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An Exponential Cluster Validity Index for
Fuzzy Clustering with Crisp and Fuzzy Data

M.H. Fazel Zarandi1;�, M.R. Faraji1 and M. Karbasian2

Abstract. This paper presents a new cluster validity index for �nding a suitable number of fuzzy
clusters with crisp and fuzzy data. The new index, called the ECAS-index, contains exponential
compactness and separation measures. These measures indicate homogeneity within clusters and
heterogeneity between clusters, respectively. Moreover, a fuzzy c-mean algorithm is used for fuzzy
clustering with crisp data, and a fuzzy k-numbers clustering is used for clustering with fuzzy data. In
comparison to other indices, it is evident that the proposed index is more e�ective and robust under
di�erent conditions of data sets, such as noisy environments and large data sets.

Keywords: Fuzzy clustering; Cluster validity index; Fuzzy c-mean algorithm; Fuzzy k-numbers
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INTRODUCTION

Cluster analysis is the art of partitioning a given
data set into similar clusters (groups, subsets, classes),
where the partitions should have the following two
properties:

(a) Homogeneity within the clusters,
(b) Heterogeneity between clusters [1].

There are two scopes for clustering: hard clustering
and fuzzy clustering. In hard clustering, each point of
a data set is assigned to exactly one cluster, while in
fuzzy clustering, each point of the data set belongs to
several clusters as a matter of degree in [0, 1]. One of
the most popular fuzzy clustering methods is Fuzzy c-
Means (FCM), proposed by Dunn [2], and then general-
ized by Bezdek [3]. The fuzzy c-means clustering model
was the �rst model that was computationally e�cient
and powerful and, therefore, represents the best-known
and used clustering approach [4]. Given an unlabeled
data set, X = fx1; x2; � � � ; xng � <p (n and p are the
number and dimension of data, respectively), the FCM
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partitions the data set into c clusters by minimizing the
evaluation function, Jm(U; V ) =

Pc
i=1
Pn
j=1 u

m
ijkxj �

vik2, where uij is the membership degree of data point
xj to the ith cluster, vi is the cluster centroid of cluster
i, and kxj � vik2 is the Euclidian distance between xj
and vi.

Bezdek [3] presented the FCM clustering algo-
rithm as follows.

Algorithm

Fuzzy c-means clustering method (FCM): Given an
unlabeled data set, X = fx1; x2; � � � ; xng � <p (n and
p are the number and dimension of data, respectively),
the number of clusters (c), the weighting exponent
(m) and the termination criterion ("), this method
partitions data set X into c desired clusters with high
homogeneity within and heterogeneity between clus-
ters, while minimizing Jm(U; V ). It should be noted
that the FCM algorithm depends on the initial seed,
U0 (initial membership degree matrix), m, and c. The
fuzzy c-mean clustering algorithm [3] is demonstrated
in Figure 1.

In the FCM algorithm, �rst we need to determine
the suitable number of clusters. In literature, many
studies in dealing with this problem are available
and, so, there are many cluster validity indices in
this regard. Compactness and separation are two
criteria for the clustering evaluation and selection of
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Figure 1. Fuzzy c-means clustering algorithm (FCM).

an optimal clustering scheme [5]. The variation of
data within clusters indicates compactness and iso-
lation between clusters indicates separation, respec-
tively.

However, since there is no speci�ed relation to
determine these criteria besides which the structure
of the data set is usually unknown, then the various
indices are proposed. The experimental results on well-
known data sets show some of these indices cannot
quantify the compactness and separation of data. Also
some, regarding huge data, cannot recognize the actual
number of clusters correctly, and a number of indices
in noisy environments are not robust and have di�erent
results [5,6].

In this paper, we present a new cluster validity
index called an Exponential Compactness And Sepa-
ration (ECAS) index. It uses normalized exponential
compactness and separation measures. This index
was inspired by other indices, especially the proposed
index by Wu and Yang [7], and it will be discussed
later in detail. Also, the proposed index is modi�ed
to be able to validate fuzzy clustering with fuzzy
data.

The rest of the paper is organized as follows: the
next section reviews several cluster validity functions.
The following two sections present the proposed valid-
ity index for fuzzy clustering with crisp and fuzzy data,
separately. Subsequently, the Experimental Result

Section uses several well-known arti�cial data sets and
image data sets to test and validate the proposed
index with crisp and fuzzy data. In the �nal section,
conclusions and future works are presented.

CLUSTER VALIDITY INDICES

In this section, we review some cluster validity indices
used for fuzzy clustering. To be more familiar with the
indices, we refer to the work of Wang and Zhang [5]
and Kim et al. [8], which review many fuzzy cluster
validity indices. Table 1 lists a number of popular
cluster validation indices, which are evaluated in our
study.

