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A Cumulative Binomial Chart
for Uni-variate Process Control

M.S. Fallah Nezhad1 and M.S. Owlia1;�

Abstract. In this paper, a control method based on binomial distribution is proposed in which, by
analyzing the cumulated data for a uni-variate quality characteristic, the possible mean shift is detected.
In this method, the domain of observations is �rst divided into some speci�ed intervals and then the number
of observations in each interval is counted. Control statistics are next de�ned using the counted values
based on the approximation methods. Necessary adaptations are made to form an appropriate statistic
for the process monitoring. Using a simulation technique, the performance of the proposed method is
compared with the ones of the optimal EWMA, GEWMA, CUSUM and GLR control charts. The results
show that with an equal in-control average run length, the cumulative Binomial control method performs
better than control charts in detecting a mean shift of any size less than 3�. The analysis is also carried
out for autocorrelated data, showing that the proposed method performs better than other methods for
small to moderate values of autocorrelation coe�cients.
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INTRODUCTION

Statistical Process Control (SPC) aims at quality
improvement through reduction of variation. Control
charts, as the main techniques of SPC, are based on
the assumption that if the process is in the state of
statistical control, the outcomes are predictable. Based
on previous observations, it is possible for a given
set of limits to determine the probability of future
observations falling within these limits [1].

Assume that Yi, i = 1; 2; � � � , be the ith observa-
tion of an i.i.d. process, and at time � which is called a
change point, the probability distribution of Yi changes
from N(�0; �2) to N(�; �2). In other words, the mean
of Yi undergoes a persistent shift of size ���0 at time
� , where we assume that � and � are unknown, �0 and
� are known and, without loss of generality, �0 = 0 and
� = 1. In this case, the process is categorized to be in
an out-of-control condition.

Di�erent approaches have been developed in the
literature to improve the detection of an out-of-control
process. EWMA control charts [2,3] have been used to
improve the detection of a small process shift. As the
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most recent observations can have more information
on process errors than previous observations, we may
assign di�erent weights to the data according to their
recorded time. Weights decrease exponentially with the
age of each point in EWMA control chart. According to
Wu [4], in the one-sided optimal EWMA control chart,
the �rst time (stopping time) the process falls outside
the control limit, c can be written as:

TE(c) = inffn � 1 : jWn(r)j � cg; (1)

where:

Wn(r) =
Wn(r)
�Wn

=
p

(2� r)p
r(1� (1� r)2n)

n�1X
i=1

r(1� r)iYn�i;

Wn(r) = rYn + (1� r)Wn�1(r);

W0(r) = 0:

r is a weighting parameter (0 < r � 1), and �Wn is the
standard deviation of Wn(r). Since the magnitude of
the shift is unknown, by using a method such as the
maximum likelihood procedure to raise the sensitivity
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of the EWMA chart for detecting a change in the
mean [5], we have:

Wn = sup
0<r�1

fjWn(r)jg;

when statistic Wn is more than a constant threshold,
c, then, the process is categorized to be out-of-control.

T (c) = inffn � 1 : Wn � cg: (2)

Since r(1 � r)i, 0 � i � n � 1, 0 < r � 1 gets
its maximum value when r = 1

i+1 , a feasible control
statistic and its stopping times can be de�ned as
follows [5]:

TGE(c) = inf
�
n � 1 : max

1�k�nWn

�
1
k

�
� c
�
: (3)

CUSUM chart is another process control technique
which was �rst introduced by Page [6] and its proper-
ties have been thoroughly studied in the literature (see
e.g. [7]). A CUSUM chart monitors the accumulated
process observations after the process is determined
to be in the out-of-control state. The CUSUM chart
is based on the optimal likelihood ratio test on a
particular shift size at each time. If the mean shift �
is known, the two-sided stopping time of the CUSUM
can be written as:

TC(c) = min
�
T+
C (c); T�C (c)

�
; (4)

where:

T+
C (c)=inffn : S+

n =max(S+
n�1+yn�k; 0);S+

n �cg;
T�C (c)=inffn : S�n =max(S�n�1�yn�k; 0);S�n �cg;

when the mean shift � is unknown.
Siegmund and Venkatraman [8] proposed the

GLR (generalized likelihood ratio) chart in which the
upward stopping time is:

T+
GL(c) = inf

�
n : max

1�k�nUn(k) � c
�
;

Un(k) =
(yn�k+1 + � � �+ yn)

k1=2 : (5)

In this paper, we consider mainly the upward stopping
times, that is T �E(c), T+

GE(c), T+
C (c) and T+

GL(c).

