree of freedom path planning, the trajectory control
and determining of the important parameters of a robot
are complicated. One of these important parameters
is the Dynamic Load Carrying Capacity (DLCC), the
load that a robot can repeatedly lift and carry on a de-
sired trajectory. Korayem and Pilechian [1] calculated
the DLCC of exible joint robots using a sliding mode
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control for the trajectory tracking problem. Korayem
et al. [2] presented the DLCC of exible joint robots
with a feedback linearization method and compared it
with an open loop method. Also, Korayem and Irani [3]
found the DLCC of mobile manipulators using a nonlin-
ear optimal feedback controller. The solution method is
a successful approximation for solving optimal control
problems.

In [4], the Iterative Linear Programming (ILP)
method is used to solve the optimization problem of
�nding the DLCC of cable driven robots. The results
of the ILP method are then compared with the optimal
control method.

In [5], the DLCC of a exible link manipulator
mounted on a vehicle is determined via a feedback
linearization control approach. Korayem et al. [6]
calculated the maximum allowable load for a exible
link manipulator with a mobile base, applying the �nite
element approach. This approach is applied to linear
and circular trajectories.

Korayem et al. [7] established the maximum load
carrying capacity of a mobile robot in an environment
with obstacles using an open loop optimal control
approach and considered stability constraint. The
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stability constraint was measured by computing the
zero moment point.

In this paper, the optimal control method is
used to design a nonlinear closed loop control law
for both �xed and mobile manipulators. A proper
approach in the nonlinear optimal control method is
the SDRE method, based on solving the nonlinear
state-dependent Riccati equation. Being simple and
systematic are two advantages of this solution method.
Also, this method is applicable to fully nonlinear
dynamic models. Pearson [8] proposed the SDRE
method, which was, then, developed by Wernli and
Cook [9]. Then, SDRE was used as nonlinear opti-
mal regulator. Cloutier [10] presented this method
with state constraint and compared it with an LQR
approach. In [11], the SDRE method is used to
synthesize a path controller, and then the simulation
results were checked by experimental results using real
hardware. Innocenti et al. [12] presented the SDRE
method to control a two-link under-actuated robot and
described that, with the same designing parameters,
the SDRE control can perform better than the LQR
control.

Xin et al. [13] used the SDRE method to control
a robot. An extra controller based on a neural network
is used in the presence of parameter uncertainties to
provide robustness characteristics. Shawky et al. [14]
represented this method for a exible link manipulator.
For this purpose, the Lagrange and assume mode
methods are used for �nding the dynamic model.
Singh et al. [15] expressed the control of an inverted
pendulum on a cart using the SDRE method; di�erent
values for weighing matrixes are used and results are
compared. In [16] Cimen presented an overview on
SDRE with details on stability, optimality and etc.
Beikzadeh and Taghirad [17] used this for controlling a
permanent magnet synchronous motor.

The exact solution of an SDRE equation is
possible for a simple system, but for complicated
systems, solving SDRE is di�cult and is usually done
using numerical methods. In this paper, a power
series approximation is applied to solve this problem.
The second section presents the method of solving a
nonlinear optimal control problem using the SDRE
approach. Then, in the next section, the power
series approximation method is applied for solving the
complex Riccati equation that appeared in the SDRE
method. The de�nitions of a dynamic load carrying
capacity and zero moment point are exposed in the
next section. Afterwards, the dynamic modeling of
a planar, 2-link mobile manipulator and a six degree
of freedom manipulator are considered. The last
section deals with the implementation of the SDRE
method for a mobile manipulator and a 6R robot, and
then results for a prede�ned trajectory are demon-
strated.