Validity indices in a fuzzy environment can be
divided into three groups [5]:

1. Indices involving only the membership values,
2. Indices involving the membership values and data

set,
3. Other approaches for fuzzy cluster validity.

From Table 1, VPC , VPE and VMPC belong to group 1,
and VFS , VXB , VK , VFHV , VPBMF , VPCAES and
VW belong to group 2. However, some studies such
as Falasconi et al. [9] consider another group for
indices based on fuzzy hypervolume and density; this
classi�cation includes indices like VFHV .
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The �rst group of indices involves only the mem-
bership degrees, but not the data set itself. The main
advantage of this group is its suitable computational
e�ort. However, some of the drawbacks are:

1. The monotonous dependency on the number of
clusters,

2. The sensitivity to fuzzi�er m, and, most impor-
tantly,

3. The lack of a direct connection to the geometry of
the data, since it does not use the data itself [5].

The second group includes indices that use both
compactness and separation measurements, but due

Table 1. Ten validity indices for fuzzy clustering.

Validity Index Function Description Optimal Cluster
Number

Partition coe�cient [3,10] VPC = 1
n

cP
i=1

nP
j=1

u2
ij maxfVPC(U; ci;m)g

Partition entropy [11,12] VPE = � 1
n

cP
i=1

nP
j=1

uij log uij minfVPE(U; ci;m)g
Modi�cation of partition
coe�cient [13]

VMPC = 1� c
c�1 (1� VPc) maxfVMPC(U; ci;m)g

Fukuyama and Sugeno [14] VFS =
cP
i=1

nP
j=1

umijkxj � vik2 �
cP
i=1

nP
j=1

umijkvi � �vk2 minfVFS(U; ci;m)g

Xie and Beni [15] VXB = Jm(U;V )=n
Sep(V ) =

cP
i=1

nP
j=1

umijkxj�vik2
nmin
i6=j kvi�vjk2

minfVXB(U; ci;m)g

Kwon [16] VK =

cP
i=1

nP
j=1

u2
ijkxj�vik2+ 1

c

cP
i=1
kvi��vk2

min
i6=j kvi�vjk2

minfVK(U; ci;m)g

Fuzzy hypervolume
validity [17]

VFHV =
cP
i=1

[det(Fi)]1=2,

Fi =

nP
j=1

umij (xj�vi)(xj�vi)T
nP
j=1

umij

minfVFHV (U; ci;m)g

Pakhira-Bandyopadhyay-Maulik [18] VPBMF =

0@ 1
c �

nP
j=1
kxj�vik

cP
i=1

nP
j=1

umijkxj�vik2
� cmax
i;j=1

kvi � vjk
1A2

minfVPBMF (U; ci;m)g

Partition coe�cient and
exponential separation [7]

VPCAES =
cP
i=1

nP
j=1

u2
ij=uM

� cP
i=1

exp(�min
k 6=i fkvi � vkk2=�T g)

uM = min
1�i�cf

nP
j=1

u2
ijg,

�T =

cP
l=1
kvl��vk2
c

maxfVPCAES(U; ci;m)g

W -index [6]

VW (U; V ) = V arN (U;V )
SepN (c;V ) =

�
V ar(U;V )
V armax

�.�
Sep(c;U)
Sepmax

�0
where:

V ar(U; V ) =

"
cP
i=1

nP
j=1

uij
�

1� exp
�� kxj�vik2�

��
=n(i)

#
�� c+1

c�1

�1=2

� =
�Pn

j=1 kxj��vk2
n

��1

Sep(c; U) = 1 max
i6=j [ max

xk2X
min(uik; ujk)]

V armax = max|{z}
c

V ar(U; V ),

Sepmax = max|{z}
c

Sep(c; V )

minfVW (U; ci;m)g

xj is the jth data point, vi are cluster centers, ci is the number of clusters, �v is the grand mean of all data, xj
and uij is the membership value of data xj of class ci.
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to the variety of the used measurements, they have
di�erent results. With respect to [7], VFS does not use
a good separation measurement (

Pc
i=1
Pn
j=1 u

m
ijkvi �

�vk2) for the data structure, because kvi � �vk2 is not
a good separation measure for cluster i. On the
other hand, in VXB , the extension of VXB(VK) and
VPBMF indices, and the used separation, measures,
min
i 6=j kvi � vjk2 and cmax

i;j=1
kvi � vjk2, are considered for

all clusters, not for each cluster [7].
Now, we focus our attention on VPCAES and VW .

