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Fuzzy Development of Multivariate
Variable Control Charts Using

the Fuzzy Likelihood Ratio Test

H. Moheb Alizadeh1, A.R. Arshadi Khamseh1 and S.M.T. Fatemi Ghomi2;�

Abstract. This paper is an e�ort to evolve multivariate variable control charts in a fuzzy environment
where each observation in each sample is assumed to be a canonical fuzzy number. To do this, a likelihood
ratio test should be exploited in a fuzzy environment, because multivariate variable control charts are
constructed using this test. In this way, membership functions of likelihood ratio statistics applied to
control the process mean and dispersion are obtained solving four non-linear programming problems. Using
these membership functions, membership degrees of in and out of control states of both process mean and
dispersion are computed. Hence contrary to the classic multivariate variable control charts categorizing the
process into just two states, i.e. in and out of control, the process can be considered in several intermediate
states, based on the computed membership degrees, bringing about more 
exibility in process analysis.

Keywords: Multivariate control charts; Likelihood ratio test; Non-linear programming; Fuzzy numbers;
Fuzzy random variables.

INTRODUCTION

Statistical Process Control (SPC) is a technique ap-
plied toward improving the quality of characteristics
by monitoring the process under study continuously,
in order to detect assignable causes and take required
actions as quickly as possible. Control charts are
viewed as the most commonly applied SPC tools. A
control chart consists of three horizontal lines called;
Upper Control Limit (UCL), Center Line (CL) and
Lower Control Limit (LCL). The center line in a
control chart denotes the average value of the quality
characteristic under study. If a point is laid within
UCL and LCL, then the process is deemed to be
under control. Otherwise, a point plotted outside the
control limits can be regarded as evidence representing
that the process is out of control and, hence, pre-
ventive or corrective actions are necessary in order to
�nd and omit an assignable cause or causes, which
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subsequently result in improving quality characteris-
tics [1].

Control charts are classi�ed into two categories,
with respect to the number of quality characteristics
they monitor: univariate control chart and multivariate
control chart. Univariate control charts are exploited
to control the processes with only one quality charac-
teristic, whereas multivariate control charts are applied
in order to control and monitor any process with two
or more correlated quality characteristics. In this case,
due to this correlation, using several distinct univariate
control charts is not suggested.

Traditional control charts are constructed using
precise data. Since these data may be in
uenced
by human judgment, evaluations and decisions, it is
better to take into account the variability brought
about by human subjectivity, measurement devices or
environmental conditions. This variability results in
an uncertain situation in which imprecise or linguistic
data should be dealt with. For example, an item
may be measured by assigning a linguistic term, such
as `a range between 270.15 and 270.3', in a variable-
measured production process, or it may be expressed
as `very good', `good', `medium', `bad' and `very bad'
in an attribute-measured production process. This
uncertain situation can be modeled by neither a de-
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terministic model nor a probabilistic model, but the
fuzzy set theory, initially proposed by Zadeh [2], is a
worthwhile tool to deal with such an uncertainty. In
this way, the data obtained from a production process
are represented as fuzzy random variables instead of
common random variables.

In the literature, there are some attempts to
develop fuzzy control charts. Bradshaw [3] used the
fuzzy set theory as a basis for interpreting the repre-
sentation of a graded degree of product conformance.
Bradshaw [3] stressed that fuzzy economic control lim-
its would be advantageous over traditional acceptance
charts, and that fuzzy economic control charts provide
information on the severity, as well as the frequency, of
product nonconformance. Raz and Wang [4] proposed
an approach based on the fuzzy set theory by assigning
a fuzzy set to each linguistic term. Wang and Raz [5]
developed two approaches called the fuzzy probabilistic
approach and the membership approach. In the fuzzy
probabilistic approach, fuzzy subsets associated to the
linguistic terms are transformed into their respective
representative values using one of the transformation
methods. Centerline (CL) corresponds to the arith-
metic mean of representative values of the samples
initially available. On the other hand, the membership
approach is based on the fuzzy set theory to combine
all observations in only one fuzzy subset using fuzzy
arithmetic. In this approach, the center line is located
as the representative value of the aggregate fuzzy
subset. Kanagawa et al. [6] introduced an approach
aimed at directly controlling the underlying probability
distributions of the linguistic data, which were not
considered by Wang and Raz [5]. They presented new
linguistic control charts for process average and process
variability, based on estimation of the probability dis-
tribution existing behind linguistic data. They de�ned
the center line as the average mean of the sample
cumulants, and then calculated the control limits using
the Gram-Charlier series. Statistical and fuzzy control
charts were reviewed by Woodall et al. [7] based on
categorical data. Taleb and Limam [8] discussed
di�erent procedures of constructing control charts for
linguistic data based on fuzzy set and probability
theories. Using real data and based on average run
length and samples under control, they compared fuzzy
and probabilistic approaches. Cheng [9] proposed
the following approach to deal with expert subjective
judgments. Based on the rating scores assigned by
individual inspectors to inspected items, fuzzy numbers
are constructed to represent the vague outcomes of the
process. Then fuzzy control charts are constructed
directly from these fuzzy numbers, thereby retaining
the fuzziness of the original vague observations. The
out of control conditions are formulated using a pos-
sibility theory. Engin et al. [10] combined fuzzy sets
with genetic algorithms to determine sample sizes in

