
Transaction B: Mechanical Engineering
Vol. 17, No. 6, pp. 443{455
c Sharif University of Technology, December 2010

Rayan: A Polyhedral Grid Co-located
Incompressible Finite Volume Solver

(Part I: Basic Design Features)

M. Sani1 and M.S. Saidi1;�

Abstract. In this work, basic design features of Rayan are documented. One of the new design
features presented in this work is the way Rayan handles polyhedral grids. Grid de�nition is combined
with the de�nition of the structure of the sparse coe�cient matrix, thereby releasing a considerable
part of the memory used by the grid to store otherwise required faces belonging to the cell part of the
connectivity description. The key idea is to use a uniform way for creating the structure of the coe�cient
matrix from the grid connectivity description and to access that data when computing the elements of
the coe�cient matrix. This saving requires many modi�cations to the computational algorithm details,
which are addressed. Computational method features include a SIMPLE-based pressure-velocity coupling
and co-located variable arrangement in which all ow variables are stored at cell centers, and mass uxes
are stored on face centers. Also handling convective and di�usive uxes is described. The throughput is
benchmark validated and shows second order truncation properties, both in time and space.

Keywords: Arbitrary polyhedral; Unstructured; Unsteady; Incompressible; Co-located.

INTRODUCTION

Numerical algorithms for ow simulation in complex
geometries have evolved from Cartesian grid solvers
to multi block [1-3], hybrid [4,5] and current state-
of-the-art polyhedral grid solvers [6-12]. Solvers with
polyhedral grid capability are appealing in complex ge-
ometries. Arazgaldi [13] presents a cavitating propeller
modeled using polyhedral grids. Polyhedral grids o�er
higher degrees of exibility, not only in mesh genera-
tion, but also in grid adaption, grid fusion (in multi
grid) and overset grid applications. There are a variety
of unstructured grid �nite volume strategies. The �rst
choice to make is between cell-centered [8,11,14-17]
or vertex-centered schemes [14,18-20]. This work is
just concerned about the cell-centered methods. The
variable arrangement is also a matter of consideration;
without going into the details, we use the widely used
co-located variable arrangement.

Another important thing about the unstructured

1. Center of Excellence in Energy Conversion, School of
Mechanical Engineering, Sharif University of Technology,
Tehran, P.O. Box 11155-9567, Iran.

*. Corresponding author. E-mail: mssaidi@sharif.edu

Received 5 January 2010; received in revised form 11 July 2010;
accepted 16 August 2010

grid is the way its connectivity is de�ned. There
is no counterpart for connectivity in structured grids
because it is implied by indexing. Unfortunately,
connectivity requires the major part of the memory
consumed for unstructured grid handling. In FEM
applications it is preferred to use element-based or
edge-based connectivity (see for example [21]). The
element-based (cell-based) connectivity describes the
connectivity as a nodes belonging to cell relationship.
For FVM, however, because of the need to compute
uxes over the faces of each cell, face-based connec-
tivity is preferred. Face-based connectivity also allows
for uniform implementation of the arbitrary polyhedral
grids, because it does not need any special treatment
for di�erent cell topologies. The face-based connec-
tivity has two parts: nodes belonging to a face and
faces belonging to a cell (F2C). A modi�ed version of
the face-based connectivity adds a Left and Right Cell
(LRC) relationship for each face. This inclusion adds
to the storage cost but removes the search overhead
for interpolation to face centers. The connectivity
description method chosen directly a�ects the way
elements of the coe�cient matrices are evaluated.

There is extensive literature concerning dis-
cretization of the terms (like convection term) in the
governing integral equations, their accuracy and their

444 M. Sani and M.S. Saidi

stability. At the same time, e�cient use of the
computational hardware was always of concern. Nowa-
days, with lower hardware costs, simulation of �ner
details and more complex physics are possible. Even
coupled solvers with much larger coe�cient matrices
than segregated ones are becoming attractive [22]. The
trend is to consume all resources available to capture
more details and handle more realistic cases. This
encourages continuous development of more e�cient
computational methodologies.

In this work, we �rst describe one methodology
for discretizing incompressible ow equations on poly-
hedral grids (a technology frontier by itself). Then, we
show that there is a potential for memory saving by
changing the strategy of computing coe�cient matrix
elements. The proposed modi�cation removes the need
for F2C, which is a heavy memory burden in the face-
based connectivity description. Assuming that there
are Ncells cells in the domain and, on average, Nf
faces per cell, the memory consumed by F2C is equal
to Ncells � Nf integer values. If, on average, there
are Nv vertices per face and a total of Nfaces in the
domain, the total memory occupied by the connectivity
is Nfaces � Nv + Ncells � Nf + 2 � Nfaces integers (the
last term describes the LRC requirement). Table 1
shows the memory share of the F2C relative to the
total memory required by the connectivity and grid
(node coordinates plus connectivity) for di�erent un-
structured grids �lling two- and three-dimensional unit
cavities with cell edge sizes equal to 0:05. The share
is always larger than 22% and the saving potential is
considerable.

The major contribution of this work is to propose
a method to combine features of the face-based connec-
tivity and structure of the sparse coe�cient matrix for
evaluating coe�cient matrix elements without impos-
ing search or storage overheads and without requiring
the F2C part of the connectivity. To completely
remove the need for storing F2C, many details like the
way the gradient or geometric entities are computed
need reconsideration, which is also addressed.

In what follows, �rst the details of a polyhedral
grid discretization is given. This shows why F2C is
required in common practice. Then, by de�ning cell-
based and face-based jobs, it is shown that the need for
F2C can be removed. In the next section, geometric
entities and elements of the coe�cient matrix are

computed without invoking F2C data. Finally, some
benchmark problems are solved to test the integrity
of the methodology and validate its correct truncation
error behavior.