The partition coe�cient and exponential separation
index (PCAES) proposed by Wu and Yang [7] contains
two factors to validate compactness and separation for
each cluster. The PCAES index for each cluster i is
de�ned as follows:

PCAESi =
nX
j=1

u2
ij=uM

� exp
�
�min

k 6=i fkvi � vkk2g=�T
�
; (1)

where:

uM = max
1�i�c

8<: nX
j=1

u2
ij

9=; ;

and:

�T =

cP
l=1
kvl � �vk2
c

:Pn
j=1 u

2
ij=uM is a Normalized Partition Coe�cient

(NPC) and is used to measure the compactness of
cluster i relative to the most compact cluster that has
the compactness measure uM . Also, exp(�min

k 6=i fkvi �
vkk2g=�T ) is an exponential separation measure for
cluster i and is used to measure the distance between
cluster i and its closest cluster. The large PCAESi
value means that cluster i is compact inside and
separated from other (c� 1) clusters.

Finally, Wu and Yang de�ned the PCAES valid-
ity index as follows [7]:

VPCAES = PCAES(c) =
cX
i=1

nX
j=1

u2
ij=uM

�
cX
i=1

exp
�
�min

k1i

�kvi � vkk2	 =�T� : (2)

The PCAES validity index takes advantage of the ex-
ponential function in the separation measure. An opti-
mal c� can be found by solving max2�c�n�1 PCAES(c)

to produce a best clustering performance for data
set X.

Also, in the literature of fuzzy cluster validity,
Zhang et al. [6] presented a new index called w index
or VW . This index is de�ned as follows:

VW (U; V ) =
V arN (U; V )
SepN (c; V )

=

�
V ar(U;V )

V armax(U;V )

��
Sep(c;V )

Sepmax(c;V )

� ; (3)

where:

V ar(U; V ) =

2664
cP
i=1

nP
j=1

uij
�

1� exp
��kxj�vik2�

��
n(i)

3775
�
�
c+ 1
c� 1

�1=2

; (4)

Sep(c; U) = 1�max
i 6=j

�
max
xk2X min(uik; ujk)

�
; (5)

V armax = max|{z}
c

V ar(U; V );

Sepmax = max|{z}
c

Sep(c; V );

� =

0BB@
nP
j=1
kxj � �vk2
n

1CCA
�1

:

In VW ,
�
c+1
c�1

�1=2
is used only to adjust the value of the

compactness measure or variation measure. VW takes
advantage of the exponential function to validate the
compactness measure (V ar(U; V )), and also it involves
the distance between the data point and cluster centers,
which is necessary for determining the dissimilarity of
the data points. The experimental results in Wang
and Zhang [5], and Zhang et al. [6] on the well-
known arti�cial data sets have shown that VW has one
of the best performances compared to other indices.
On the other hand, in the experimental results of
Wang and Zhang [5], and Zhang et al. [6], it can
be observed that VPCAES incorrectly recognized the
suitable cluster numbers in Dataset 5 2, Dataset 6 2
and Dataset 10 2. These three data sets are simulated
and used in this paper and, therefore, are shown in
Figure 2.

By focusing our attention on these data sets, it
can be observed that Dataset 6 2 and Dataset 10 2,
visually, have well-separated clusters, but some of
these clusters are located near to each other and,
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Figure 2. The PCAES index incorrectly recognized the suitable number of clusters for these data sets.

therefore, their cluster centers are close together.
So, these factors, with respect to de�nitions of the
compactness and separation measure, emphasize likely
VPCAES practiced weak in compactness measure. In
fact, this vision is almost true (almost, because sep-
aration and compactness measures to validate clus-
tering should be considered concurrently), because
VPCAES only uses membership values to validate
the compactness measure, and does not consider the
structure of data, i.e. the relative distance between
the data set and cluster centers are not taken into
account.

On the other hand, the advantages of taking the
exponential function have been understood in earlier
work on cluster analysis [6]. In this research, we de�ne
a new compactness measure instead of the compactness
measure in VPCAES , in an exponential type, which
can be led to fortify VPCAES . We also reformed the
separation measure in VPCAES that led to a new cluster
validity index.

PROPOSED CLUSTER VALIDITY INDICES

So far, a variety of validity indices have been proposed
for fuzzy clustering by di�erent scholars. These varia-
tions have two main reasons:

(a) In spite of the existence of two characteristics to
obtain the actual number of clusters, compactness
and separation, a speci�ed relation or equation
does not exist to determine the value of these
characteristics.

(b) The nature of data (whose dimensions are often
more than 2, and so whose structures are un-
known).