attribute control charts. Gulbay and Kahraman [11]
developed a direct fuzzy approach to fuzzy control
charts without any defuzzi�cation and then de�ned
unnatural pattern rules based on the defuzzi�cation
of crisp rules. They calculated the probability of
each fuzzy unnatural pattern using the probability of
fuzzy events. Gulbay and Kahraman [12] developed a
fuzzy approach to control charts, based on di�erent
fuzzy transformation methods, and proposed �-cut
approach to determine the tightness of inspection. El-
Shal and Morris [13] investigated the use of fuzzy
logic to modify statistical process control rules. They
aimed at reducing the generation of false alarms and
improving the detection and detection-speed of real
faults. Rowlands and Wang [14] explored the integra-
tion of fuzzy logic and control charts to create and
design a fuzzy-SPC evaluation and control method,
based on the application of fuzzy logic to the SPC
zone rules. Tannock [15] presented an approach to
special cause detection for the individual control charts
using fuzzy logic. Zarandi et al. [16] developed a new
hybrid method, based on a combination of fuzzi�ed
sensitivity criteria and fuzzy adaptive sampling rules,
to determine the sample size and sample interval of
the control charts. Sentruk and Erginel [17] �rst
transformed traditional �X � R and �X � S control
charts to fuzzy control charts and developed �-cut
fuzzy ~�X � ~R and ~�X � ~S control charts using the
�-cut approach. To determine the condition of the
process, they used �-cut fuzzy midranges of control
limits and compared them with �-cut fuzzy midranges
of the fuzzy mean and the fuzzy range (or variance)
of samples. Amirzadeh et al. [18] proposed a new p-
chart controlling the degree of nonconformity indicated
by a fuzzy set whose support set is [L,U], where L
and U denote lower and upper speci�cation limits for
respective quality characteristics, respectively. They
showed that the proposed control chart is sensitive not
only to changes in the mean of the process, but also to
changes in the variance, and is more powerful than the
traditional p-chart.

In the case of multivariate control charts, Taleb
et al. [19] introduced a multivariate attribute control
chart in fuzzy environment, based on the method
proposed by Wang and Raz [5], i.e. in the fuzzy
approach, they �rst assigned a membership function
to each linguistic term, defuzzi�ed the obtained fuzzy
numbers, and then applied a common multivariate
control chart to the defuzzi�ed data for monitoring
the process. Alipour and Noorossana [20] developed
a fuzzy multivariate EWMA control chart in the same
way as suggested by Taleb et al. [19]. They applied
the multivariate EWMA approach to defuzzi�ed data.
However, it should be noted that defuzzi�cation of
fuzzy data results in losing precious information.
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In spite of all aforementioned e�orts toward con-
sidering control charts in a fuzzy environment, there is
no study attempting to develop multivariate variable
control charts in fuzzy mode. The current paper
endeavors to evolve this signi�cant class of control
charts in a fuzzy environment. Toward accomplishing
this goal, the likelihood ratio test should be applied
fuzzily, because multivariate variable control charts are
constructed based on this test. In this way, member-
ship functions of the likelihood ratio statistics used to
control the mean and dispersion of the process can be
computed and, based on these membership functions, it
is possible to obtain membership degrees of in and out
of control states of the process mean and dispersion.
Therefore, contrary to the classic multivariate variable
control charts, clustering the process into just two
states, i.e. in control and out of control, the process
can be considered in several intermediate states, based
on the computed membership degrees. Hence, the
proposed approach poses two advantages: (1) Contrary
to some previous research, it does not need to defuzzify
the fuzzy observations and (2) the process state is
viewed as a fuzzy set. The latter usefulness leads to
more 
exibility in the process analysis.

The paper is organized as follows. The follow-
ing section presents some preliminaries about fuzzy
random variable and fuzzy sets. After that, a brief
description of multivariate control charts in a crisp
environment is given. Subsequently, fuzzy likelihood
ratio test is clari�ed concisely. Then fuzzy multivariate
control charts are presented and the general obtained
models are specialized to a special case, i.e., a process
with two correlated quality characteristics.

PRELIMINARIES

Fuzzy Numbers

If ~A is a fuzzy set with membership function � ~A(x), and
~A� = fx : � ~A(x) � �g is its �-level cut, the following
relationship is known as Resolution Identity [21-23]:

� ~A(x) = supI ~A�(x); (1)

where:

I ~A�(x) =

(
0 ;x =2 ~A�
1 ;x 2 ~A�

(2)

~A is called a bounded fuzzy number, if it is a fuzzy
number and the support set of its membership function
is bounded. Wu [24] proved that if ~A is a fuzzy
number, then its �-level cut is a closed interval for
all � 2 [0; 1] denoted by ~A� = [ ~AL�; ~AU� ]. ~A is a
canonical fuzzy number, if it is a bounded fuzzy number
and its membership function is strictly increasing in

interval [ ~AL0 ; ~AL1 ] decreasing in interval [ ~AU1 ; ~AU0 ]. If ~A
is a canonical fuzzy number, it can be concluded from
its strict monotonicity that g(�) and h(�) are both
continuous where g(a) = ~AL� and h(a) = ~AU� [24].

Fuzzy Random Variable

Fuzzy random variables represent a well-formulated
concept underlying many recent probabilistics and
statistics, involving data obtained from a random
experiment when these data are assumed to be fuzzy
set valued. Fuzzy random variables have been taken
into account in the setting of a random experiment in
order to model [25]:

� Either a fuzzy observation of a mechanism associat-
ing a real value with each experiment outcome.

� Or an essentially fuzzy-valued mechanism, that is
a mechanism associating a fuzzy value with each
experiment outcome.

Kwakernaak [26,27] introduced a mathematical
model for the �rst situation elaborated later by Kruse
and Mayer [28]. On the other hand, Puri and
Ralescu [29] gave another approach to the second
situation to be modeled.

In this paper, the �rst situation is applied to
model fuzziness of observations in each sample, where
a fuzzy random variable is viewed as a fuzzy per-
ception/observation of a classical real-valued random
variable, stated as follows:

De�nition 1

Given probability space (
; A; P ), mapping x : 
 !
F(R) is said to be fuzzy random variable if for all
� 2 [0; 1], the two real-valued mappings xL� ! R
and xU� ! R are real-valued random variables, where
~x� = [xL�; xU� ] and F(R) is the set of all fuzzy numbers.

Fuzzy Matrix

The term `fuzzy matrix' has at least two distinct
de�nitions in the literature:

� In the �rst de�nition, A = [aij ]m�n is supposed to
be a fuzzy matrix if aij 2 [0; 1] for i = 1; : : : ;m and
j = 1; : : : ; n. This class of fuzzy matrix emerges
with fuzzy relations and initially was introduced by
Kim and Roush [30].

� In the second de�nition, ~A = [~aij ]m�n is called
a fuzzy matrix if each of its entries is a fuzzy
number [31,32]. Due to mathematical complexity,
a few studies have been done on this class of fuzzy
matrices.
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In the current paper, the second de�nition of a
fuzzy matrix is noticed, where each drawn sample of
the process is assumed as a matrix of canonical fuzzy
numbers.