STATE-DEPENDENT RICCATI EQUATION

Consider a nonlinear equation of a system as below:

_x = f(x(t)) +B(x(t))u(t); x(0) = x0; (1)

where x and u are state and input vectors, respec-
tively, x 2 Rn and u 2 Rm, f : Rn ! Rn, and
B : Rn ! Rn�m are nonlinear functions and x0 is
initial condition. The performance index that must be
minimized is of the form:

J =
Z 1

0
(xT (t)Q(x)x(t) + uT (t)R(x)u(t))dt; (2)

where Q 2 Rn�n is Symmetric Positive Semi-De�nite
(SPSD), and R 2 Rm�m is Symmetric Positive De�nite
(SPD). Rewriting the nonlinear equation in the State-
Dependent Coe�cient (SDC) form becomes [18]:

_x = A(x)x(t) +B(x)u(t): (3)

Then the optimal solution of Equation 3, which min-
imizes the performance index, is obtained from the
following equation [18]:

X(x)A(x) +AT (x)X(x)

�X(x)B(x)R�1(x)BT (x)X(x) +Q = 0: (4)

This equation is named the state-dependent Riccati
equation, whereX is symmetric positive de�nite, which
is the solution of the SDRE equation. Also, the state
feedback control law is obtained in the following form:

u(x) = �R�1(x)BT (x)X(x)x: (5)

POWER SERIES APPROXIMATION
METHOD FOR SOLVING SDRE

For �nding the numerical solution of SDRE, consider a
system with Equation 3 where B is a constant matrix.
By rewriting A in the following form [19];

A(x) = A0 + "�A(x); (6)

and representing X as a Taylor series:

X(x; ") =
1X
n=0

"nLn(x)

= X(x)

�����
"=0

"+
@2X(x)
@"2

�����
"=0

"2

2
+ ::: (7)
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and substituting A(x), X(x; ") into the SDRE equa-
tion, the result will be in the following form: 1X

n=0

"nLn(x)

!
:(A0 + "�A(x))

+ (A0 + "�A(x))T
 1X
n=0

"nLn(x)

!
�
 1X
n=0

"nLn(x)

!
BR�1BT

 1X
n=0

"nLn(x)

!
+Q = 0: (8)

By expanding this equation and collecting a similar
power of ", three iterative equations are generated:

L0A0 +AT0 L0 � L0BR�1BTL0 +Q = 0; (9)

L0�A(x) + �A(x)TL0 + L1(A0 �BR�1BTL0)

+ (AT0 � L0BR�1BT )L1 = 0; (10)

Ln�1�A(x) + �A(x)TLn�1

+ Ln(A0 �BR�1BTL0)

+ (AT0 � L0BR�1BT )Ln

�
n�1X
m=1

LmBR�1BTLn�m = 0; (11)

where n = 2; 3; 4; � � � .
The �rst equation is an Algebraic Riccati Equa-

tion (ARE), the second and third are state-dependent
Lyapunov equations. These equations are simpli�ed by
substitution:

�A(x) = g(x)�A :

L0A0 +AT0 L0 � L0BR�1BTL0 +Q = 0; (12)

L0�A+ �ATL0 + L1(A0 �BR�1BTL0)

+ (AT0 � L0BR�1BT )L1 = 0; (13)

Ln�1�A+ �ATLn�1 + Ln(A0 �BR�1BTL0)

+ (AT0 � L0BR�1BT )Ln

�
n�1X
m=1

LmBR�1BTLn�m = 0: (14)

Similarly, the state-feedback control law is obtained:

u = �R�1BT
1X
n=0

gn(x)Lnx: (15)

For most complicated systems, A(x) could not be
rewritten as �A(x) = g(x)�A. For these systems,
A(x) is changed to:

A(x) = A0 +
jX
i=1

fi(x)�Ai; (16)

where j is the number of nonlinear terms, and fi(x) and
�Ai are constant matrixes. Also, L1 can be written as:

L1 =
jX
i=1

fi(x)Lj1: (17)

Using two prior terms of the SDRE equation,
L0; L1

1; � � � ; Lj1 are computed from the equations below:

L0A0 +AT0 L0 � L0BR�1BTL0 +Q = 0; (18)

L0�Aj + (�AT )jL0 + Lj1(A0 �BR�1BTL0)

+ (AT0 � L0BR�1BT )Lj1 = 0: (19)

Finally, the control law can be obtained as:

u = �R�1BT
 
L0 +

jX
i=1

fi(x)Lj1

!
x: (20)

DYNAMIC LOAD CARRYING CAPACITY

The dynamic load carrying capacity is described as
being the maximum load that a manipulator can
repeatedly lift and carry on the extended con�guration.
The DLCC of a �xed 6R manipulator and a two-
link planar mobile robot is calculated, with respect to
the limitation of motors, tracking error and additional
stability constraint. Upper and lower limits of motor
torques can be computed from:

Umax = Us � Us
!s
!; (21)

Umin = �Us � Us
!s
!: (22)

In the above equation, Us is the stall torque of a motor
and !s is no load speed.