In this section, a new cluster validity index is
proposed, called an Exponential Compactness And
Separation (ECAS) index. This index contains two
terms quantifying compactness and separation, respec-
tively. In the next subsection, we explain the proposed
index and its related behavior.

De�nitions

A compactness measure must consider the variation or
scattering of data within a cluster. On the other hand,
as already mentioned, the advantages of taking the ex-
ponential function has been known in cluster analysis.
Especially, Zhang et al. [6] presented an exponential
compactness measure ( i.e., V ar(U; V ) in Equation 4)
that has been discussed in the previous section. With
this background, and almost similar to components of
V ar(U; V ) (i.e. �, n(i) and adjusted value), we propose
an exponential compactness measure called ECcomp
(Exponential Compactness), as follows:

ECcomp(c) =
cX
i=1

nX
j=1

umij

exp
�
�
�kxi � vjk2

�comp
+

1
c+ 1

��
; (6)

where �comp is de�ned as the sample covariance for
cluster i, i.e.:

�comp =

nP
k=1
kxk � �vk2
n(i)

;

with:

�v =

nP
j=1

xj

n
;

where n(i) is the number of data in cluster i, which
can be determined by related methods (e.g. using any
t-conorm in fuzzy logic between membership degrees of
a datum in c clusters). The power of ECcomp contains
two terms:

kxi � vjk2=�comp ;

and:

1
c+ 1

:
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The �rst term is related to the compactness within
clusters and the last term is only used to adjust
the value of the compactness measure, which will be
clari�ed in the next subsection. Also, �comp plays the
role of factor � of the compactness measure used in
VW [6] as a positive constant, but �comp is a relative
positive value that adjusts with the amount of data in
cluster i (i.e., n(i)).

The separation measure must consider the isola-
tion distance between fuzzy clusters. In the previous
section, we focused on VPCAES and discussed its advan-
tages and shortcomings in compactness and separation
measures. It is found that in VPCAES , the separation
measure does not work well in some cases. Therefore,
in this research, a new separation measure called ESsep
(Exponential Separation) is de�ned as follows:

ESsep(c)=
cX
i=1

exp
�
�min

i 6=k

�
(c� 1)kvi�vkk2

�sep

��
;
(7)

where �sep is de�ned as the total average distance
measure for all clusters, i.e.:

�sep =

cP
l=1
kvl � �vk2
c

:

It is easy to verify that ESsep is a modi�ed version
of the separation measure used in VPCAES ; in fact,
we only added a multiplier (c � 1) in the numerator.
The separation measure of VPCAES only uses the
minimum distance between cluster center i and other
(c�1) cluster centers to quantify the isolation between
clusters, but the added multiplier in ESsep leads to the
use of this minimum distance instead of all (c�1) other
distances.

Finally, we normalize and then compose these two
terms to create the ECAS-index as follows:

VECAS = ECAS(c) =
ECcomp(c)

max
c

(ECcomp(c))

� ESsep(c)
max
c

(ESsep(c))
: (8)

A large value for the compactness measure over c
indicates a compact partition, and a small value for
the separation measure over c indicates well-separated
clusters. Eventually, an optimal cluster number is
obtained by maximizing ECAS(c) over 2 � c � cmax.

Explanation

More explanations of VECAS are as follows:

(a) Since 0 < exp(�z) � 1, (8z 2 <+), then 0 �
ECcomp(c) �Pc

i=1
Pn
j=1 u

m
ij and 0 � ESsep(c) �

c. Therefore, in a huge data set, the value of
ECcomp(c) is very large and the value of ESsep(c)
is low (because

Pc
i=1
Pn
j=1 u

m
ij is very large and c

is small). Hence these di�erent scales need to be
normalized, so in the VECAS index, ECcomp(c) and
ESsep(c) should be divided to max

c
(ECcomp(c))

and max
c

(ESsep(c)) for c = 2; 3; � � � ; cmax for
normalization, respectively.

(b) When c approaches the number of data samples, n,
then kxi � vjk2 ! 0, n(i)! 1 and 1

c+1 decreases.
Therefore, the power of ECcomp(c) approaches 0
and so ECcomp(c) increases. On the other hand,
when c! n, then each cluster center is equivalent
to one data, i.e. xj ! vj and so the power of
ESsep(c) increases. Therefore, ESsep(c) increases
and restrains an increase in the VECAS value in
total.

(c) From Equation 6, we can rewrite ECcomp(c) as a
multiplication of two terms as follows:

ECcomp(c)=

24 cX
i=1

nX
j=1

umij exp
�
�kxi�vjk2

�comp

�35
�
�
exp

�
� 1
c+ 1

��
: (9)

In Equation 9, exp
�� 1

c+1

�
is only used to adjust

the value of the compactness measure. This ad-
justment can be cleared with a numerical example,
as shown in Figure 3.