MULTIVARIATE QUALITY CONTROL

Multivariate statistical quality control is applied to
monitor a process in which p correlated quality charac-
teristics should be simultaneously controlled for each
item. The characteristics are assumed to follow p-
variable normal distribution with mean vector � and
variance-covariance matrix �.

When there is only one characteristic, the statis-
tical hypothesis, `the process is in control', is tested
by Shewhart control charts in each sampling. If a
point falls within the control limits, this hypothesis
is accepted and otherwise is rejected. In this case,
the regions above UCL and below LCL correspond
to the critical region of the likelihood ratio test [33].
This standpoint is exploited to construct multivariate
variable control charts.

Multivariate Control Charts for the Mean

Suppose y1; : : : ; yp are p quality characteristics fol-
lowing p-variable normal distribution. Using random
sample X1; : : : ; Xn, where Xj ; j = 1; : : : ; n are p � 1
vectors, the likelihood ratio test rejects null hypothesis
`H : � = �0' against alternative hypothesis `K : � 6=
�0' if [34,35]:

T 2 � T 2
0 ; (3)

where:
T 2 = n(�x� �0)0S�1(�x� �0); (4)

T 2
0 = ((n� 1)p=(n� p))Fp;n�p(�); (5)

and Fp;n�p is a random variable following F distribu-
tion with p and n� p degrees of freedom.

ALT [33] proposed two distinct phases to con-
struct multivariate variable control charts based on the
T 2 statistic. In the �rst phase, using m initial samples
of size n, control charts are applied in order to test
whether the process was in control when these samples
were being drawn. To do this, the process mean vector
and variance-covariance matrix should be estimated.
If Xt is a p � n matrix of the observations of the tth
sample, t = 1; : : : ;m, then unbiased estimators of the
process mean vector and variance-covariance matrix
are computed, respectively, as follows:

��X =
Xm

t=1
�Xt=m; (6)

�S =
Xm

t=1
St=m; (7)

where �Xt and St are the mean vector and variance-

covariance matrix of the tth sample, respectively. The
process stability in this phase is tested by plotting the
values of T 2

t = n(�xt � ��x)0 �S�1(�xt � ��x); t = 1; � � � ;m, on
a control chart with the following limits:8<:UCL =(p(m� 1)(n� 1)=n(mn�m� p+ 1))

Fp;mn�m�p+1(�)
LCL = 0 (8)

The second phase is applied to the future performance
of the process. If �Xf is a p� 1 vector of future sample
mean, the process stability is tested by plotting the
values of T 2

f = n(�xf � ��x)0 �S�1(�xf � ��x) on a control
chart with the following limits:8<:UCL =(p(m+ 1)(n� 1)=n(mn�m� p+ 1))

Fp;mn�m�p+1(�)
LCL = 0 (9)

Multivariate Control Charts for the Process
Dispersion

The dispersion of a multivariate variable process can
be estimated based on various statistics. One of such
statistics is the likelihood ratio statistic to test the
null hypothesis `H : � = �0' against the alternative
hypothesis `K : � 6= �0'. In this case, Anderson [35]
showed the null hypothesis is rejected if:

Wt > �2
p(p+1)=2; (10)

where:

Wt =� pn+ pnLn(n)� nLn
�
jAtj=jX

0

j
�

+ tr
� �1X

0

At
�
; (11)

and At = (n � 1)St. St is variance-covariance matrix
of the tth sample and �2

p(p+1)=2 is a random variable
following �2 distribution with a p(p + 1)=2 degree of
freedom. If �0 is unknown, it can be estimated by
Relationship 7. From the control chart's point of view,
it can be stated that process dispersion is in control
whenever a point is plotted between the following
control limits:(

UCL = �2
p(p+1)=2

LCL = 0
(12)

To achieve a more comprehensive review on multivari-
ate statistical quality control, the interested reader is
referred to [33,36].



154 H. Moheb Alizadeh et al.

FUZZY LIKELIHOOD RATIO TEST

As presented in the previous section, multivariate
variable control charts are constructed based on a
likelihood ratio test. Thus, to develop them in fuzzy
environment, it is necessary to develop the fuzzy
likelihood ratio test. In this section, the likelihood
ratio test is brie
y described in the fuzzy environment,
where each observation is assumed to be a canonical
fuzzy number.

If fuzzy random sample ~X1; � � � ; ~Xn is applied to
test fuzzy null hypothesis `H : � belongs approximately
to set w' against fuzzy alternative hypothesis `K : �
does not belong approximately to set w', where each
~Xi; i = 1; � � � ; n is a canonical fuzzy number, then
~�, i.e. the fuzzy likelihood ratio statistic, is a fuzzy
random variable whose �-level cut can be computed as
follows [37]:

~�� =[minf min
����1

�0(~xL� ); min
����1

�0(~xU� )g;

maxf max
����1

�0(~xL� ); max
����1

�0(~xU� )g]; (13)

where:

�0(~xL� ) = f�(~xL� ; �)j� 2 (�L� ; �
U
� )g; (14)

�0(~xU� ) = f�(~xU� ; �)j� 2 (�L� ; �
U
� )g: (15)

Since ~� is fuzzy random variable, ~�L� and ~�U� are both
common random variables with the same density func-
tion as � for each � 2 [0; 1]. In a fuzzy environment,
critical value k should be determined in such a way
that:

pr(~� � kj� is H(�)) = �: (16)

Since an �-level cut of ~� results in the crisp interval
[ ~�L�; ~�U� ], the above probability is turned out as follows
in any speci�c �-level [37]:

p(~�U� � k) = � when � 2 [�L� ; �
U
� ]: (17)

So, it can be inferred that the critical value of the test
in a fuzzy environment is the same as that in a crisp
environment. After computing the �-level cuts of ~�, its
membership function can be easily obtained. Without
loss of generality, and just for simplicity, suppose the
membership function of ~� is triangular shaped, as
depicted in Figures 1 and 2, where the vertical line
speci�es the critical value of the test. In each �gure,
two �-levels have been determined; �0 and �k levels on
Figure 1 and �00 and �0k levels on Figure 2.