POLYHEDRAL GRID DISCRETIZATION
OF THE GOVERNING EQUATIONS

For the incompressible ow, the continuity and momen-
tum equations are:Z

�~V :d~S = 0; (1)

@
@t

Z

��dV +

Z
�
�(�~V :d~S) = Sp +

Z
�
D�

@�
@n

dS

+
Z

q�V dV; (2)

where � could be any transported scalar including
velocity components (u, v, w), q�V is the volumetric
source term and Sp represents the pressure term, which
is only applicable to the momentum equations as:

~Sp = �
Z

~rpdV = �
Z

�
pd~S: (3)

Sign and Naming Conventions

Before going into the details of discretization, it is
convenient to put forward some conventions. There
are two cases where the face direction is required,
with regards to a cell and independent. With regards
to a cell, j is used for the face number and the
positive direction is always outwards from the cell. In
independent addressing, the face vector, ~Sf , is de�ned
by the order of its vertices (nodes) and the right hand
rule. In this case, f is used to address the face number.
There are two cells sharing a face, P0f and P1f , chosen
so that the face vector, ~Sf , points from the left cell,
P0f , to the right cell, P1f . Figure 1 illustrates these
conventions.

Implicit Time Discretization

For integration in time, we follow the implicit second
order three time levels method. The unsteady equa-

Table 1. Comparison of the memory share of F2C for di�erent unstructured grids in unit square (cube in 3D). Grid edge
size is set equal to 0:05 for all of the cases. Single (double) denotes single (double) precision.

F2C Share Quad. Tri. Hexa (3D) Tetra (3D) Wedge (3D)

Connectivity 32% 33% 30% 28% 26%

Grid (Single) 27% 29% 26% 27% 24%

Grid (Double) 24% 26% 24% 26% 22%

Rayan: A Polyhedral Co-located Incompressible FVM Solver 445

Figure 1. Polyhedral cell terminology. Also shown is the
division of the highlighted face to triangles for geometric
computations.

tions are symbolically rewritten as:

dy
dt

= H; (4)

where y represents the volume integral in Equation 2
and H contains all other terms. Discretization gives:

3yn � 4yn�1 + yn�2

2�t
=
�
dy
dt

�n
+O(�t2)

= Hn +O(�t2): (5)

Applying the above time discretization, Equation 2
could be discretized in space for a polyhedral cell, P0,
having Nj faces to:

aP0�P0 +
NjX
j

aPj�Pj = bP0 ; (6)

in which aP0 , aPj and bP0 carry the e�ects of implicitly
or explicitly discretized integrals.

Volume Integrals

The volume integrals are discretized to second order
using the mid-point rule:Z

�VP0

 dV � P0�VP0 : (7)

Convection Terms and Mass Flux Computation

Convection surface integrals are discretized using the
mid-point rule as:Z

j
�(�~V :d~S) � _mj�j ; (8)

where �j represents the face center value and mass ux

is assumed positive out of the cell. To avoid pressure
checker-boarding, the mass ux in Equation 8 is ob-
tained from the standard Rhie-Chow [23] (momentum-
based) interpolation between the cells which have face
f in common as:

unf =
_mf

�Sf
= (~u)f :n̂f

+
�

�V
a0

�P
�nf

�
f
�
�

�V
a0

�
f

�
�P
�nf

�
f
; (9)

where (:)f means any interpolation to the face center,
like CDS, a0 is the main diagonal element in the dis-
cretized momentum equation of the corresponding cell,
and �(:)=�nf is the discretized face normal derivative
operator.

To �nd an approximation to �j for Equation 8,
any upwind scheme could be used. To promote the
numerical stability of the solver, a deferred correction
strategy [24] is used in this work. In this strategy,
the standard First Order Upwind (FOU) is used for
computing the coe�cient matrix, which gives it good
iteration properties. To promote accuracy to second
order, the di�erence between FOU and the standard
Second Order Upwind method (SOU) is added to
the right hand side (i.e., lagged one iteration). The
converged solution corresponds to SOU, while the
coe�cient matrix behaves as good as FOU.

For FOU, the upwind cell must be identi�ed �rst.
The upwind cell, PU , is determined using the direction
of the mass ux relative to face normal vector (~Sf).
The value of �PU is assumed to be convected to the
face center (�FOU

j � �PU). For SOU correction, the
value of � at the face center is interpolated using �PU
and (~r�)PU . The face center value is approximated to
second order as:

�SOU
j � �PU + (~r�)PU :(~rj � ~rPU): (10)

Di�usion Terms

Di�usion surface integrals are discretized using:Z
j
D�

@�
@n

dS � D�
��
�nj

Sj : (11)

To approximate the normal derivative, virtual points
are used. The virtual point in cell P0f related to face
f is de�ned as the normal projection of the cell center
on the face normal:

~rP 00f = ~rf + [n̂f :(~rP0f � ~rf)]n̂f ; (12)

where n̂f is the unit normal vector of face f (Figure 2).
The virtual point in cell P1f is de�ned as the mirror
image of the virtual point in P0f with respect to

446 M. Sani and M.S. Saidi

Figure 2. De�nition of the virtual points.

the common face. The line connecting virtual points
P 00f and P 01f is orthogonal to the face, and passes
through the face center just at the mid-point of the
line. Therefore, to second order:

��
�nf
� �P 01f � �P 00f
j~rP 01f � ~rP 00f j =

�P 01f � �P 00f
j~d0f j

; (13)

where values at virtual points are obtained using
gradient-based interpolation, e.g.:

�P 00f � �P0f + (~r�)P0f :(~rP 00f � ~rP0f):

Pressure-Velocity Coupling

Continuity equation is used with SIMPLE algorithm
to derive the pressure correction equation. For this
algorithm, currently available velocity components and
pressure are assumed to be predictions to the correct
values, requiring a set of corrections which are related
to each other as:

~u0P0
� ��VP0

a0
(~�P 0)P0 ; (14)

where ~� is the discrete gradient operator. Obtaining
the required mass ux correction from the velocity cor-
rections, and substituting in the discretized continuity
equation gives the pressure correction equation for cell
P0 as:

NjX
j

�
�

�V
a0

�
j
(~�P 0)j :~Sj

!
=

NjX
j

(_mj) ; (15)

where (~�P 0)j :~Sj is obtained using Equation 13 and:

(~�P 0)j :~Sj =
�P 0
�nj

Sj : (16)

This leads to a linear system of equations of the form:

cP0P
0
P0

+
NjX
j

cPjP
0
Pj = dP0 : (17)

Boundary Condition Application

To avoid special treatment for cells near boundaries,
ghost cells are used outside the physical domain.
Therefore, each boundary face, f , is surrounded by one
real cell, P0f , and one ghost cell, PG. The ghost cell
center is de�ned as the mirror image of the virtual point
inside the real cell, P 00f , with respect to the boundary
face. With this choice, the face center value and the
face normal derivative are easily computed to second
order as:

�f � �PG + �P 00f
2

; (18)

@�
@nf

� �PG � �P 00f
j~rPG � ~rP 00f j : (19)

Boundary conditions are considered as the governing
equations for the ghost cells.

Gradient Computation

The above outlined discretization assumes a gradient
vector to be available. It is computed using the
standard least square method as outlined in [18]. Since,
near any cell center, ~rP0 , the value of � can be
approximated to second order as:

�(~r) � �P0 + (~r�)P0 :(~r � ~rP0); (20)

neighbor cell center values, at ~rPj , can be obtained
from:

�Pj = �P0 + (~r�)P0 :(~rPj � ~rP0)

= �P0 + (~r�)P0 :~dj : (21)

Rearranging for the gradient gives:

(~r�)P0 :~dj = �Pj � �P0 : (22)

This is always an over determined system of equations
for gradient components, since in three (two) dimen-
sions, there are at least four (three) neighbors for each
cell but three (two) components of the gradient are
to be solved for. Following the standard least square
procedure, the gradient components could be obtained
as:

(~r�)P0 = D�1
X
j

dTj (�Pj � �P0); (23)

where, j runs over all of the neighbors of P0, dTj is the
single column notation for ~dj and D is a symmetric
three by three (two by two in 2D) geometry-dependent
matrix de�ned as:

D =
X
j

dTj dj =

24a b c
b d e
c e f

35 : (24)

Rayan: A Polyhedral Co-located Incompressible FVM Solver 447

The inverse of D is computed analytically as:

D�1 =
1

adf + 2bce� ae2 � dc2 � fb224df � e2 ce� bf be� cd
ce� bf af � c2 bc� ae
be� cd bc� ae ad� b2

35 : (25)

Having geometry dependent D available, the gradient
vector could be obtained from Equation 23. Since the
computation of the gradient requires the knowledge
of the neighbor values of �, whenever the gradient is
encountered in the discretization, it is lagged. This
means that the values from the last iteration are used
for the computation of the gradient. At convergence,
this lagging will not a�ect the solution, but it may slow
down the convergence.

Coe�cient Matrices and Their Storage

Following the routines outlined above, a linear system
of equations of the form of Equation 6 is obtained
for each of the velocity components. The coe�cients
of the system are given in Table 2. It is evident
that the coe�cient matrix is sparse with compact
support (stencil extended just to immediate neighbors).
The pressure correction discretized equation has the
same structure with coe�cients given in the same
table.

For the �nite volume method described above,
non-zero elements are related to the discretization of
the volume and surface integrals. Volume integrals
a�ect the main diagonal elements, while surface in-
tegrals, because of the required interpolations, a�ect
both main and o�-diagonal elements. Every row in the
coe�cient matrix (row i) corresponds to the discretized
transport equation for cell number i. Therefore, non-
zero elements on the ith row are just on the main
diagonal or at the column numbers corresponding to
the cell number of the neighbors of the ith cell.

Sparse coe�cient matrices can be economically
handled with a common Compressed Row Storage
format (CRS). In CRS, non-zero members of the
coe�cient matrix are sequentially stored in a one-
dimensional array, a, swapping the matrix row by
row. The column number of every non-zero element
encountered is also stored in another one-dimensional
array called colindex. For every row, a pointer to the
beginning element of the row in a is stored in another
one-dimensional vector called rowptr. This means that
rowptr[i + 1] � rowptr[i] is the number of non-zeros on
the ith row of the original matrix. Non-zero values
corresponding to that row are stored in a[rowptr[i]] to
a[rowptr[i+ 1]� 1]. In the data chunk related to a row,
the order is not important. For convenient access to
the main diagonal element, we use the �rst place of the
data chunk to store the main diagonal element.

Usually, rowptr is extended by a single element,
which stores the total number of non-zeros for the
sake of uniformity of application. The interdependence
of these three one-dimensional arrays and the grid is
illustrated in Figure 3. It is worth noting that since
non-zeros correspond to the neighbors, the structure of
the coe�cient matrix could be obtained from the grid

Figure 3. The structure of the sparse coe�cient matrix
and its relation to the grid topology.

Table 2. The elements of the coe�cient matrix resulted from the implicit discretization of the generic scalar transport
Equation 6 and pressure correction Equation 17 on cell P0.

aP0
3(��V)P0

2�t +
PNj
j

�
max(_mj ; 0) +D�j

j~Sj j
j~d0j j

�
aPj min(_mj ; 0)�D�j j~Sj jj~d0j j
bP0

4(��V)P0 (�)n�1
p0
�(��V)P0 (�)n�2

p0
2�t + q�P0

�VP0

+
PNj
j

�
D�j

j~Sj j
j~d0j j

�
(~r�)Pj :(~rP 0Pj

� ~rPj)� (~r�)P0 :(~rP 0P0
� ~rPP0

)
��old

+
PNj
j
�
max(_mj ; 0)�P0 + min(_mj ; 0)�Pj � (_mj�j)SOU�old

cPj
�
��V
a0

�
j

j~Sj j
j~d0j j

cP0 �PNj
j cPj

dP0

PNj
j _mj

448 M. Sani and M.S. Saidi

information without constructing the two-dimensional
matrix itself (and paying for the associated high mem-
ory costs).