DATA ANALYSIS BY BINOMIAL
DISTRIBUTION

Observations on a quality characteristic of a product
(or service) have a wide potential capacity of getting
di�erent information depending on the type of ap-
proach used for the analysis. The control charting

method is one of the most common statistical meth-
ods to analyze the data for the purpose of process
monitoring; however, this does not mean not using
other valuable information apparently hidden in the
observations. One approach is to apply the Bayesian
rule together with sequential analysis in which, at
any iteration, based on prior probabilities and the
behavior of the present observations, the probability
of the process being out-of-control is calculated. For
example, Marcellus [9] presented a Bayesian analogue
of the Shewhart X-bar chart and compared it with the
CUSUM charts. Fallahnezhad and Niaki [10] presented
an iterative approach to analyze and classify the states
of uni-variate quality control systems. Their approach
starts out with de�ning a measure called belief, and
subsequently the beliefs in the system to be in-control
are updated by taking new observations on the quality
characteristic under study. When the updated beliefs
are out of the control limits, the process is determined
to be in an out-of-control state.

Another approach is to convert the change point
problem to equivalent problems that can be analyzed
easier. For example, we may divide the domain of
observation to some speci�ed intervals. When the pro-
cess is in-control, each interval is expected to contain
observations with equal probabilities, p = 1

s , where s
denotes the number of intervals. In other words, we
partition the domain of observations into s subspaces,
in such a way that the probability of observations being
in each subspace is equal. Thus, when n observations
are gathered, the number of observations that are
in each interval follows a binomial distribution with
parameters, n and p = 1

s . Hence, when the process is
in-control, we have s binomial distribution with equal
parameters of p = 1

s .
When the process changes from the in-control

to out-of-control state, since the de�ned intervals will
contain the observations with di�erent probabilities,
then the parameters of binomial distributions will
change and we encounter a new equivalent problem.
This new problem is to detect when the parameter of
each binomial distribution (each interval) has changed.

NEW CUMULATIVE BINOMIAL METHOD

Assume the domain of standard normal data has been
partitioned into s = 3 subspaces and �(:) denotes
the cumulative standard normal distribution function.
Since �(�0:44) = 1

3 , we consider three intervals for
data as follows;

I1 = (�1;�0:44); I2 = (�0:44; 0:44);

I3 = (0:44;1):

Statistics xi;k, i = 1; 2; 3, k = 1; 2; � � � , are de�ned as
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the number of observations that are in the ith interval
among k gathered observations and are calculated
using the following recursive equation;

xi;k =

8><>:xi;k�1 + 1 If the kth observation is in
interval Ii

xi;k�1 Otherwise
(6)

since
R
x2Ii f(x)dx = 1

3 , thus xi;k i = 1; 2; 3 and k =
1; 2; � � � follows a binomial distribution with parameters�
k; p = 1

3

�
. Now, the statistics xk and S2 are de�ned

as follows:

xk =

3P
i=1

xi;k

3
; S2 =

3P
i=1

(xi;k � xk)2

2
: (7)

Since xi;k follows a binomial distribution with pa-
rameters

�
k; p = 1

3

�
, there are some approximation

rules for evaluating binomial distribution with normal
distribution [11]. One rule is that both kp and k(1�p)
must be greater than 5. Considering the approximation
rules in our problem, we should have k > 15. If the
number of gathered observations is less than 15(k �
15), we suggest using a EWMA control method for the
initial observations.

Wk(r) = rYk + (1� r)Wk�1(r);

15 � k > 0;

W0(r) = 0;

where Yk is the kth observation. When the statistics,
Wk, are more that a constant threshold like c, then the
process is categorized to be out-of-control.