In Figure 1, since ~��0 � k, the null hypothesis
is rejected in this level. So, based on the de�nition of
Resolution Identity, �k is the greatest value for which

Figure 1. The cross of the critical value with right hand
side of the membership function.

Figure 2. The cross of the critical value with left hand
side of the membership function.

the null hypothesis is not rejected, because ~�� is not
less than k for � 2 [0; �k]. In other words, for any �-
level greater than �k, the null hypothesis is rejected. So
whenever the vertical line corresponding to the critical
value crosses the right hand side of the membership
function of ~�, the membership degree of null hypothesis
acceptance is equal to �k and the membership degree
of null hypothesis rejection (alternative hypothesis
acceptance) is equal to 1. Now suppose �00 and �0k
levels on Figure 2. Since ~��00 � k, the null hypothesis
is accepted at such a level. So based on the de�nition
of Resolution Identity, �0k is the greatest value of
� 2 [0; 1] for which the null hypothesis is rejected. In
other words, for any �-level greater than �0k, the null
hypothesis is accepted. So whenever the vertical line
corresponding to the critical value crosses the left hand
side of the membership function of ~�, the membership
degree of null hypothesis rejection is equal to �0k, and
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the membership degree of null hypothesis acceptance
is equal to 1.

As mentioned in the previous section, the likeli-
hood ratio test results in rejecting the null hypothesis,
`H : � = �0', against the alternative hypothesis, `K :
� 6= �0' if T 2 � T 2

0 . Hence we should adopt the general
approach described in the previous paragraph, which
computes membership degrees of the null hypothesis
acceptance and rejection, because in the general form of
the likelihood ratio test, the null hypothesis is rejected
when � < k (note the inequality sign of the likelihood
ratio test in the multivariate variable control chart,
which is �, and the inequality sign of the general form
of the likelihood ratio test, which is �). Therefore,
in this special case, if the vertical line corresponding
to the critical value crosses the right hand side of
the membership function of T 2 and W in the fuzzy
environment, the membership degree of null hypothesis
acceptance, i.e. in control state, is equal to 1, and the
membership degree of null hypothesis rejection, i.e. the
out of control state, is �k. On the other hand, when
the vertical line of critical value crosses the left hand
side of membership functions, membership degrees of
null hypothesis acceptance and rejection are equal to
�0k and 1, respectively.

FUZZY MULTIVARIATE CONTROL
CHARTS

This section develops fuzzy multivariate variable con-
trol charts using an adopted fuzzy likelihood ratio test
under the supposition that the observations in each
sample are canonical fuzzy numbers with triangular
membership functions, i.e. a p� n matrix with entries
shown as canonical fuzzy numbers with triangular
membership functions is obtained in each sampling.
For instance, ~Xt = [(xij1t; xij2t; xij3t)] for i = 1; : : : ; p
and j = 1; : : : ; n, shows the tth sample, t = 1; : : : ;m,
of size n drawn from a p-variable process, where
each observation is represented as a triangular fuzzy
number. In this case,

~�Xt = [~�xit]p�1 = [(�xi1t; �xi2t; �xi3t)]p�1; (18)

is the p� 1 fuzzy mean vector of the tth sample where:

�xirt =
Xn

j=1
xijrt=n;

i = 1; � � � ; p r = 1; 2; 3: (19)

On the other hand:

~St = [~sikt]p�p = [(sik1t; sik2t; sik3t)]p�p;

i = 1; � � � ; p; k = 1; � � � ; p; (20)

is the p� p fuzzy variance-covariance matrix of the tth

sample, t = 1; : : : ;m, where if i = k, then:

~siit =
1

n� 1

Xn

j=1

�
(xij1t; xij2t; xij3t)

� (�xi1t; �xi2t; �xi3t)
�2: (21)

And, otherwise (if i 6= k):

~sikt =
1

n� 1

Xn

j=1
[(xij1t; xij2t; xij3t)

� (�xi1t; �xi2t; �xi3t)][(xkj1t; xkj2t; xkj3t)

� (�xk1t; �xk2t; �xk3t)]: (22)

In this case, based on the study of Wang [38], fuzzy
unbiased estimators of the process mean vector and
variance-covariance matrix can be computed, respec-
tively, as follows:

~��X = [~��xi]p�1 = [(��xi1; ��xi2; ��xi3)]p�1; (23)

~�S = [~�sik]p�p = [(�sik1; �sik2; �sik3)]p�p; (24)

where:

��xir =
Xm

t=1
�xirt=m; r = 1; 2; 3; (25)

�sikr =
Xm

t=1
sikrt=m; r = 1; 2; 3: (26)

Since the following relationship holds true in a crisp
environment:

T 2
t = n(�xt � ��x)0 �S�1(�xt � ��x)

=
Xp

i=1

Xp

k=1
(�xi � ��xi)�s0ik(�xk � ��xk); (27)

where �s0ik is the (i; k) entry in the inverse matrix of
�S, i.e. �S�1 = [�s0ik]p�p. Based on what was mentioned
previously, the following four non-linear programming
problems should be �rstly optimized for � 2 [0; 1] in
order to compute the �-level cuts of T 2

t in the fuzzy
environment:

I) min
pX
i=1

pX
k=1

(�xi1t + �(�xi2t � �xi1t)� ��xi)

�s0ik(�xk1t + �(�xk2t � �xk1t)� ��xk); (28)

s.t.

� � � � 1;

(~��xi)L� � ��xi � (~��xi)U� ; i = 1; � � � ; p;
(~��xk)L� � ��xk � (~��xk)U� ; k = 1; � � � ; p;
(~�sik)L� � �sik � (~�sik)U� :
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II) min
pX
i=1

pX
k=1

(�xi3t � �(�xi3t � �xi2t)� ��xi)�s0ik

(�xk3t � �(�xk3t � �xk2t)� ��xk); (29)

s.t.