Assume the �rst term of Equation 9,Pc
i=1
Pn
j=1 u

m
ij exp

���kxi�vjk2�comp

��
, is denoted by

funccomp(c) and the second term is denoted by
adjcomp(c). We cluster the above numerical ex-
ample using the FCM algorithm over 2 � c �
100, and calculate adjcomp(c), funccomp(c) and
ECcomp(c). Figure 4 shows their values, and

Figure 3. A data set with 4 clusters and 2 dimensions
(DataSet 4 2).
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Figure 4. Compactness measure and its terms for Dataset 4 2 over 2 � c � 100. (a) Adjust value; (b) compactness
function; and (c) compactness measure.

it can be observed that the ECcomp(c) curve
is the adjusted curve of funccomp(c). For ex-
ample, funccomp(2) = 151:1929 is greater than
funccomp(4) = 144:8754, but after the ad-
justment, ECcomp(2) = 108:3345 is less than
ECcomp(4) = 118:6139. In fact, 4 clusters is the
optimal number of clusters for this case.

(d) As already mentioned, the proposed separation
measure is a modi�ed version of the separation
measure de�ned in VPCAES [7], with this di�er-
ence; its numerator is multiplied by (c � 1). In
fact, VPCAES , for separation of cluster i, only
uses the minimum of Euclidean distances between
cluster i and other clusters, while VECAS uses the
summation of c�1 distances by using the minimum
distance instead of all distances.

(e) Both ECcomp(c) and ESsep(c) take advantage of
the exponential function to measure distances.
The motivations behind and advantages of taking
the exponential function is that an exponential
operation is highly useful in dealing with clas-
sical Shannon entropy [19,20] and cluster analy-
sis [6,7,21]. Especially, Wu and Yang [21] had
claimed that an exponential-type distance gives a
robust property, based on the inuence function
analysis.

MODIFIED CLUSTER VALIDITY FOR
CLUSTERING WITH FUZZY DATA

In this section, we modify VECAS for fuzzy clustering
with LR-type fuzzy data. This type of fuzzy data
can be collected in a matrix called the LR fuzzy data
matrix:

~X � f~xij = (mij ; �ij ; �ij)LR : i = 1; I; ; j = 1; Jg;
where i and j denote the units and fuzzy variables,
respectively; ~xij = (mij ; �ij ; �ij)LR represents LR
fuzzy variable j observed on the ith unit where mij
denotes the mean, and �ij and �ij indicate the left and
right spread, with the following membership function:

�(~uij) =

8>><>>:
L
�
mij�~uij
�ij

�
~uij � mij (�ij > 0)

R
�

~uij�mij
�ij

�
~uij � mij (�ij > 0)

(10)

where L(wij) (and R(wij)) is a decreasing \shape"
function <+ to [0; 1] with L(0) = 1; L(wij) < 1
for all wij > 0, 8i, j; L(wij) > 0 for all wij < 1,
8i, j; L(1) = 0 (or L(wij) > 0 for all wij , 8i, j,
and L(+1) = 0) [4,22]. In LR-type fuzzy data, the
Triangular Fuzzy Numbers (TFNs) are most commonly
used. For a LR-type fuzzy data, ~x = (m~x; �~x; �~x), if
L(x) = R(x) = 1� x, then ~x is called a TFN, i.e.:

�(x) =

(
1� m~x�x

�~x
for x � m~x(�~x > 0)

1� m~x�x
�~x

for x � m~x(�~x > 0)
(11)

In the literature, there exist several research papers in
fuzzy clustering with fuzzy data. Yang and Ko [23]
presented a FKNC or FCNC model (fuzzy k-numbers
clustering model) that uses a square distance between
each pair of fuzzy numbers. Yang and Liu [24]
extended the FKNC model and proposed a FCMCCFV
model for high-dimensional fuzzy data (a fuzzy c-means
clustering model for a conical fuzzy vector). Hung
and Yang [25] proposed an AFKNC model (alternative
fuzzy k-numbers clustering model) that it is a modi�ed
version of the FKNC model that uses an exponential
type of FKNC distance. Also, the FWCMC model
(weighted fuzzy c-means clustering model) proposed by
D'Urso and Giordani [26] considers fuzzy data with a
symmetric LR membership function. They introduced
a weighted square distance measure between fuzzy
data.