The tracking error is calculated as:

E =
p

(xe � xd)2 + (ye � yd)2 + (ze � zd)2; (23)

where x; y and z are components of the actual position
of the end-e�ector and xd, yd and zd are components
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of the desired position. This error must be bounded
during motion as:

E � �: (24)

� is the allowable error for tracking.
The stability constraint is de�ned by computing

the zero moment point. ZMP is the point on the ground
where the summation of external forces, moments of
inertia and gravity forces are equal to zero. Formulas
for ZMP are [7]:

xzmp =

P
i
mi(�zi + g)xi �P

i
mi�xizi �P

i
(Ty)iP

i
mi(�zi + g)

; (25)

yzmp =

P
i
mi(�zi + g)yi �P

i
mi�yizi �P

i
(Tx)iP

i
mi(�zi + g)

; (26)

where:

Ti = Ii: _!i + !i � Ii:!i: (27)

Details of each term of Equations 25, 26 and 27 are
presented in [20].

DYNAMIC MODELING OF
MANIPULATORS

Mobile Robot

Two-link mobile robot that is used in simulations is
shown in Figure 1 and the parameters of this robot are
presented in Table 1.

The generalized coordinates are chosen as:

q =
�
qb qm

�
=
�
xf yf �0 �1 �2

�
: (28)

By applying the Lagrange method and computing the
position and velocity for each center of mass, the

Figure 1. Two-link mobile robot.

Table 1. Parameters of mobile robot.

Parameters Value Unit

Length of links L1 = L2 = 0:5 M

Center of mass Lc1 = Lc2 = 0:25 M

Mass of links m1 = 5, m2 = 3 kg

Moment of inertia
I1 = 0:416,

I2 = 0:0625
kg.m2

Mass of wheel 5 kg

Mass of base 94 kg

Moment of

inertia of base

26640 0 0

0 0 0

0 0 6:609

3775 kg.m2

Moment of

inertia of wheels

26640:131 0 0

0 0:01 0

0 0 0:131

3775 kg.m2

b 0.171 M

r 0.075 M

L0 0.4 M

equations of dynamic motion can be written as:266664
Fx
Fy
T0
�1
�2

377775 =

266664
J11 J12 J13 J14 J15
J12 J22 J23 J24 J25
J13 J23 J33 J34 J35
J14 J24 J34 J44 J45
J15 J25 J35 J45 J55

377775
266664

�xf
�yf
��0
��1
��2

377775

+

266664
C1
C2
C3
C4
C5

377775 : (29)

Also end-e�ector coordinates are:�
xe
ye

�
=
�
xf+L1 cos(�0+�1)+L2 cos(�0+�1+�2)
yf+L1 sin(�0+�1)+L2 sin(�0+�1+�2)

�
:
(30)

In this case, the degree of freedom is n = 5 and the end-
e�ector trajectory has m = 2 degrees of freedom. Thus,
the redundancy of the system is r = n �m = 3. The
system has one nonholonomic constraint, according to
the motion of the mobile base:

_xf sin �0 � _yf cos �0 + L0 _�0 = 0: (31)
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Two other constraints must be applied for redundancy
resolution. A pre-de�ned path is considered for the
base, then _xf , _yf , �xf and �yf can be calculated,
and �0, _�0 and ��0 are obtained using nonholonomic
constraints.