Methods to Compute Coe�cient Matrix
Elements

One easy way to compute the transport coe�cient
matrix is to loop over all of the cells. For every cell (cor-
responding row in the coe�cient matrix), computation
of the main and o� diagonal elements requires at least
the knowledge of the volume of the cell, area of its faces
and cell number of its neighbors. The volume of the cell
is readily available because the cell number coincides
with the row number of the coe�cient matrix. The
area of the faces requires the cell to know its faces. This
information is taken care of using the face belonging to
cell (F2C) part of the connectivity. Neighbors of the
cell are stored as Left and Right Cell (LRC) in the
face-based connectivity. Therefore, if the cell knows its
faces and if every face knows its adjacent cells, neighbor
information is available to the cell.

Of course, although the above methodology pro-
vides su�cient means to evaluate the elements of
the coe�cient matrix, it is by no means the most
e�cient way. It requires double computation of the
face uxes (once per each cell sharing the face). It
also requires the storage of the bulky F2C in the
grid connectivity. Another problem with the method
is �nding the element on row number i with column
number j in a sparse matrix. Fortunately, the or-
der of storage of faces in F2C for each cell could
be exploited to remove this search overhead. This
order is not available in discretization without F2C.
This work describes a way to circumvent this search
problem.

To avoid double computations (per face), one
can �rst loop over all of the faces of the domain and
compute the implicit and explicit uxes per face. The
values cannot be directly inserted into the coe�cient
matrix unless a search is undertaken to �nd column
number j on row number i in the sparse system.
This time the order in F2C could not be exploited
because looping over the faces of the domain makes
it impossible to know the sequential place of the face
number in the ordered F2C list of the corresponding
cells, unless a search is carried out. Now that the direct
insertion requires a search overhead, one may store
the computed uxes per face. This requires a storage
space proportional to the number of faces. By looping
over the cells, these values could be retrieved (instead
of computed) and used to �ll the coe�cient matrix
without searching (exploiting the order in F2C).

To summarize, the three methods presented above
require either added computational cost (double com-
putations per face or search overhead to locate the

element in the spare matrix) or memory overhead (ux
storage per face and F2C).

CELL-BASED AND FACE-BASED JOBS

A Cell-Based (CB) job is de�ned as a job which requires
a loop over the cells in the computational domain. The
�rst process of evaluating the coe�cient matrix de�ned
previously is an example of a CB job. Similarly, a Face-
Based (FB) job is de�ned as a job which requires a loop
over the faces in the computational domain.

As described previously, computing elements of
the coe�cient matrix in a row by row (CB) manner not
only requires F2C, but also demands that the uxes
over the faces (surface integrals) be computed twice
(once for each cell sharing the face). To remove this
double computation overhead, one can �rst de�ne a
FB job in which all of the uxes are evaluated and
stored per face. Then using a same CB job as before,
the elements of the coe�cient matrix are evaluated.
This time, since the uxes are available per face, they
are just retrieved. This although removes the double
computation overhead, requires a storage space equal
to the number of faces for the uxes. To summarize,
the aforementioned methodology is carried out with
following steps:

1. Loop over all of the faces in the domain. For each
face:

(a) Use LRC to interpolate to the face center and
compute uxes.

(b) Store the ux for the face.
2. Loop over all of the cells of the domain. For each

cell:
(a) Compute the e�ect of the volume integrals and

update the main diagonal element.
(b) Use F2C to �nd its faces. Loop over the faces

of the cell. For each face:
i. Retrieve the value of uxes stored for the

face.
ii. Insert the main diagonal element share from

the face.
iii. Insert the o�-diagonal element share from

the face by retrieving the related neighbor
cell number from LRC.

It is worth noting that the right hand side of each
equation is treated in the same way as the main
diagonal element.

DISCRETIZATION WITHOUT F2C

The other way, proposed in this work, is to evaluate
and accumulate all of the uxes in the FB job. This
not only removes the need for the ux storage, but also
removes the need for F2C. The task is carried out as:

Rayan: A Polyhedral Co-located Incompressible FVM Solver 449

1. Loop over all of the faces in the domain. For each
face:

(a) Use LRC to �nd neighboring cells and interpo-
late to �nd face uxes.

(b) Directly insert the share of the face ux to the
main and o� diagonal elements of the coe�cient
matrix.

2. Loop over all of the cells of the domain and insert
the e�ect of volume integrals on the main diagonal
elements.

The key step is Step 1b. Directly inserting the share
removes the need for storage of the uxes for later use.
It also removes the need for storage of F2C, since the
CB job of Step 2 has nothing to do with faces of the
corresponding cell and, therefore, does not require F2C.
For inserting the shares in Step 1b, one needs to know
the insertion location in the coe�cient matrix stored
in CRS format (the same idea applies to other sparse
storage mechanisms).

For face number f , there are two neighbor cells,
namely, P0f and P1f . The ux over this face con-
tributes to the main diagonal coe�cient of the equa-
tions at row numbers P0f and P1f . It also contributes
to the element located at column number P1f on
row number P0f , and the element located at column
number P0f on row number P1f . For full matrix
storage, access to these elements is trivial. Of course,
this is not the case when sparse storage is exploited
(which is the economical way of handling unstructured-
grid real-word problems).

The main diagonal element on row number i is
stored in a[rowptr[i]] and is easily accessible. The o�-
diagonal element on row number i and column number
j can be found as follows. The easiest, but not the most
e�cient, way is to search over the data chunk stored in
colind[rowptr[i]+1] to colind[rowptr[i+1]�1] for j. The
number of data stored there is equal to the number
of faces cell number i has. Therefore, this is a low
cost search for each cell. But it should be carried out
many times for the whole grid, which imposes a search
overhead. This overhead can be avoided as proposed
below.