� � � � 1;

(~��xi)L� � ��xi � (~��xi)U� ; i = 1; � � � ; p;
(~��xk)L� � ��xk � (~��xk)U� ; k = 1; � � � ; p;
(~�sik)L� � �sik � (~�sik)U� :

III) Substitute `min' with `max' in the problem I;
(30)

IV) Substitute `min' with `max' in the problem II:
(31)

Eventually, the �-level cuts of T 2
t and consequently its

membership function in the fuzzy environment, can be
easily obtained using Relationship 13. Then based on
the critical value, (p(m � 1)(n � 1)=n(mn � m � p +
1))Fp;mn�m�p+1(�), and whether this value crosses the
right or left hand side of the membership function, the
membership degrees of in control and out of control
states of the process mean in phase I can be computed.

To calculate the membership degrees of in control
and out of control states of the process mean in phase
II, i.e. for future samples, the membership function of
T 2
f in the fuzzy environment should be �rstly obtained

applying the above four non-linear programming prob-
lems and Relationship 13. Then, these membership
degrees are computed based on the critical value,
(p(m+ 1)(n� 1)=n(mn�m� p+ 1))Fp;mn�m�p+1(�),
and whether this critical value crosses the right or left
hand side of the membership function.

On the other hand, since At = (n � 1)St and �S
is an unbiased estimator of �0 in a crisp environment,
Relationship 11 can be rewritten as follows:

Wt =� pn+ pnLn(n=(n� 1))

� n(LnjStj � Lnj �Sj) + (n� 1)
pX
i=1

�s0iisiit; (32)

where siit is the (i; i) entry of the variance-covariance
matrix of the tth sample, and �s0ii is the (i; i) entry in
the inverse matrix of �S.

In a fuzzy environment, the fuzzy variance-
covariance matrix of the tth sample and unbiased
estimator of the fuzzy variance-covariance matrix of
the process are computed using Relationships 20 and

24, respectively. Now, based on what was mentioned
previously, the following four non-linear programming
problems should be �rstly optimized for � 2 [0; 1]
in order to obtain �-level cuts of Wt in the fuzzy
environment:
I) min�pn+ pnLn(n=(n�1))�n[Lnj( ~SL� )tj�Lnj �Sj]

+ (n� 1)
pX
i=1

�s0ii(sii1t + �(sii2t � sii1t)); (33)

s.t.
� � � � 1;

(~�sik)L� � �sik � (~�sik)U� ;

i = 1; � � � ; p; k = 1; � � � ; p:
II) min�pn+pnLn(n=(n�1))�n[Lnj( ~SU� )tj�Lnj �Sj]

+ (n� 1)
pX
i=1

�s0ii(sii3t � �(sii3t � sii2t)); (34)

s.t.
� � � � 1;

(~�sik)L� � �sik � (~�sik)U� ;

i = 1; � � � ; p; k = 1; � � � ; p:
III) Substitute `min' with `max' in the problem I,

(35)

IV) Substitute `min' with `max' in the problem II.
(36)

If the �-level cut of the fuzzy matrix ~St is represented
as ( ~St)� , that is:

( ~St)� =
�
[sik1t + �(sik2t � sik1t); sik3t

� �(sik3t � sik2t)]
�
p�p; (37)

for i = 1; : : : ; p; k = 1; : : : ; p and t = 1; : : : ;m, then:

( ~SL� )t = [sik1t + �(sik2t � sik1t)]p�p; (38)

( ~SU� )t = [sik3t � �(sik3t � sik2t)]p�p: (39)

It is worth noting that the �-level cut of the fuzzy
matrix ~A = [~aij ]m�n, is obtained as ~A� = [(~aij)� ]m�n.
Eventually, the �-level cuts of Wt are computed ap-
plying Relationship 13. Using these �-level cuts, the
membership function of Wt in the fuzzy environment
can be easily obtained. Membership degrees of in con-
trol and out of control states of the process dispersion
are computed based on the critical value �2

p(p+1)=2 and
whether this critical value crosses the right or left hand
side of the membership function.
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NUMERICAL EXAMPLE

This section considers a bivariate process in the fuzzy
environment and formulizes non-linear programming
problems given in the previous section for such a
process. To do this, the 2 � 1 fuzzy mean vector of
the tth sample is computed applying Relationships 18
and 19, as follows:

~�Xt =
�
(�x11t; �x12t; �x13t)
(�x21t; �x22t; �x23t)

�
: (40)

Using Relationships 20, 21 and 22, the 2 � 2 fuzzy
variance-covariance matrix of such a sample is obtained
as follows:

~St =
�
(s111t; s112t; s113t) (s121t; s122t; s123t)
(s211t; s212t; s213t) (s221t; s222t; s223t)

�
: (41)

Now, applying Relationships 23 and 24, unbiased
estimators of the fuzzy mean vector and fuzzy variance-
covariance matrix of the process are computed, respec-
tively, as follows:

~��X =
�
(��x11; ��x12; ��x13)
(��x21; ��x22; ��x23)

�
; (42)

~�S =
�
(�s111; �s112; �s113) (�s121; �s122; �s123)
(�s211; �s212; �s213) (�s221; �s222; �s223)

�
: (43)

On the other hand, if the crisp matrix ~S is de�ned as:

�S = [�sik]2�2 =
�

�s11 �s12
�s21 �s22

�
: (44)

Then its inverse is as follows:

�S�1 = [�s0ik]2�2 =
�

�s011 �s012
�s021 �s022

�
; (45)

where �s011 = (�s22=(�s11�s22 � �s12�s21)), �s012 = (��s12=
(�s11�s22 � �s12�s21)), �s021 = (��s21=(�s11�s22 � �s12�s21)) and
�s022 = (�s11=(�s11�s22 � �s12�s21)). In this case, the four
non-linear programming Problems 28-31, presented in
the previous section to compute the �-level cuts of T 2

t
in the fuzzy environment, are rewritten as follows:

I) min(�x11t � �(�x12t � �x11t)� ��x1)2�
�s22=(�s11�s22 � �s12�s21)

�
+(�x21t + �(�x22t � �x21t)� ��x2)2

(�s11=(�s11�s22 � �s12�s21))

�(�x11t � �(�x12t � �x11t)� ��x1)

(�x21t + �(�x22t � �x21t)� ��x2)

(�s12 + �s21)=(�s11�s22 � �s12�s21); (46)

s.t.