Using the remaining terms of Equation 29, equa-
tions of the system are rewritten as:�

�1
Sa�2

�
=
�
J44 J45
J45 J55

� ���1
��2

�
+
�
R1
R2

�
; (32)

where:

R1 = J14�xf + J24�yf + J34 ��0 + C4; (33)

R2 = J15�xf + J25�yf + J35 ��0 + C5: (34)

6R Fixed Robot

For the second case study, a 6R manipulator as
shown in Figure 2, is considered. Also, a schematic
view of this manipulator is shown in Figure 3 and
Denavit-Hartenberg parameters are demonstrated in
Table 2.

Figure 2. 6R con�guration [19].

Table 2. Denavit-Hartenberg parameters of 6R.

Joint ai (mm) di (mm) ��i �i Related Link

1 36.5 438 -90 �1 Link 1

2 251.5 0 0 �2 Link 2

3 125 0 0 �3 Link 3

4 92 0 90 �4 Gripper YAW

5 0 0 -90 �5 Gripper PITCH

6 0 152.8 0 �6 Gripper ROLL

The transformation matrix, T , is used for forward
kinematic computations [21]:

T =

2664nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

3775 : (35)

The elements of T are:

nx = �c6s1s5 + c1(c234c5c6 � s234s6);

ny = c234c5c6s1 + c1c6s5 � s1s234s6;

nz = �c5c6s234 � c234s6;

ox = s1s5s6 � c1(c6s234 + c234c5s6);

oy = �c6s1s234 � (c234c5s1 + c1s5)s6;

oz = �c234c6 + c5s234s6;

ax = �c5s1 � c1c234s5;

ay = c1c5 � c234s1s5;

az = s234s5;

px =� d6c5s1 + c1(a1 + a2c2 + a3c23

+ c234(a4 � d6s5));

py = d6c1c5 + s1(a1 + a2c2 + a3c23

+ c234(a4 � d6s5));

pz = d1 � a2s2 � a3s23 + s234(�a4 + d6s5): (36)

In these equations, ai and di are shown in Figure 3.
Also si, ci, sij and cij denote sin(�i), cos(�i), sin(�i+�j)
and cos(�i+�j), respectively. The relation between the
velocity of an end-e�ector and the angular velocity of
joints is expressed by:

V = J _q: (37)

J is the Jacobian matrix of a 6R arm and can be
obtained as:

J =

26666664
j11 j12 j13 j14 j15 0
j21 j22 j23 j24 j25 0
0 j32 j33 j34 d6c5s234 0
0 �s1 �s1 �s1 c1s234 j46
0 c1 c1 c1 s1s234 j56
1 0 0 0 c234 s234s5

37777775 ;(38)
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Figure 3. 6R schematic con�guration.

where:

j11=�d6c1c5�s1(a1+a2c2+a3c23+c234(a4�d6s5));

j12 = �c1(a2s2 + a3s23 + s234(a4 � d6s2));

j13 = �c1(a3s23 + s234(a4 � d6s5));

j14 = c1s234(�a4 + d6s5);

j15 = �d6c1c234c5 + d6s1s5;

j21=�d6s1c5+c1(a1+a2c2+a3c23+c234(a4�d6s5));

j22 = �s1(a2s2 + a3s23 + s234(a4 � d6s5));

j23 = �s1(a3s23 + s234(a4 � d6s5));

j24 = s1s234(�a4 + d6s5);

j25 = �d6(c234c5s1 + c1s5);

j32 = �a2c2 � a3c23 + c234(�a4 + d6s5);

j33 = �a3c23 + c234(�a4 + d6s5);

j34 = c234(�a4 + d6s5);

j46 = �c5s1 � c1c234s5;

j56 = c1c5 � c234s1s5: (39)

According to Equations 21 and 22, characteristics of
motors Us and !s are needed for dynamic load carrying
capacity calculations. These values are determined and
collected in Table 3.

Table 3. Motor characteristics for 6R arm.