Now in the case of gathering more than 15
observations, k > 15, according to the approximation
rules for evaluating binomial distribution, we conclude
that variables, xi;k, follow a normal distribution with
parameters:

(� = kp; �2 = kp(1� p)) =
�
� =

k
3
; �2 =

2k
9

�
:

Since random variables, xi;k i = 1; 2; 3, follow the same
normal distribution with parameters, � = k

3 , �2 = 2k
9 ,

then we conclude that 2S2

�2 follows a �2 distribution
with 2 degrees of freedom. Thus we have:

P
�

2S2

�2 � �2
1��

�
= �) P

�
2S2 � �2�2

1��
	

= �:
(8)

Since �2 = 2k
9 and S2 =

3P
i=1

(xi;k�xk)2

2 , we have:

P

(
3X
i=1

(xi;k � xk)2 � c0 =
2k
9
�2

1��

)
= �

) P

8>><>>:
3P
i=1

(xi;k � xk)2

k
� c0 =

2
9
�2

1��

9>>=>>; = �; (9)

where � is the probability of type-one error. Since the
values of xi;k, xi;k�1 are not independent, the value of
statistic S2 are not independent in each stage. As a
result, we de�ne a threshold value c0 for

P3
i=1(xi;k�xk)2

k
and, when:P3

i=1(xi;k � xk)2

k
> c0;

then the process is classi�ed to be in out-of-control
condition.

Now, the above control method can be summa-
rized in the following framework:

1. For the initial observations, when k � 15, if
statistics Wk are more than a constant threshold
like c, then the process is categorized to be out-of-
control.

2. In the case of gathering more than 15 observations,
(k > 15), when:P3

i=1(xi;k � xk)2

k
> c0;

then the process is classi�ed to be in an out-of-
control condition.

The value of c and c0 should be determined to
ascertain a given probability of the type-one error and
good chart properties.

SIMULATION STUDY

In the simulation study, after generating standard
normal observations, Y k, in the kth iteration of the
data gathering process, we update the value of Wk andP3

i=1(xi;k�xk)2

k , using Equations 6 and 7. Then, using
the decision making framework introduced in the last
section, we determine the out of control process.

In this paper, all tables compare the simulation
results for various values of the mean shift, �, with
change point, � = 1. The values in parentheses in
all tables are the standard deviations of the simulation
results of the stopping times.

Han and Tsung [5] compared the abilities of
their proposed GEWMA control charts to the per-
formance of the optimal EWMA, Shewhart EWMA,
GLR and CUSUM. We compared the performance
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of the proposed methodology in terms of both in-
control and out-of-control average run lengths with
other control charts. Also when the collected data
on the quality characteristic are auto-correlated, the
performance of the proposed procedure is compared
with the residual-based EWMA chart [12], residual-
based CUSUM chart [13] and triggered CUSCORE
chart [14] for di�erent values of the autocorrelation
coe�cient in an AR(1) process.

In 10000 independent replications, for an intended
ARL0 of 435, the reference value for the optimal
EWMA and CUSUM is taken to be 1, that is � = 1.
r� is the optimal weighted parameter of the optimal
EWMA. It is determined based on minimizing the

SADT� (stationary average delay time), and satis�es
r� = 2a��2=c2; c being the width of the control limits
(see [15]). Srivastava and Wu [16] recommended a� =
0:5117 for minimizing the ARL� (average run length).
The threshold-value of the optimal EWMA, Shewhart
EWMA, GEWMA, GLR and CUSUM methods are
estimated at 2.82, 2.82, 3.29, 3.45 and 4.94 with esti-
mated ARL0 of 437, 430, 438, 439 and 434, respectively.
In the fourth column and last row of Tables 1 and 2,
c and L denote values of the width of the control
limits of the optimal EWMA chart and Shewhart chart,
respectively. The parameters have been adjusted to the
best values of chart parameters [5]. For the proposed
method, we pick c = 0:35 and c0 = 1:334, such

Table 1. The results of ARL1 study for ARL0 = 435.

Shifts Binomial
Approach

Optimal
EWMA

Shewhart
EWMA

GEWMA GLR CUSUM

0 470 (1393) 437 (434) 430 (428) 438 (424) 439 (435) 434 (436)

0.1 122.45 (239) 297 (288) 294 (285) 304 (275) 295 (267) 326 (323)

0.25 34.24 (47.14) 110 (102) 109 (102) 105 (78.8) 108 (80.4) 132 (123)

0.5 12.89 (12.53) 32.4 (25) 32.4 (25) 34.9 (22.7) 36.2 (23.3) 37.2 (30.4)