� � � � 1;

��x11 + �(��x12 � ��x11) � ��x1 � ��x13 � �(��x13 � ��x12);

��x21 + �(��x22 � ��x21) � ��x2 � ��x23 � �(��x23 � ��x22);

�s111 + �(�s112 � �s111) � �s11 � �s113 � �(�s113 � �s112);

�s121 + �(�s122 � �s121) � �s12 � �s123 � �(�s123 � �s122);

�s211 + �(�s212 � �s211) � �s21 � �s213 � �(�s213 � �s212);

�s221 + �(�s222 � �s221) � �s22 � �s223 � �(�s223 � �s222);

II) min(�x13t � �(�x13t � �x12t)� ��x1)2

(�s22=(�s11�s22 � �s12�s21))

+(�x23t � �(�x23t � �x22t)� ��x2)2

(�s11=(�s11�s22 � �s12�s21))

�(�x13t � �(�x13t � �x12t)� ��x1)

(�x23t � �(�x23t � �x22t)� ��x2)

(�s12 + �s21)=(�s11�s22 � �s12�s21); (47)

s.t.

� � � � 1;

��x11 + �(��x12 � ��x11) � ��x1 � ��x13 � �(��x13 � ��x12);

��x21 + �(��x22 � ��x21) � ��x2 � ��x23 � �(��x23 � ��x22);

�s111 + �(�s112 � �s111) � �s11 � �s113 � �(�s113 � �s112);

�s121 + �(�s122 � �s121) � �s12 � �s123 � �(�s123 � �s122);

�s211 + �(�s212 � �s211) � �s21 � �s213 � �(�s213 � �s212);

�s221 + �(�s222 � �s221) � �s22 � �s223 � �(�s223 � �s222);

III) Substitute `min' with `max' in the problem I,
(48)

IV) Substitute `min' with `max' in the problem II.
(49)

Based on the de�nition of ~St, the crisp matrices ~SL� and
~SU� of the tth sample are computed as follows:
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( ~SL� )t =
�
s111t + �(s112t � s111t)
s211t + �(s212t � s211t)

s121t + �(s122t � s121t)
s221t + �(s222t � s221t)

�
; (50)

( ~SU� )t =
�
s113t � �(s113t � s112t)
s213t � �(s213t � s212t)

s123t � �(s123t � s122t)
s223t � �(s223t � s222t)

�
: (51)

Therefore, to compute the �-level cuts of Wt in the
fuzzy environment, the four non-linear programming
Problems 33-36, given in the previous section, are
rewritten as follows:

I) min� pn+ pnLn(n=(n� 1))� n[Lnj( ~SU� )tj
� Ln(�s11�s22 � �s12�s21)]

+ (n� 1)(�s22(s111t + �(s112t � s111t)

+ �s11(s221t + �(s222t � s221t))

=(�s11�s22 � �s12�s21); (52)

s.t.

�s111 + �(�s112 � �s111) � �s11 � �s113 � �(�s113 � �s112);

�s121 + �(�s122 � �s121) � �s12 � �s123 � �(�s123 � �s122);

�s211 + �(�s212 � �s211) � �s21 � �s213 � �(�s213 � �s212);

�s221 + �(�s222 � �s221) � �s22 � �s223 � �(�s223 � �s222);

II) min� pn+ pnLn(n=(n� 1))� n[Lnj( ~SU� )tj
� Ln(�s11�s22 � �s12�s21)]

+ (n� 1)(�s22(s113t � �(s113t � s112t)

+ �s11(s223t � �(s223t � s222t))

=(�s11�s22 � �s12�s21); (53)

s.t.

�s111 + �(�s112 � �s111) � �s11 � �s113 � �(�s113 � �s112);

�s121 + �(�s122 � �s121) � �s12 � �s123 � �(�s123 � �s122);

�s211 + �(�s212 � �s211) � �s21 � �s213 � �(�s213 � �s212);

�s221 + �(�s222 � �s221) � �s22 � �s223 � �(�s223 � �s222);

III) Substitute `min' with `max' in the problem I,
(54)

IV) Substitute `min' with `max' in the problem II.
(55)

Now, suppose a quality engineer is going to control a
chemical process with two correlated quality character-
istics using fuzzy samples of size 4. Table 1 presents
fuzzy mean vectors and fuzzy variance-covariance ma-
trices of 20 initial samples drawn in order to esti-
mate the process mean vector and variance-covariance
matrix. The fuzzy mean vector and fuzzy variance-
covariance matrix of each sample are computed by
Relationships 40 and 41, respectively.

Now, using Relationships 42 and 43, unbiased
estimators of the fuzzy mean vector and fuzzy variance-
covariance matrix of the process are computed as
follows:

~��X =
�
(262:43; 262:50; 262:55)
(437:00; 437:05; 437:11)

�
; (56)

~�S =
�
(94:056; 119:342; 142:162)
(38:499; 55:207; 68:918)

(38:499; 55:207; 68:918)
(70:825; 82:530; 94:589)

�
: (57)

Now, to calculate the �-level cuts of the T 2
t statistic

in the fuzzy environment, the non-linear programming
Problems 46-49 should be �rstly solved for � 2 [0; 1].
These problems are solved for sample 10, as an exam-
ple, to show how the �-level cuts of T 2

10 are obtained
solving these problems and using Relationship 13.

Table 2 gives the optimal solution of these prob-
lems for various values of � obtained by Lingo 8
software. The last two columns of this table present end
points of the �-level cuts of T 2

10 at the corresponding
�-level obtained by Relationship 13.

The membership function of T 2
10 in the fuzzy

environment can be easily obtained using these end
points, as depicted by Figure 3, where a vertical line
shows the critical value, (2(19)(3)=(80 � 20 � 2 +
1))F2;(80�20�2+1)(0:05) = 6:068.

Now, based on what was mentioned previously,
the membership degree of the in control state of the
process mean is equal to 1, whereas the membership
degree of the out of control state is 0.48. Following this
procedure for all 20 samples, membership degrees of the
in control and out of control states of the process mean
can be obtained in each sampling. These membership
degrees are presented in Table 3. In this table, M.D.
stands for membership degree.

Suppose that according to a managerial decision,
when the membership degree of the in control state of
process mean is equal to 1, the process mean is assumed
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Table 1. Fuzzy mean vectors and variance-covariance matrixes of 20 initial samples.