Joint Us (N.m) !s (rad/s)

1 114 1.32

2 98 4.19

3 382.2 0.73

4 19 450.29

5 40.4 9.01

6 40.4 9.01

CONTROL IMPLEMENTATION AND
RESULTS

Mobile Robot

For state space representation of a mobile 2-link ma-
nipulator, the angular position and velocity of links are
chosen as states, as below:2664�1

_�1
�2
_�2

3775 =

2664x1
x2
x3
x4

3775 : (40)

Thus, the state-space representation is obtained as:

d
dt

2664x1
x2
x3
x4

3775=

2664 x2
P (J55(U1�R1)�J45(U2�R2))

x4
P (�J45(U1�R1)+J44(U2�R2))

3775 : (41)

Parameter P in Equation 41 is:

P =
1

J44J55 � J2
45
: (42)

The prede�ned path for the end-e�ector is a 1 � 1 m2

square and the simulation time is 12 sec. At the
beginning of the motion, the end-e�ector is at the left-
hand upper corner of this square and point F at the
origin. Also, the base moves from the origin to point
(2; 0) and then returns to the origin. The actual end-
e�ector paths under full load conditions and upper and
lower limits are shown in Figure 4.

The allowable tracking error in Equation 24 is
chosen as � = 0:02 m and the tracking error is
computed according to Equation 23 and plotted in
Figure 5. This �gure indicates that the maximum error
occurred near t = 4 sec at the up side of the square.
The angular position and velocity of joints are shown
in Figures 6 and 7.

In this case, the ZMP plot shows that stability is
guaranteed. For stability consideration, changes in zero
moment point location during the motion and limits
of stability are shown in Figure 8, where the stability
margins are virtual lines between wheels and castor.
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Figure 4. End-e�ector path.

Figure 5. Tracking error.

Figure 6. Angular positions.

Figure 7. Angular velocity of joints.

Figure 8. ZMP and stability margin.

Figure 9 demonstrates the torque of motors and
the upper and lower bounds of torques, according to
Equations 21 and 22. Using torques and tracking
constraints, the dynamic load carrying capacity of
manipulator is obtained as 6.1 kg.

6R MANIPULATOR

For the second case study, the vector of state variables
for a 6R arm is determined as:

[X]1�12 =
�
q
_q

�
: (43)

q is the vector of the angular position of joints:

q =
�
�1 �2 �3 �4 �5 �6

�
: (44)

Also _q is the angular velocities vector:

_q =
� _�1 _�2 _�3 _�4 _�5 _�6

�
(45)
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Figure 9. Torques of motors.

Thus, state-space representation is obtained as:

_X = [x7;x8;x9;x10;x11;x12;D�1(U � C �G)]: (46)

In Equation 46, D is the inertial matrix, C is the vector
of Coriolis and centrifugal forces, G is the gravity force
vector and U is the input control vector. Details of
these matrix and vectors are as below:

D =

26666664
d11 d12 d13 d14 d15 d16
d12 d22 d23 d24 d25 d26
d13 d23 d33 d34 d35 d36
d14 d24 d34 d44 d45 d46
d15 d25 d35 d45 d55 d56
d16 d26 d36 d46 d56 d66

37777775 ; (47)

C =
�
�c1 �c2 �c3 �c4 �c5 �c6

�T ; (48)

G =
�
g1 g2 g3 g4 g5 g6

�T ; (49)

U =
�
u1 u2 u3 u4 u5 u6

�T : (50)

The control vector is computed through the SDRE
method using Equation 20. A linear trajectory
is selected for the tracking problem that con-
nects initial point P0(0:55;�0:1; 0:5) and �nal point
Pf (0:1;�0:3; 0:22) at 10 sec. The line is designed so
that the velocity and acceleration of the end-e�ector
are zero at both initial and �nal points. Actual angular
velocities of joints are shown in Figures 10 to 12 for full
load conditions. These �gures imply that the actual
angular velocities of joints are zero at initial and �nal
points.

Figures 13 to 15 present the actual angular posi-
tions of joints under full load conditions, which indicate
a smooth angular motion for joints during the motion.
The desired values of angles and angular velocities are
computed by solving di�erential Equation 37.

Figure 10. Angular velocity of joints 1 and 2.

Figure 11. Angular velocity of joints 3 and 4.