The key idea is that the order of cell numbers
(column numbers in colind) depends on the way the
structure of the coe�cient matrix is created from the
grid connectivity description. If the same procedure
is used for accessing that data, there is no need for a
search. The structure of the coe�cient matrix is to
be generated from a face-based grid description. Since
the connectivity is to be described as node belonging
to face and Left and Right Cells (LRC) of the face,
one-dimensional arrays, a, colind and rowptr, are to be
formed just using LRC.

The �rst step is to reserve memory for them. The
length of rowptr is equal to the number of rows of the

coe�cient matrix (equal to the number of cells) plus
one: a and colind have equal lengths. Since they hold
non-zero elements, their lengths are equal to Ncells +
2Nfaces. Ncells accounts for the main diagonal elements
and 2Nfaces represents the total number of o�-diagonal
non-zero elements. O�-diagonal elements (cross-links)
are the result of the inter-connection of the equations.
For face number f , there is an o�-diagonal element on
row number P0f and column number P1f , and another
o�-diagonal element on row number P1f and column
number P0f . Therefore, there are 2Nfaces o�-diagonal
non-zero elements.

The next step is to �ll rowptr and colind, which
together de�ne the structure of the sparse coe�cient
matrix. For rowptr, since it stores the o�set of the
�rst element of each row from the �rst non-zero in the
coe�cient matrix, we �rst need to count the non-zeros
on each row and then accumulate them:

1. Put one in every element of rowptr accounting for
main diagonal elements.

2. Count o�-diagonal elements: Loop over the faces
of the domain. For every face, f , use LRC to �nd
neighboring cells (P0f and P1f) and increment the
values stored in rowptr[P0f] and rowptr[P1f]. The
reason is that every face means a cross-link between
its left and right cells and this adds to the number
of elements on the corresponding rows. After this
loop, every rowptr[i] contains the number of non-
zeros on the ith row of the coe�cient matrix.

3. Accumulate these values towards the end of the
rowptr in a loop over the elements of rowptr in
order to �nd the required o�set. This is done in
a loop from the second element of rowptr onwards;
for every element, i, setting rowptr[i] to rowptr[i] +
rowptr[i� 1].

4. Shift all elements of rowptr towards the end by
a loop from the last element to the second one,
and, for each element i replace the current value
by rowptr[i � 1]. For the �rst element, zero should
be used.

Now every element in rowptr contains the number of
non-zeros before the corresponding row in the coe�-
cient matrix.

To complete colindex, we make use of an auxiliary,
one-dimensional integer array with NcellS elements
called front. Since front and pressure correction
(P 0) are never required simultaneously, and since the
memory for P 0 must be reserved and is greater than
or equal to the memory required by front, that space
could be used which removes any memory overhead.
The aim of using the front is to keep the track of the
�lled elements in colind for each row:

1. Main diagonal elements: In a CB job (with index i),
put i in colind[rowptr[i]] which means that the �rst

450 M. Sani and M.S. Saidi

element of the data chunk related to the row num-
ber i is the diagonal element with column number
i. At the same time put one in the corresponding
elements of front, which means that for every
element, one column index is set (the main diagonal
one). After this step, all o� the elements of front
contain one.

2. O�-diagonal column numbers: Loop over the faces
of the domain. For every face f use LRC to
�nd neighboring cells (P0f and P1f). Set P1f
in colind[rowptr[P0f] + front[P0f]] and increment
front[P0f] (advance the front for P0f). Also set
P0f in colind[rowptr[P1f]+front[P1f]] and increment
front[P1f] (advance the front for P1f).

Mimicking Step 2 when computing elements of the
coe�cient matrix makes it possible to insert the o�-
diagonal shares of the elements of the coe�cient matrix
without search overhead.

It is now appropriate to separate the CB and FB
shares of the elements of the coe�cient matrix. Table 3
shows this splitting. FB and CB superscripts stand
for the face-based and cell-based shares, respectively.
Also it is worth noting that symbols like (aP0f)P1f

mean the coe�cient of �P0f in the equation related
to its neighbor with cell number P1f and therefore the

element on row number P1f and column number P0f
of the coe�cient matrix.

Now elements of the coe�cient matrix are evalu-
ated with:

1. Make all elements of the coe�cient matrix (ele-
ments of a) zero.

2. Loop over all cells and add cell-based shares to the
main diagonal and right hand side elements. For
each cell put one into the corresponding element of
the front.

3. Loop over all faces of the domain, for each face,
f , retrieve P0f and P1f cells from LRC and add
the contribution of the face to (aP0f)P1f , (aP1f)P0f ,
(aP0f)P0f , (aP1f)P1f , bP0f and bP1f . After adding
the shares, advance the front for P0f and P1f
(i.e., increment the values stored in front[P0f] and
front[P1f]).

Step 3 requires the knowledge of the position
of the elements in a. Element (aP0f)P1f is located
at a[rowptr[P1f] + front[P1f]]. Likewise, (aP1f)P0f is
located at a[rowptr[P0f] + front[P0f]]. Main diag-
onal element (aP0f)P0f is located at a[rowptr[P0f]]
and (aP1f)P1f is located at a[rowptr[P1f]]. The same
method could be applied to the pressure correction

Table 3. Face-based and cell-based shares of the elements of the coe�cient matrix. FB shares are from face number f .�
aFBP0f