Sample No. Fuzzy Mean Vector Fuzzy Variance-Covariance Matrix

1 (270.16, 270.22, 270.28)
(445.90, 445.99, 446.06)

(35.233, 66.649, 73.169)
(-12.723, 8.569, 27.067)

(-12.723, 8.569, 27.067)
(20.985, 30.487, 57.548)

2 (259.33, 259.39, 259.44)
(433.41, 433.46, 433.51)

(102.953, 103.692, 29.012)
(69.566, 76.972, 77.666)

(69.566, 76.972, 77.666)
(58.756, 59.293, 67.333)

3 (249.69, 249.73, 249.76)
(427.39, 427,44, 427.49)

(112.357, 171.261, 228.015)
(-28.037, 10.15, 36.015)

(-28.037, 10.15, 36.015)
(78.584, 93.073, 102.368)

4 (270.05, 270.11, 270.16)
(443.83, 443.89, 443.95)

(58.998, 61.398, 76.126)
(49.942, 56.317, 60.005)

(49.942, 56.317, 60.005)
(60.991, 64.541, 73.688)

5 (251.60, 251.67, 251.71)
(431.16, 431.21, 431.30)

(39.026, 68.296, 83.629)
(-2.374, 14.482, 25.647)

(-2.374, 14.482, 25.647)
(56.319, 70.687, 84.584)

6 (259.59, 259.67, 259.72)
(448.60, 448.64, 448.70)

(143.866, 191.573, 208.111)
(58.398, 71.561, 86.684)

(58.398, 71.561, 86.684)
(93.486, 136.7, 151.988)

7 (271.80, 271.91, 271.93)
(442.97, 443.01, 443.06)

(81.811, 138.33, 192.455)
(-16.333, 7.585, 45.338)

(-16.333, 7.585, 45.338)
(27.33, 34.871, 51.367)

8 (266.91, 266.96, 267.01)
(439.17, 439.23, 439.27)

(78.998,86.322,96.114)
(71.395,84.867,90.199)

(71.395,84.867,90.199)
(103.255,108.866,115.655)

9 (270.89, 270.93, 270.97)
(434.00, 434.04, 434.11)

(51.988, 60.504, 79.736)
(36.285, 45.293, 58.366)

(36.285, 45.293, 58.366)
(67.342,81.305,94.876)

10 (250.37, 250.44, 250.49)
(428.96, 429.01, 429.06)

(119.555, 157.568, 180.111)
(-7.369, 15.989, 38.174)

(-7.369, 15.989, 38.174)
(12.222, 26.793, 43.333)

11 (269.94, 270.00, 270.03)
(436.47, 436.51, 436.58)

(103.933, 112.729, 139.222)
(65.388, 88.026, 91.566)

(65.388, 88.026, 91.566)
(80.998, 88.245, 101.355)

12 (256.12, 256.20, 256.25)
(425.38, 425.43, 425.50)

(138.333, 185.394, 202.366)
(46.364, 65.461, 90.366)

(46.364, 65.461, 90.366)
(83.988, 102.207, 127.011)

13 (261.88, 261.92, 261.95)
(445.92, 445.95, 445.97)

(39.399, 87.43, 101.222)
(-2.365, 18.526, 42.842)

(-2.365, 18.526, 42.842)
(63.111, 82.704, 97.355)

14 (263.00, 263.04, 263.09)
(438.09, 438.14, 438.20)

(171.333, 196.692, 221.385)
(11.958, 38.05, 42.088)

(11.958, 38.05, 42.088)
(10.366, 14.549, 16.358)

15 (269.55, 269.60, 269.63)
(438.37, 438.42, 438.45)

(51.969, 56.073, 72.555)
(15.945, 23.13, 26.071)

(15.945, 23.13, 26.071)
(13.924, 17.968, 22.196)

16 (259.75, 259.81, 259.86)
(445.01, 445.08, 445.14)

(94.995, 95.895, 108.943)
(95.954, 102.406, 103.01)

(95.954, 102.406, 103.01)
(111.942, 112.542, 123.333)

17 (256.74, 256.82, 256.89)
(430.90, 430.97, 431.05)

(102.588, 124.51, 153.333)
(78.345, 88.06, 93.756)

(78.345, 88.06, 93.756)
(86.369, 96.807, 102.888)

18 (261.70, 261.78, 261.83)
(430.25, 430.34, 430.43)

(138.999, 160.302, 191.563)
(88.411, 102.114, 129.655)

(88.411, 102.114, 129.655)
(153.333, 177.14, 189.367)

19 (279.72, 279.81, 279.89)
(445.76, 445.83, 445.90)

(128.471, 139.995, 149.388)
(101.836, 116.32, 127.711)

(101.836, 116.32, 127.711)
(127.557, 130.322, 136.887)

20 (249.86, 249.95, 250.01)
(428.37, 428.41, 428.45)

(86.322, 122.224, 156.781)
(49.396, 70.255, 85.955)

(49.396, 70.255, 85.955)
(105.644, 121.5, 132.285)

to be `completely in control' if the membership degree of
the out of control state is less than 0.4. It is assumed to
be `relatively in control' if the membership degree of the
out of control state is between 0.4 and 0.8, otherwise,
it is assumed to be `slightly in control'.

On the other hand, when the membership degree
of the out of control state of process mean is equal
to 1, the process mean is assumed to be `slightly out

of control' if the membership degree of the in control
state is greater than 0.7, otherwise, it is supposed to
be `completely out of control'. These results are shown
in Table 3.

The procedure of computing the membership
function of Wt in the fuzzy environment is exactly
similar to that of T 2

t with this exception that the
non-linear programming Problems 52-55 should be
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Table 2. The optimal solution of non-linear Problems 48-51 for sample 10 and the end points of �-level cuts.