However, we use the square distance and FKNC
model presented by Yang and Ko [23], which is a
popular model in the literature of fuzzy clustering
with fuzzy data [4]. Yang and Ko de�ned a new
type of distance, dLR or dY C for any ~X and ~Y with
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~X = (m~x; �~x; �~x) and ~Y = (m~y; �~y; �~y) as follows [23]:

d2
LR( ~X; ~Y ) = (m~x �m~y)2 + ((m~x � l�~x)

� (m~y � l�~y))2 + ((m~x + r�~x)

� (m~y + r�~y))2; (12)

where l =
R 1

0 L
�1(!)d(!) and r =

R 1
0 R
�1(!)d(!).

Here, l and r are parameters that summarize the
shape of the left and right tails of a membership
function. Then each value of l and r gives a particular
membership function; especially when l = r = 1

2 , we
have a TFN [4].

Therefore, the FKNC model for LR-type Fuzzy
data is characterized as [23]:

min:
cX
i=1

nX
j=1

umijd
2
LR(~xj ; ~vi) =

cX
i=1

nX
j=1

umik
�
(mj �mci)2

+ [(mj � l�j)� (mci � l�ci)]2

+ [(mj + r�j)� (mci + r�ci)]
2
i
; (13)

where ~vi indicates the ith cluster center and
(mci; �ci; �ci) the mean and left and right spreads of
~vi. By solving the optimization of the above objec-
tive function by means of the Lagrangian multiplier
method, the following iterative solutions are obtained:

uij =
1

cP
k=1

h
LRd2

ij

LRd2
ik

i2=m�1 ;

mci =

nP
k=1

umki [3mk � l(�k � �ci) + r(�k � �ci)]
3

nP
k=1

umik
;

and:

�ci =

nP
k=1

umik [mci + l�k �mk]

l
nP
k=1

umik
;

�ci =

nP
k=1

umik[mk + r�k �mci]

r
nP
k=1

umik
:

With respect to these iterative solutions, the FKNC
model must start with an initial fuzzy partition (for
more details see [23]).

With this background, the compactness and sep-
aration measures of VECAS for fuzzy clustering with
fuzzy data are modi�ed and presented as follows:

The compactness measure can be modi�ed as:

EC 0comp(c) =
cX
i=1

nX
j=1

umij

exp
�
�
�
d2
LR(~xj ; ~vi)
�0comp

+
1

c+ 1

��
; (14)

where:

�0comp =

nP
k=1

d2
LR(~xk; ~�v)

n(i)
;

and ~�v = (m~�v; �~�v; �~�v) is a sample mean of all data and
m~�v =

Pn
k=1 mk
n , �~�v =

Pn
k=1 �k
n and �~�v =

Pn
k=1 �k
n [25].

Also, the separation measure is modi�ed as fol-
lows:

ES0sep(c)=
cX
i=1

exp
�
�min
i1k

�
(c�1)d2

LR(~vi; ~vk)
�0sep

��
;
(15)

where:

�0sep =

cP
t=1

d2
LR(~vt; ~�v)

c
:

Finally, the modi�ed ECAS index for fuzzy clustering
with fuzzy data is de�ned as follows:

V 0ECAS = ECAS0(c)

=
EC 0comp

max
c

(EC 0comp)
� ES0sep

max
c

(ES0sep)
: (16)

Similar to the crisp data, a suitable number of clusters
for fuzzy data is obtained by maximizing V 0ECAS over c.
Since we modi�ed VECAS with a change in its distance
and used the fuzzy data instead of the crisp one, it is
expected that V 0ECAS inherits the properties of VECAS .
It can be seen, in our numerical examples, that V 0ECAS
is robust to noise points as well as VECAS .

In the next section, to test and demonstrate the
e�ectiveness of the proposed index for recognizing the
suitable number of clusters, we use a number of well-
known arti�cial data sets, image data sets and fuzzy
data sets that exist in the literature.

EXPERIMENTAL RESULTS

This section presents the e�ectiveness of VECAS and
V 0ECAS by applying some widely used data sets, and
by making an extensive comparison with a number of
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Figure 5. The nine arti�cial data sets.

prede�ned cluster validity indices. We used the FCM
algorithm (initialed with U0) where the initializing
values are fuzzi�er m = 2, termination criterion
" = 10�5, and distance function k:k is the Euclidean
distance. Moreover, we choose cmin = 2 and cmax =

p
n

based on Bezdek's suggestion [27].