0.75 6.87 (4.88) 15.7 (9.63) 15.7 (9.63) 17.4 (10.3) 18.1 (10.7) 16.7 (10.8)

1 4.91 (2.53) 9.95 (5.01) 9.92 (5.03) 10.7 (5.92) 11.1 (6.18) 10.3 (5.45)

1.25 3.93 (1.76) 7.24 (3.11) 7.19 (3.14) 7.36 (3.91) 7.58 (3.98) 7.34 (3.32)

1.5 3.17 (1.32) 5.37 (2.18) 5.67 (2.23) 5.41 (2.75) 5.59 (2.8) 5.7 (2.26)

2 2.4 (0.86) 4.03 (1.24) 3.91 (1.35) 3.41 (1.64) 3.54 (1.65) 3.98 (1.28)

3 1.73 (0.54) 2.63 (0.65) 2.29 (0.86) 1.85 (0.83) 1.91 (0.81) 2.55 (0.65)

Parameters C = 0:35,
C0 = 1:334

� = 0:128
C = 2:89

� = 0:128
C = 2:89,
L = 3:9

C = 3:9 C = 3:45 C = 4:94

Table 2. The results of ARL1 study for ARL0 = 865.

Shifts Binomial
Approach

Optimal
EWMA

Shewhart
EWMA

GEWMA GLR CUSUM

0 890.95 (2036.6) 867 (868) 863.00 (864) 866 (853) 862 (840) 868 (877)

0.1 270.43 (395.3) 524 (507) 521.00 (506) 481 (401) 477 (406) 592 (593)

0.25 57.9 (68.47) 155 (144) 155.00 (144) 137 (94.20) 139 (95.80) 200 (188)

0.5 17.96 (17.58) 39.90 (30.70) 39.90 (30.70) 41.60 (25.60) 42.90 (25.90) 46.10 (37.40)

0.75 9.53 (6.98) 18.30 (10.90) 18.30 (10.90) 20.20 (11.55) 20.90 (11.60) 19.20 (12.10)

1 6.65 (3.12) 11.50 (5.53) 11.50 (5.54) 12.30 (6.59) 12.70 (6.68) 11.60 (5.90)

1.25 4.65 (2.29) 8.29 (3.38) 8.28 (3.39) 8.35 (4.31) 8.63 (4.36) 8.25 (3.54)

1.5 3.82 (1.52) 6.50 (2.23) 6.48 (2.35) 6.11 (3.08) 6.31 (3.08) 6.38 (2.40)

2 2.89 (0.94) 4.58 (1.32) 4.53 (1.36) 3.76 (1.75) 3.89 (1.75) 4.42 (1.35)

3 2.04 (0.57) 2.69 (0.69) 2.77 (0.88) 2.01 (0.88) 2.07 (0.85) 2.82 (0.69)

Parameters C = 0:42,
C0 = 1:8

� = 0:111
C = 3:033

� = 0:111
C = 3:033,
L = 4:4

C = 3:5 C = 3:67 C = 5:62
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that ARL0 is 470 in the simulation experiment. It
means that ARL0 is su�ciently large and, according
to ARL0 = 1

� , the probability of type-one error (�) is
su�ciently small. The value of c and c0 has been chosen
to show the good performance of the proposed method.

For the comparison study, we estimate the ARL1
and the standard deviation of the run lengths of the
proposed method, as well as the optimal EWMA, She-
whart EWMA, GEWMA, GLR and CUSUM methods,
by 10000 independent replications in each scenario of
the mean shifts. The shifts are given in multiples of the
process standard deviations and are shown in the �rst
column of Table 1. The second up to the sixth column
of Table 1 show the ARL1 values of the methods under
consideration.

The results of Table 1 illustrate that the Binomial
method performs better than other methods in all
scenarios of mean shifts. In other words, not only the
probability of type-one error, but also the probability
of type-two error associated with the proposed method
is less than their corresponding values in the other
methods (according to formulas ARL1 = 1

1�� and
ARL0 = 1

� [17]). Moreover, the standard deviations
of ARL1 for the proposed methods are generally less
than these values in the other methods.

For the intended ARL0 � 865 in Table 2, we pick
c = 0:42 and c0 = 1:8, such that the ARL0 for the
binomial method is 890 in the simulation experiment.
In this case, we have the same conclusions as from
Table 1. As seen from Tables 1 and 2, the GEWMA
control chart is better than the other methods in
detecting a large mean shift, but for mean shifts less
than 3�, the proposed method is the best.