�
P0f

max(_mf ; 0) +D�j
j~Sf j
j~d0f j�

aFBP0f

�
P1f

��aFBP0f

�
P0f�

aFBP1f

�
P1f

�min(_mf ; 0) +D�j
j~Sf j
j~d0f j�

aFBP1f

�
P0f

��aFBP1f

�
P1f�

bFBP0f

�
P0f

D�j
j~Sf j
j~d0f j

�
(~r�)P1f :(~rP 0P1f

� ~rP1f)� (~r�)P0f :(~rP 0P0f
� ~rPP0f

)
�old

+
�

max(_mf ; 0)�P0f + min(_mf ; 0)�P1f � (_mj�j)SOU
P0f

�old
+ q�P0

�VP0�
bFBP1f

�
P1f

��bFBP0f

�
P0f�

aCBP0

�
P0

3(��V)P0
2�t�

bCBP0

�
P0

4(��V)P0 (�)n�1
p0
�(��V)P0 (�)n�2

p0
2�t�

cFBP1f

�
P0f

�
��V
a0

�
j

j~Sf j
j~d0f j�

cFBP0f

�
P1f

�
cFBP1f

�
P0f�

cFBP0f

�
P0f

��cFBP1f

�
P0f�

cFBP1f

�
P1f

��cFBP1f

�
P0f�

dFBP0f

�
P0f

_mf�
dFBP1f

�
P1f

��dFBP0f

�
P0f

Rayan: A Polyhedral Co-located Incompressible FVM Solver 451

equation because the structure of the coe�cient matrix
is the same.

Required Modi�cations When F2C Is Not
Available

Computing geometric entities like cell volume needs
reconsideration when F2C is not available. Since
the cell does not know its faces, the volume could
not be obtained in a CB job. Assuming that the
face area and center are available (which require no
modi�cation regarding the removal of F2C) in CB
oriented calculations, the cell volume could be obtained
from Gauss's theorem as:

�VP0 =
Z

�VP0

dV =
1
3

Z
�VP0

~r:~rdV =
1
3

Z
SP0

~r:d~S

=
1
3

NjX
j=1

~rj :~Sj : (26)

Or equivalently from:

�VP0 =
Z

�VP0

dV =
Z

�VP0

~r:(xî)dV =
Z
SP0

(xî):d~S

=
NjX
j=1

xj (̂i:~Sj) =
NjX
j=1

xj(Sx)j : (27)

Cell volumes could be computed by accumulating FB
shares while looping over all faces of the domain as:8><>:�V FBP0f

= xf (Sx)f

�V FBP1f
= �xf (Sx)f = ��V FBP0f

(28)

Computing cell centers also requires modi�cation. Ac-
cording to its de�nition, the x coordinate of the cell
center could be computed from:

�x:�VP0 =
Z

�VP0

xdV =
Z

�VP0

~r:(x2

2
î)dV

=
1
2

Z
SP0

(x2î):d~S =
1
2

NjX
j=1

(̂i:n̂j)
Z
Sj

x2dS: (29)

For each face, the last integral could be computed [25]
from the triangulation of the face (Figure 1). For each
triangle, a vertex is chosen as vertex number zero (~r0).
The other two vertices are numbered in a right hand
manner, so that their cross product is consistent with
the face area vector direction. The relative location

vector of these vertices is computed as ~ei = ~ri � ~e0. A
surface parameterization of the triangle is assumed as
~r(p; q) = ~r0 + p~e1 + q~e2 constrained to 0 6 p; q 6 1
and p+ q 6 1. With this parameterization, the surface
mapping relationship is:

dS =
����@~r@p � @~r

@q

���� = j~e1 � ~e2jdpdq: (30)

This results to:

(̂i:n̂f)
Z
Sf

x2ds = (~e1 � ~e2):̂i
1Z

0

1�qZ
0

(x(p; q))2dpdq:
(31)

The integral could be evaluated analytically as:
1Z

0

1�qZ
0

(x(p; q))2dpdq =
1
12

(x2
0 + x2

1 + x2
2

+ x0x1 + x0x2 + x1x2): (32)

The result of the integral when substituted in
Equaiton 29 gives the cell center in terms of the nodal
coordinates of its vertices. For a face-based application,
the share of each cell from each face could be computed
from:8>><>>:

�xFBP0f
= 1

2�VP0f
(̂i:n̂f)

R
Sf
x2dS

�xFBP1f
= �1

2�VP1f
(̂i:n̂f)

R
Sf
x2dS

(33)

Therefore, cell centers could be found by looping over
all faces of the domain; for each face, computing the
integral in Equation 33 by substituting the coordinates
of its nodes into Equation 32 and adding the shares to
left and right cells according to Equation 33.

Computation of the D matrix used for evaluating
the gradient and stored at cell centers also requires
reconsideration. Since from Equation 24, D is equal
to
P
j d

T
j dj , it could be computed in a FB job with

face shares equal to:

DFB
P0f

= DFB
P1f

= dTf df : (34)

After that D is available at cell centers, it can also be
inverted using Equation 25 in a CB job.

To compute gradient �eld for � from Equation 23
again a FB job followed by a CB job is employed. The
share of each face in

P
j d

T
j (�Pj � �P0) is computed in

a FB job and is accumulated on the memory reserved
for gradient vector at cell centers by:

(dTj (�Pj � �P0))FBP0f
= (dTj (�Pj � �P0))FBP1f

= dTf (�P1f � �P0f): (35)

Now in a CB job, D�1 can be multiplied toP
j d

T
j (�Pj ��P0) and stored at the same place for the

gradient vector.

452 M. Sani and M.S. Saidi

INTEGRITY AND ACCURACY CHECKS

Using the methods outlined above, Rayan was de-
veloped with object oriented design. To verify the
integrity and check its accuracy, some benchmark
problems were solved, as reported hereafter.