� Optimal Solutions of the Problem The End Points of
i ii iii iiii �-Level Cuts

0.01 4.363 4.322 7.014 6.933 4.322 7.014

0.05 4.395 4.355 6.969 6.892 4.355 6.969

0.1 4.435 4.397 6.817 6.746 4.397 6.817

0.15 4.476 4.44 6.713 6.646 4.44 6.713

0.2 4.518 4.483 6.611 6.549 4.483 6.611

0.25 4.56 4.528 6.512 6.454 4.528 6.512

0.3 4.603 4.573 6.415 6.363 4.573 6.415

0.35 4.647 4.619 6.322 6.273 4.619 6.322

0.4 4.692 4.666 6.23 6.189 4.666 6.23

0.45 4.738 4.713 6.142 6.102 4.713 6.142

0.5 4.784 4.761 6.055 6.02 4.761 6.055

0.55 4.831 4.811 5.971 5.939 4.811 5.971

0.6 4.879 4.861 5.889 5.861 4.861 5.889

0.65 4.929 4.912 5.809 5.785 4.912 5.809

0.7 4.979 4.965 5.731 5.71 4.965 5.731

0.75 5.03 5.018 5.654 5.638 5.018 5.654

0.8 5.081 5.072 5.58 5.567 5.072 5.58

0.85 5.135 5.127 5.508 5.498 5.127 5.508

0.9 5.189 5.184 5.437 5.43 5.184 5.437

0.95 5.244 5.241 5.368 5.364 5.241 5.368

1 5.295 5.295 5.295 5.295 5.295 5.295

Figure 3. Membership function of T 2
10 in fuzzy

environment.

optimized for � 2 [0; 1]. Table 4 presents membership
degrees of both in control and out of control states of
process dispersion, where these membership degrees are
computed using the critical value �2

3(0:05) = 7:81. In
this case, when the membership degree of the in control
state of process dispersion is equal to 1, it is said that

the process dispersion is `completely in control', if the
membership degree of the out of control state is, for
example, less than 0.2. It is also said that process
dispersion is `relatively in control' if the membership
degree of the out of control state is between 0.2 and
0.7, otherwise, process dispersion is said to be `slightly
in control'. On the other hand, when the membership
degree of the out of control state is equal to 1, it is
said that process dispersion is `slightly out of control'
if the membership degree of the in control state is
greater than 0.8, otherwise, it is assumed that process
dispersion is `completely out of control'.

Finally, it is worth comparing the results of this
paper with those obtained from the classic multivariate
variable control charts. Table 5 presents values of
the statistics T 2

t and Wt; t = 1; : : : ; 20, in the crisp
environment, i.e. when � = 1. The in control and
out of control states of process mean and dispersion
are determined using the critical values 6.068 and
7.81, respectively. As is obvious, the process state is
classi�ed to either being in control or out of control
in the crisp environment, i.e. there is no di�erence
between, for example, the samples 9 and 18 when
controlling the process mean, whereas, in the fuzzy
environment process, the mean is slightly in control
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Table 3. Membership degrees of in control and out of control states of process mean.

Sample No. M.D. of in
Control State

M.D. of Out of
Control State

State of Process Mean

1 1 < 0.01 Completely in control
2 1 < 0.01 Completely in control
3 0.75 1 Slightly out of control
4 1 < 0.01 Completely in control
5 1 < 0.01 Completely in control
6 < 0.01 1 Completely out of control
7 1 < 0.01 Completely in control
8 1 < 0.01 Completely in control
9 1 0.92 Slightly in control
10 1 0.48 Relatively in control
11 1 0.26 Completely in control
12 0.55 1 Completely out of control
13 1 0.95 Slightly in control
14 1 < 0.01 Completely in control
15 1 < 0.01 Completely in control
16 0.96 1 Slightly out of control
17 1 < 0.01 Completely in control
18 1 0.14 Completely in control
19 < 0.01 1 Completely out of control
20 1 0.84 Slightly in control

Table 4. Membership degrees of the in control and out of control states of process dispersion.

Sample No. M.D. of in
Control State

M.D. of Out of
Control State

State of Process
Dispersion

1 1 0.03 Completely in control

2 0.5 1 Completely out of control

3 1 0.41 Relatively in control

4 0.83 1 Slightly out of control

5 1 0.1 Completely in control

6 1 0.58 Relatively in control

7 1 0.27 Relatively in control

8 1 0.95 Slightly in control

9 1 0.24 Relatively in control

10 1 0.26 Relatively in control

11 1 0.89 Slightly in control

12 1 0.5 Relatively in control

13 1 0.19 Completely in control

14 0.86 1 Slightly out of control

15 0.97 1 Slightly out of control

16 0.22 1 Completely out of control

17 1 0.54 Relatively in control

18 1 0.74 Slightly in control

19 1 0.98 Slightly in control

20 1 0.45 Relatively in control



162 H. Moheb Alizadeh et al.

Table 5. The values of T 2
t and Wt in crisp environment.

Sample No. T 2
t Wt

State of Process
Mean

State of Process
Dispersion

1 4.024 3.312 In control In control
2 0.650 14.859 In control Out of control
3 6.420 2.054 Out of control In control
4 2.714 8.540 In control Out of control
5 3.973 2.057 In control In control
6 11.947 3.949 Out of control In control
7 3.149 2.595 In control In control
8 0.666 7.698 In control In control
9 5.737 4.238 In control In control
10 5.295 3.605 In control In control
11 3.015 7.566 In control In control
12 6.648 3.357 Out of control In control
13 5.910 1.787 In control In control
14 0.059 8.511 In control Out of control
15 1.949 7.956 In control Out of control
16 6.283 16.132 Out of control Out of control
17 1.919 5.765 In control In control
18 2.871 5.575 In control In control
19 10.077 7.724 Out of control In control
20 5.837 3.639 In control In control

when taking sample 9 and is completely in control when
drawing sample 18.

CONCLUSION

This paper develops multivariate variable control
charts in fuzzy environment, i.e. it was assumed that
each observation in each sample is a canonical fuzzy
number with a triangular membership function. Since
multivariate variable control charts are constructed
using a likelihood ratio test, this test was introduced in
a fuzzy environment, leading to compute membership
degrees of both in control and out of control states
of process mean and dispersion. Therefore, contrary
to the classic multivariate variable control charts, one
is able to consider the process in several intermediate
states, such as `completely in (out of) control', `rel-
atively in (out of) control' and `slightly in (out of)
control'. Moreover, it does not need to defuzzify data in
the proposed approach. Hence, the approach presented
in this paper brought about more 
exibility in process
analysis.
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