AUTOCORRELATION

An autoregressive moving average model, denoted as
ARMA(p; q), is often used to represent the autocorre-
lation structure of the data. The general ARMA(p; q)
model is:

xk =
�(B)
�(B)

ak; (10)

where xk are observed data, ak are independent and
identically distributed (i.i.d.) normal variables with
mean zero and variance, �2, and B is the backshift
operator. �(B) and �(B) are referred to as the
AR and MA polynomial, and are parameterized as
�(B) = 1 � '1B1 � '2B2 � � � � 'pBp and �(B) =
1��1B1��2B2 � � ���qBq, respectively. Suppose there
is a deterministic shift which we refer to as a fault in
the process at some time, � . The process data to be
monitored may be represented as:

yk = xk + �fk�� ;
where fk indicates the nature of the fault, and � is the

fault magnitude. For a step mean shift (for example
fk = 1 for k � 0 and 0 otherwise), it is assumed that
the model in Equation 10 is invertible, the case in which
the residuals can be obtained by �ltering yk with the
inverse �lter, �(B)

�(B) , that is:

ek =
�(B)
�(B)

yk = ak + �fk�� ;

where:

fk�� =
�(B)
�(B)

fk�� ;

is referred to as the fault signature [18]. Thus, the
residuals are uncorrelated with time-varying mean,
�fk�� , and variance, �2

e . The value of fk�� depends
on the ARMA model and, hence on the autocorrelation
structure of the data.

The information in the dynamics of the fault
signature can be useful for detecting faults. Traditional
residual-based charts do not make use of this informa-
tion, however. In contrast, a Generalized Likelihood
Ratio Test (GLRT) or a cumulative score (Cuscore)
chart can take this information into account [14].

The Cuscore test, originally introduced by
Fisher [19], was later developed by Bagshaw and
Johnson [20]. The Cuscore test is intended to detect
changes in the parameters of a stochastic model. In
some sense [14], the Cuscore chart is a form of the
popular CUSUM control chart. The one-sided Cuscore
statistic is:

Qk = maxfQk�1 + rk(ek �m); 0g;
where rk and m are referred to as the detector and
reference values, respectively. If Qk exceeds a decision
interval, h, it is concluded that a fault has occurred in
the process.

The model for �rst-order autocorrelation (the
AR(1) model) is the most frequently encountered case
in practice. Therefore, we restrict our work to the
AR(1) case. For this model, the choice of m = (1��1) �2
is nearly optimal, in terms of minimizing the out-of-
control ARL and rk = 1� �1 [21].

We know that the standard residuals, ek�e , follow a
standard normal distribution. Now, after determining
the residuals, we consider three intervals for standard
residuals, as follows:

I1 = (�1;�0:44); I2 = (�0:44; 0:44);

I3 = (0:44;1):

Statistics, xi;k i = 1; 2; 3 k = 1; 2; � � � , are de�ned
as the number of standard residuals that are in the
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ith interval among k gathered observations, and are
calculated using the following recursive equation:

xi;k =

8><>:xi;k�1 + 1 If the kth standard residuals
ek
�e is in interval Ii

xi;k�1 Otherwise (11)

Other mathematical derivations are similar to the pre-
vious section and when one of the following inequalities
is satis�ed, the process is classi�ed to be in an out-of-
control condition.

1. For the initial observations, when k � 15, if the
statistics, Wk, are more than a constant threshold
like c, then the process is categorized to be out-of-
control. Wk is the EWMA statistic of the standard
residuals and will be de�ned by the following
equation:

Wk(r) = r
ek
�e

+ (1� r)Wk�1(r);

15 > k > 0;

W0(r) = 0;

2. In the case of gathering more than 15 observations,
k > 15, when:P3

i=1(xi;k � xk)2

k
> c0;

then the process is classi�ed to be in an out-of-
control condition.

The value of c and c0 should be determined to
ascertain a given probability of the type-one error.
Results of the simulation study for di�erent values
of the autocorrelation coe�cient have been shown in
Tables 3, 4 and 5.

Table 3 shows the results of a comparison study
for � = 0:5. As seen, the proposed method performs
better than the other methods in mean shifts that are
in the interval (0; 2�), and for shifts more than 2�, the
Cusum methods for residuals are the best, respectively.