Lid-Driven Cavity Problem

The lid-driven cavity problem is a �rst step standard
test case for which a vast numerical and experimental
data base exists. To verify polyhedral treatment,
a grid was created with 3962 cells (7701 faces and
3740 vertices). It was a combination of quadrilateral
(near wall) and triangular (center) cells (Figure 4).
The ow was solved at Reynolds numbers ranging
from 102 to 104. Also shown in Figure 4 are the
streamlines corresponding to Re = 104. Even on such

Figure 4. Benchmark validation using cavity problem at
Re = 104.

a course mesh, tertiary and quaternary vortices are
captured on the left-bottom and right-bottom corners,
respectively. Horizontal and vertical components of
velocity on vertical and horizontal symmetry lines are
compared to the benchmark values given by Ghia et
al. [26]. Regardless of the coarseness of the mesh,
results compare well with benchmark data, which were
obtained on a 257 � 257 grid (17 times more nodes)
using a multi-grid stream function-vorticity method.

Decaying Vortices Problem

The decaying vortices problem, having an analytical
solution, is commonly used to measure the order of
accuracy of the codes. Upon substitution, it could be
easily shown that the ow �eld de�ed by:8>>>>>><>>>>>>:

u(x; y; t) = �cos(�x)sin(�y)e�2�2t=Re

v(x; y; t) = sin(�x)cos(�y)e�2�2t=Re

p(x; y; t) = � 1
4 (cos(2�x) + cos(2�y))e�4�2t=Re

(36)

satis�es incompressible ow equations. This problem
is solved for Re = 10 and in the range (x; y) 2 f�1

2 <
(x; y) < 1

2g (following [4]). Analytical values are used
as the boundary and initial conditions. The errors are
computed at t = 0:3 (the time at which the maximum
velocity decays to almost half of its initial value).
Various norms of error are de�ned as:

"L1 =
P jucomputed � uanalyticj

Ncells
; (37)

"L2 =

sP
(ucomputed � uanalytic)2

Ncells
; (38)

"L1 = max(ucomputed � uanalytic): (39)

To �nd the order of the space discretization truncation
error, the ow is solved on systematically re�ned
uniform grids of 10� 10, 20� 20, 40� 40 and 80� 80
cells. The time step is held constant at 0:001. Since the
time step is small, almost all errors could be related to
the space truncation error. Figure 5a proves that the
error (described by three norms) is indeed of second
order in space.

To check the truncation error in time, the problem
is solved on a 113 � 113 uniform grid with time steps
of 0:1, 0:075, 0:05, 0:03 and 0:025. Because the grid is
very �ne and time steps are so large, the error could
be related to the time series truncation. The error
is shown in Figure 5b, which proves the method is of
second order in time, as well.

Rayan: A Polyhedral Co-located Incompressible FVM Solver 453

Figure 5. Error for decaying vortices problem with
respect to the analytical solution at t = 0:3.

Flow Passing a Circular Cylinder

Flow normal to a cylinder possessing vortex shedding
is solved at Reynolds numbers of 200 and 1000 on the
grid shown in Figure 6. The mesh is a combination
of clustered body conforming quad cells near the
cylinder and triangular cells covering the rest of the
domain. The related Strouhal number, de�ned as

Figure 6. Domain and the mixed type grid used for the
simulation of the vortex shedding problem over a cylinder.

Figure 7. Streamlines for ow passing a circular cylinder
at Re = 1000 and t = 80.

Table 4. Comparison of the St numbers for the vortex
shedding from a circular cylinder.

Manzari [27] He [28] Present

StRe=200 0.20 0.1978 0.1980

StRe=1000 0.238 0.2392 0.2381

St = fD=V1, describes the frequency of the vortex
shedding. Figure 7 show streamlines for t = 80 after
sudden exposure to a ow with � = 1 and � = 0:001
owing at u = 1. Table 4 summarizes the results for Re
= 200 and 1000. As is evident, St numbers are in close
agreement with Manzari [27] and He et al. [28] results,
which guarantees the good behavior of the method in
external ow problems.

CONCLUSION

A second order in time and space polyhedral grid �nite
volume methodology was described, which features
no need for the face belonging to cell (F2C) part of
the connectivity. Based on this methodology, a code
called Rayan was developed and tested. The idea of
creating the structure of the sparse coe�cient matrix
and computing its elements in a uniform way was
addressed. It was shown that by using this idea,
F2C is redundant. Changes necessary to geometric
entities computation that were a�ected by removing
F2C were addressed. The major achievement of the
work was removing the need for F2C without imposing
any other storage or search overheads. Not storing F2C
results in at least 20% less memory requirement for
grid connectivity storage. Compared to a single cell-
based loop for computing the elements of the coe�cient
matrix, double ux computation per face overhead is
removed. The proposed methodology also removes the
need for storage of the uxes per face, if elements of
the coe�cient matrix are to be computed in a face-
based loop followed by a cell-based loop. Also, the
search overhead, attributable to the element insertion
mechanism, for both cases is removed. The accuracy
of Rayan was proved through a series of classical
benchmark validations.

454 M. Sani and M.S. Saidi

ACKNOWLEDGMENT

The cooperation of Mr. M. Zendehbad in linking
the PETSc solver to the Rayan code is gratefully
acknowledged. The authors also appreciate the gen-
erous software backup and support of the open source
community.

REFERENCES

1. Rembold, B. and Jenny, P. \A multiblock joint PDF
�nite-volume hybrid algorithm for the computation of
turbulent ows in complex geometries", J. of Comput.
Physics, 220, pp. 59-87 (2006).

2. Thakur, S. and Wright, J. \A multiblock operator-
splitting algorithm for unsteady ows at all speeds
in complex geometries", Int. J. for Num. Methods in
Fluids, 46, pp. 383-414 (2004).

3. Banerjee, S.S. \The development of a multiblocked
strongly conservative �nite volume solver with chimera
grid capabilities for ows in complex geometries", PhD
dissertation, Texas A & M University (1999).

4. Kim, D. and Choi, H. \A second-order time-accurate
�nite volume method for unsteady incompressible ow
on hybrid unstructured grids", J. of Comput. Physics,
162(2), pp. 411-428 (2000).