Crisp Data Sets

In this subsection, to test VECAS and then to compare
it with the aforementioned cluster validity indices, we
used nine arti�cial and eight well-known data sets.
The nine arti�cial data sets are called DataSet 3 3,
DataSet 4 3, DataSet 4 2, DataSet 5 2, DataSet 6 2,
DataSet 10 2, DataSet 15 2, Dataset 6 2 + 100 noise
and Dataset 10 2+100 noise, some of which are similar
to data sets used by Wang and Zhang, and Zhang et
al. [5,6]. The names of the �rst seven data sets imply

the number of clusters actually present in the data and
the number of dimensions, respectively. For example,
for the DataSet 15 2 data, there are �fteen clusters and
the dimension is 2. Also, 100 noise points are added
to the Dataset 6 2 and Dataset 10 2, which are called
Dataset 6 2+100 noise and Dataset 10 2+100 noise.
The aim of this work is to demonstrate the robustness
of the ECAS-index. These data sets are demonstrated
in Figure 5, respectively.

Eight well-known data sets with Iris, Wis-
consin Breast Cancer (WBCD), Wisconsin Diag-
nostic Breast Cancer (WDBC), Wine, Bupa Liver
Disorder, Buttery, Example 1 and Example 2 are
used as the test data sets for cluster validity in-
dex comparisons. Table 2 shows these data sets
and their characteristics. The �rst �ve data sets
are real life data sets and are freely available
at: http://www.ics.uci.edu/�mlearn/databases.html .
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Table 2. The eight well-known data sets with their
characteristics.

Data Sets
Number of

Samples
Dimension Best

Partitioning

Iris 150 4 2 or 3

WBCD 683 9 2

WDBC 569 30 2

Wine 178 13 3

Liver Disorder 345 6 2

Buttery 15 2 2

Example 1 16 2 3

Example 2 16 2 4

The last three data sets are similar to data sets used
by Wang and Zhang [5]. The data sets are normal-
ized in experiments. Also, Buttery, Example 1 and
Example 2 data are shown in Figure 6, respectively.

Experimental Results for Crisp Data

This subsection presents the experiment results of the
abovementioned numerical examples to compare the
proposed VECAS with the other ten indices, VPC , VPE ,
VMPC , VFS , VXB ,VK , VPBMF and VFHV , VPCAES and
VW . The optimal number of clusters is found in the
maximum value of VECAS and these optimums for the
aforementioned data sets are demonstrated in Figure 7.
Table 3 shows the optimal number of clusters in the
seventeen data sets, and the results found by the ten
indices. Column 2 of Table 3 indicates the optimal
number of clusters, i.e., C�, and the other columns
show the results obtained using each index. In this
table, the last column shows the results of VECAS .
As observed, VECAS correctly recognizes the optimal
number of clusters for all data sets.

The experimental results show that VPE correctly
recognizes the optimal number of clusters for 8 data
sets, VPC , VFS and VXB for 11 data sets, VK and

VPCAES for 12 data sets, VFHV for 15 data sets,
VMPC for 16 data sets, and VPBMF , VW and VECAS
for all data sets. It should be noted that among
these indices, VECAS , VW , VMPC , VFS , VFHV and
VPBMF are robust to noise. Hence the proposed
index, VECAS , is one of the most e�ective indices
considered.

Also in testing VECAS for large data sets, we apply
it to image segmentation. Image segmentation refers to
the process of partitioning a digital image into multiple
regions (sets of pixels), typically used to locate objects
and boundaries. One method that has been developed
for image segmentation is the clustering method. Each
pixel of a color image in HSV color space corresponds
to hue, saturation and value (these three features in
HSL color space are hue, saturation and lightness). So
a color image of size m � n pixels corresponds to an
array of size m � n and three dimensions. Figure 8
shows the six color images in image processing that are
called Penguin, Water Lily, Im 1, Im 2, Im 3 and Im 4.
The data sets corresponding to these images are shown
in Figure 9. The Penguin, Im 1, Im 2, and Im 3 images
are of size 128� 128 in pixels, and the Water Lily and
Im 4 images are of size 81 � 123 in pixels. Also it is
necessary to state that the �rst two color images are
also used by Zhang et al. [6].

Because
p
n is very large and, practically, in image

data, the optimal number of clusters is found in c� <<p
n, then we selected, randomly, cmax = 50, which is

equivalents to earlier works such as Zhang et al. [6].
Table 4 summarizes the results of partitioning

the six abovementioned image data sets, which were
obtained using the aforementioned cluster validity in-
dices. Among these data sets, Im 2 is remarkable
(Figures 10c and 10d). In Im 3, clearly the three
clusters are the optimal number of clusters, as shown
in Figure 10c, but its data set (Figure 9c) cannot
demonstrate this issue. The results of the image
segmentation show that VECAS correctly recognize the
optimal number of clusters for �ve image data sets,
VPBMF and VFS for 3 data sets, and the other indices
do not have considerable output. Thus in huge data

Figure 6. The three well-known data sets.
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Figure 7. The maximum value of index corresponds to the optimal number of clusters.
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Table 3. Values of c obtained by each cluster validity indices for seventeen data sets.