Also, the results in Table 3 denote that the
standard deviation for ARL1 values in the proposed
method is less than the ones in other methods.

Table 4 shows the results of the comparison for
� = 0:9. In this case, for shifts less than 0:1�, the
EWMA method is the best; the Cuscore chart being
the best for detecting shifts between 0:1� and 1:5�.
For other mean shifts, the proposed method is the best.
We know that when a shift, �, occurs in the mean of
an autocorrelated variable, then the value of shift in
the residuals will be (1� �)� [22]. Thus, the results of
the simulation for case � = 0:9 was expected, because
shift 0:1� occurs in the mean of residuals, which is so
much less than the real mean shift in the process. Also,
the standard deviation of ARL values in the Cuscore
method is the minimum for all mean shifts.

The results for � = 0:1 have been shown in
Table 5. In this case, for all shifts less than 2�, the
proposed method performs better than other methods
and also its standard deviation is the least. For other
mean shift, the Cuscore method has the best perfor-
mance. Because of the low value of the autocorrelation,
this result is expected.

Table 3. The results of ARL0 and ARL1 study for � = 0:5.

Shifts Binomial
Approach

EWMA for
Residuals

Cuscore CUSUM for
Residuals

0.00 451.00 (1437) 421.00 (417) 420.00 (435) 430.00 (426)

0.10 156.63 (300) 257.00 (259) 295.00 (267) 301.00 (283)

0.25 46.04 (62) 134.47 (122) 144.532 (130) 185.201 (173)

0.50 17.68 (17) 67.328 (55) 67.282 (50) 89.979 (80)

0.75 9.87 (8) 36.8727 (30) 36.677 (26) 48.2835 (41)

1.00 7.29 (4.7) 23.682 (16) 26.22 (15) 29.3704 (23)

1.25 5.30 (3.1) 17.4242 (11) 17.944 (10) 19.8704 (14)

1.50 4.5 (2.25) 13.1241 (7) 14.493 (7) 14.2967 (9)

2.00 3.64 (1.26) 4.93 (4) 3.9 (4) 8.98 (5)

3.00 3.07 (0.38) 3.32 (2) 1.8 (2) 4.05 (2.5)

Parameters C = 0:35,
C0 = 1:334

� = 0:1
L = 2:51

L = 3:5
m = 0:25
r = 0:5

H = 4:25
m = 0:5
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Table 4. The results of ARL0 and ARL1 study for � = 0:9.

Shifts Binomial
Approach

EWMA for
Residuals

Cuscore CUSUM for
Residuals

0.00 520.00 (1423) 418.00 (425) 443.00 (405) 426.00 (419)

0.10 488.63 (1324) 386.00 (397) 393.00 (35) 391.00 (383)

0.25 470.24 (1301) 330.35 (334) 285.02 (322) 358.11 (348)

0.50 315.13 (824) 268.02 (269) 201.48 (255) 301.27 (301)

0.75 184.09 (413) 211.28 (212) 146.79 (209) 256.89 (249)

1.00 123.84 (251) 177.96 (169) 115.40 (170) 217.42 (209)

1.25 90.14 (168) 144.45 (131) 88.62 (135) 183.75 (179)

1.50 72.18 (127) 116.64 (111) 72.97 (110) 160.25 (152)

2.00 47.1 (76) 85.93 (72) 82.9 (47) 118.98 (113)

3.00 26.2 (34) 51.32 (39) 55.8 (26) 63.05 (63)

Parameters C = 0:35,
C0 = 1:334

� = 0:1
L = 2:51

L = 1:45
m = 0:05
r = 0:1

H = 4:25
m = 0:5

Table 5. The results of ARL0 and ARL1 study for � = 0:1.