Figure 12. Angular velocity of joints 5 and 6.
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Figure 13. Angular position of joints 1 and 2.

Figure 14. Angular position of joints 3 and 4.

Figure 15. Angular position of joints 5 and 6.

Figure 16. Torques of motors 1 and 2.

Figure 17. Torques of motors 3 and 4.

The values of torque of each motor are calculated
through the SDRE algorithm and are plotted in Fig-
ures 16 to 18. The upper and lower values of torques
are calculated by Equations 21 and 22 and are shown
in these �gures. These �gures are plotted for maximum
load carrying conditions. Moreover, the �gures express
that the motors work with a maximum value of torque
at the beginning of motion.

Con�guration links of the manipulator and the
actual and desired linear path of the end-e�ector during
the tracking motion are presented in Figure 19, and
with a better view in Figure 20.

Tracking accuracy is selected to be � = 0:022 m,
and according to both limitations on tracking error and
motor torques, the dynamic load carrying capacity is
obtained as DLCC = 1 kg. Figure 21 illustrates the
tracking error as a function of time during the motion.
Changes in characteristics of motors and allowable
tracking error will a�ect the value of DLCC.
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Figure 18. Torques of motors 5 and 6.

Figure 19. Con�guration of robot during tracking.

Figure 20. Desired and actual trajectory

Figure 21. Tracking error.

CONCLUSION

In this paper, the state-dependent Riccati equation
is discussed as a nonlinear optimal feedback con-
troller. The power series approximation method has
been employed for solving the SDRE problem. For
a mobile robot, the dynamic load carrying capac-
ity with consideration of tracking error and stability
constraint has been obtained. Also, the DLCC of
a 6R manipulator is calculated with tracking error
consideration. Variations in R and Q matrixes change
the value of the tracking error and control e�orts.
In order to reach better tracking accuracy, elements
of matrix R must be decreased, but the period of
simulation is increased and the motors come close to
saturation conditions. It is seen that the tracking
error is appeared as a function of both R and Q, and
the tracking accuracy can be increased by changing
these matrixes. Di�erent state-dependent coe�cient
parameterization, which results in a di�erent matrix,
A, leads to an additional degree of freedom for the
design controller and, as a result, di�erent values of
DLCC can be calculated. After appropriate state-
dependent coe�cient parameterization, the control
design procedure using the SDRE method is systematic
and done automatically. It is seen that the SDRE
method is suitable for solving nonlinear closed loop
optimal control problems and the DLCC can be de-
termined using this method for both mobile and �xed
robotic systems.

NOMENCLATURE

A(x) state-dependent coe�cient matrix

A0 constant part of A(x)

�A(x) nonlinear part of A(x)

g(x) nonlinear functions in �A(x)
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f;B nonlinear functions in dynamic
equations

J(x) performance index
Q;R states and control weighting matrixes
X(x) the solution of SDRE
F base and arm connecting point
L0 the distance from F to the intersection

point of the axis of symmetry with the
driving wheel axis

�0 the heading angle of platform measured
from X-axis of the world coordinates

�i the angular displacements of links
�i the torques exerted to joints
E tracking error
� tracking accuracy
J Jacobian matrix
Jij elements in dynamic equations
jij elements of Jacobian matrix
x vector of state variables
x0 initial values of state variables
xzmp; yzmp the coordination of zero moment point
xd; yd; zd desired position of end e�ector
xf ; yf the coordination of F
xe; ye; ze the coordination of E
q the vector of generalized coordinates of

the system
qb the vector of mobile base coordinates
qm the vector of manipulator coordinates
T transformation matrix
nx; ny; nz
ox; oy; oz elements of transformation matrix
ax; ay; az
px; py; pz
V velocity vector of end e�ector
C vector of centrifugal and Coriolis forces
�ci elements of C
D inertia matrix of manipulator
dij elements of inertia matrix
G gravity force vector
gi elements of G
U input control vector
ui input control torque of links (elements

of U)
Umax; Umin maximum and minimum of motor

torques
Us stall torque of motors
!s no load speed of motor
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