5. Shaw, J.A., Georgala, J.M., Childs, P.N. \Gen-
eral procedures employed in the generation of three-
dimensional hybrid structured/unstructured meshes",
NASA STI/Recon Technical Report N 95, p 19506
(1994).

6. Basara, B. \Employment of the second-moment turbu-
lence closure on arbitrary unstructured grids", Int. J.
for Num. Methods in Fluids, 44, pp. 377-407 (2004).

7. Smolarkiewicz, P.K. and Szmelter, J. \MPDATA:
An edge-based unstructured-grid formulation", J. of
Comput. Physics, 206, pp. 624-649 (2005).

8. Hadzic, H. \Development and application of a �nite
volume method for the computation of ows around
moving bodies on unstructured, overlapping grids",
PhD Dissertation, Technischen Universitat Hamburg-
Harburg (2005).

9. Peric, M. \Numerical methods for computing turbu-
lent ows", in Introduction to Turbulence Modeling V,
VKI Lecture Series 2004-06 (2004).

10. Wright, J.A. and Smith, R.W. \An edge-based method
for the incompressible Navier-Stokes equations on
polygonal meshes", J. of Comput. Physics, 169(1), pp.
24-43 (2001).

11. Basara, B. \A pressure correction method for unstruc-
tured meshes with arbitrary control volumes", Int. J.
for Num. Methods in Fluids, 22, pp. 265-281 (1996).

12. Demirdzic, I. and Peric, M. \Finite volume method for
prediction of uid ow in arbitrarily shaped domains
with moving boundaries", Int. J. for Num. Methods in
Fluids, 10, pp. 771-790 (1990).

13. Arazgaldi, R. and Hajilouy, A. and Farhanieh, B.
\Experimental and numerical investigation of ma-
rine propeller cavitation", Scientia Iranica, Trans. B,
Mech. Eng., 16(6), pp. 525-533 (2009).

14. Whitlow, D. \Finite volume methods for incompress-
ible ow", PhD Dissertation, University of California,
Davis (2001).

15. Eymard, R., Herbin, R. and Latch�e, J.-C. \Conver-
gence analysis of a colocated �nite volume scheme for
the incompressible Navier-Stokes equations on general
2D or 3D meshes", SIAM Journal on Numerical
Analysis, 45(1), pp. 1-36 (2007).

16. Taylor, L.K. \Unsteady three-dimensional incompress-
ible algorithm based on arti�cial compressibility", PhD
Dissertation, Mississippi State Univ., State College.
(1991).

17. Eberle, A. \Enhanced numerical inviscid and viscous
uxes for cell centered �nite volume schemes", in Com-
putational Fluid Dynamics Symposium, Wesseling, P.,
Segal, A., Vankan, J., Oosterlee, C.W. and Kassels,
C.G.M., Eds., pp. 9-12 (1991).

18. Tai, C.H. and Zhao, Y. \A �nite volume unstructured
multigrid method for e�cient computation of unsteady
incompressible viscous ows", Int. J. for Num. Meth-
ods in Fluids, 46, pp. 59-84 (2004).

19. Oosterlee, C.W. \A GMRES-based plane smoother in
multigrid to solve 3D anisotropic uid ow problems",
J. of Comput. Physics, 130, pp. 41-53 (1997).

20. Jessee, J.P. and Fiveland, W.A. \A cell vertex algo-
rithm for the incompressible Navier-Stokes equations
on non-orthogonal grids", Int. J. for Num. Methods in
Fluids, 23, pp. 271-293 (1996).

21. Manzari, M.T. \Inviscid compressible ow compu-
tations on 3D unstructured grids", Scientia Iranica,
12(2), pp. 207-216 (2005).

22. Darwish, M., Sraj, I. and Moukalled, F. \A coupled
�nite volume solver for the solution of incompressible
ows on unstructured grids", J. of Comput. Physics,
228, pp. 180-201 (2009).

23. Rhie, C.M. and Chow, W.L. \Numerical study of
the turbulent ow past an airfoil with trailing edge
separation", AIAA Journal, 21(11), pp. 1525-1532
(1983).

24. Khosla, P.K. and Rubin, S.G. \A diagonally dominant
second-order accurate implicit scheme", Computers &
Fluids, 2(2), pp. 207-209 (1974).

25. Eberly, D. \Polyhedral mass properties (revisited)",
Geometric Tools, LLC (2008).

26. Ghia, U. and Ghia, K.N. and Shin, C.T. \High-
resolutions for incompressible ow using the Navier-
Stokes equations and a multigrid method", J. of
Comput. Physics, 48(3), pp. 387-411 (1982).

27. Manzari, M.T. \A time-accurate �nite element algo-
rithm for incompressible ow problems", Int. J. for
Num. Methods for Heat & Fluid Flow, 13(2), pp. 158-
177 (2003).

Rayan: A Polyhedral Co-located Incompressible FVM Solver 455

28. He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A.
and Periaux, J. \Active control and drag optimization
for ow past a circular cylinder", J. of Comput.
Physics, 163, pp. 83-117 (2000).

BIOGRAPHIES

Mahdi Sani is a Ph.D. candidate at the Center of
Excellence in Energy Conversion, School of Mechanical
Engineering, Sharif University of Technology (SUT)
and is also a faculty member of the SUT international
campus on Kish island. He has served as a mechan-
ical engineer in the Iran Marine Industrial Company

(locally known as SADRA) and Monenco Iran. He
has also served as a CFD consulting engineer in the
Pargas Iran Company His research interests include:
Dynamic Meshes, Fluid/Structure Interaction, Aerosol
Dynamics and Living Tissue Modelling.

Mohammad Said Saidi is the professor of mechani-
cal engineering at Sharif University of Technology. His
research interests are: Modeling and Numerical Anal-
ysis of Transport and Deposition of Aerosol Particles,
Modeling and Numerical Analysis of Biouids, Model-
ing and Numerical Analysis of Thermal-Hydraulics of
Porous Media and Microchannels.