Shifts Binomial
Approach

EWMA for
Residuals

Cuscore
CUSUM for

Residuals

0.00 501.00 (1464) 425.00 (437) 445.00 (405) 428.00 (417)

0.10 141.50 (288) 189.4.00 (187) 232.00 (222) 391.00 (383)

0.25 40.01 (57) 69.01 (62) 100.30 (40) 101.25 (97)

0.50 14.55 (15) 27.51 (21) 33.63 (14) 35.33 (30)

0.75 7.66 (6.1) 15.83 (8.3) 16.84 (8.2) 17.22 (12)

1.00 5.17 (3.24) 10.57 (5.2) 10.54 (5.1) 10.44 (6)

1.25 4.51 (2.9) 7.70 (3.1) 7.64 (3.1) 7.49 (4)

1.50 3.63 (1.8) 6.43 (2.8) 5.93 (2.5) 5.74 (3)

2.00 2.9 (0.99) 4.39 (1.5) 4.15 (1.4) 3.98 (1.6)

3.00 1.9 (0.59) 2.84 (1.1) 2.67 (1.1) 2.54 (1.1)

Parameters C = 0:35, C0 = 1:334
� = 0:1
L = 2:51

L = 4:2
m = 0:45
r = 0:9

H = 4:25
m = 0:5

SENSITIVITY ANALYSIS ON THE
NUMBER OF INTERVALS

Although, in our study, the domain of the data was
divided into three intervals, a question may be raised
on the optimal number of partitioning intervals. To test
the sensitivity of results to the number of intervals, a
new simulation study is carried out. The simulation is
tested using s = 2, 3, 4 intervals, and the ARL values
are estimated using 10000 independent replications in
each scenario of the mean shifts.

As can be seen from Table 6, changing the

number of the intervals has a low e�ect on the per-
formance of the proposed approach in detecting an
out-of-control process. Also, it can be seen that
among simulated cases, partitioning the domain of
the data into s = 3 intervals has a slightly better
performance.

From a theoretical point of view, we know that
in control process problems, three cases may occur:
a negative shift, a positive shift, or no change in the
process mean. Thus, dividing the domain of the data
into three intervals is reasonable because each interval
corresponds to a state of the process.
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Table 6. The results of the sensitivity analysis on the number of intervals.

Shifts
Binomial

Approach,
s = 2

Binomial
Approach,
s = 3

Binomial
Approach,
s = 4

0.00 440.00 ()1342 470 (1393) 458.00 (1345)

0.10 202 (362) 122.45 (239) 171.00 (313)

0.25 46.0 (65) 34.24 (47.14) 41.30 (56)

0.50 13.68 (15) 12.89 (12.53) 13.63 (13)

0.75 7.27 (5) 6.87 (4.88) 7.21 (5.2)

1.00 5.09 (2.7) 4.91 (2.53) 5.09 (2.67)

1.25 4.02 (1.79) 3.93 (1.76) 4.01 (1.7)

1.50 3.3 (1.3) 3.17 (1.32) 3.33 (1.3)

2.00 2.54 (0.84) 2.4 (0.86) 2.53 (0.8)

3.00 1.07 (0.38) 1.73 (0.54) 1.67 (0.1)

Parameters C = 0:36, C0 = 1:5
C = 0:35
C0 = 1:334

C = 0:36
C0 = 1:55

CONCLUSIONS

In this paper, we proposed a binomial distribution
approach to analyze the cumulated data for a uni-
variate quality characteristic. In this approach, we
used a EWMA control method for initial observations.
After gathering enough observations, we used an ap-
proximation rule for evaluating binomial distribution
with normal distribution and, then, de�ned a statistic,
S2, that is the standard deviation of random normal
variables, xi;k i = 1; 2; 3. Since the probability
distribution function of S2 is a �2 distribution with two
degrees of freedom, we determined a constant control
threshold for statistic S2, such that when the updated
statistic, S2, in di�erent iterations of data gathering
process is more that a control threshold, the process is
determined to be in out-of-control state.

Simulation experiments were carried out to com-
pare the performance of the proposed method with ones
of the optimal EWMA, GEWMA, CUSUM and GLR
control charts. The results showed that the cumulative
binomial method would improve the performance of
process control techniques by decreasing the probabil-
ity of type-one and type-two errors.

The primary assumption of this research was the
independency of observations. For autocorrelated data,
however, the proposed method was adapted for the
residuals that were i.i.d variables. For this case, the
results of the simulation study showed that the pro-
posed method performs better than other methods for
small to moderate values of autocorrelation coe�cients.

We used an EWMA control method for initial
observations. However, testing other methods is a
good point for future research. Also, determining the
optimal time of changing from the EWMA method

to the binomial approach is another good point for
research. Moreover, a sensitivity analysis on the values
of c and c0 is required.
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