Dataset C� VPC VPE VMPC VFS VXB VK VFHV VPBMF VPCAES VW VECAS

Dataset 3 3 3 2 2 3 3 2 2 3 3 3 3 3

Dataset 4 3 4 4 2 4 4 4 4 4 4 4 4 4

Dataset 4 2 3 or 4 2 2 2 11 13 4 14 3 4 4 4

Dataset 5 2 5 4 2 5 5 4 4 5 5 4 5 5

Dataset 6 2 6 6 6 6 6 4 4 6 6 4 6 6

Dataset 10 2 10 2 2 10 10 10 10 10 10 4 10 10

Dataset 15 2 15 15 17 15 15 15 15 15 15 15 15 15

Dataset 6 2

+100 noise
6 6 2 6 6 4 4 6 6 4 6 6

Dataset 10 2

+100 noise
10 2 2 10 10 7 7 10 10 4 10 10

Iris 2 or 3 2 2 2 5 2 2 3 3 2 3 2

WBCD 2 2 2 2 12 2 2 2 2 2 2 2

WDBC 2 2 2 2 4 2 2 2 2 2 2 2

Wine 3 2 2 3 13 3 3 3 3 3 3 3

Live disorder 2 2 2 2 4 2 2 18 2 2 2 2

Buttery 2 2 2 2 2 2 2 2 2 2 2 2

Example 1 3 3 3 3 3 3 3 3 3 3 3 3

Example 2 4 4 4 4 4 4 4 4 4 4 4 4

Figure 8. Original color images to image segmentation.
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Figure 9. The six image data sets correspond to images in Figure 8.

Table 4. Values of c obtained by each cluster validity indices for image data sets.

Dataset C� VPC VPE VMPC VFS VXB VK VFHV VPBMF VPCAES VW VECAS

Penguin 3 2 2 2 3 2 2 6 2 2 3 2

Water Lily 3 2 2 2 5 2 2 9 3 3 2 3

Im 1 3 2 2 2 6 3 3 7 3 2 2 3

Im 2 3 2 2 2 3 2 2 2 4 2 2 3

Im 3 3 2 2 2 3 2 2 2 3 2 2 3

Im 4 3 2 2 2 11 2 2 11 4 2 3 3

sets, VECAS is obviously a superior index in comparison
with others.

Experimental Results for Fuzzy Data

In this subsection, to test V 0ECAS , we use three fuzzy
data sets that are available in literature regarding fuzzy
clustering with fuzzy data: Taiwanese tea data set,
Example.1 and Example.2. The Taiwanese tea data
set is used by Hung and Yang [25] and De Oliveira
and Pedrycz [4], and Example.1 and Example.2 data
sets are used by Hung and Yang [25]. These data sets
are demonstrated in Figure 11. The Taiwanese tea
data set is drawn by Hung and Yang [25], regarding
the evaluation of 70 kinds of Taiwanese tea, and with
respect to four attributes: appearance, tincture, liquid

color and aroma. Taiwanese tea evaluation comes un-
der the subjective judgment of experts at �ve di�erent
quality levels: perfect, good, medium, poor and bad.
Finally, Hung and Yang [25] generated 70 triangular
fuzzy numbers with �ve di�erent clusters. Therefore,
a cluster validity index must recognize �ve clusters
for the Taiwanese tea data set. On the other hand,
in Example.1, there are 20 triangular fuzzy numbers,
which are shown in Figure 11b, and intuitively c = 2
is a suitable number of clusters for them. Moreover,
Example.2 consists of the same 20 fuzzy numbers with
an added point that can be regarded as a noise or
an outlier [25]. We implemented the FKNC model
and V 0ECAS on these three data sets in order to test
V 0ECAS . The optimal number of clusters is found in the
maximum value of V 0ECAS . The results of the clustering
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Figure 10. Segmentation results of the fuzzy c-means clustering algorithms.

Figure 11. Three triangular fuzzy data sets for fuzzy clustering with fuzzy data.
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Figure 12. The maximum value of index corresponds to the optimal number of clusters.

of three fuzzy data sets are demonstrated in Figure 12.
In fact, V 0ECAS in three data sets correctly recognized
the optimal number of clusters.

CONCLUSIONS AND FUTURE WORK

In this paper, an exponential cluster validity index,
based on compactness and separation measures, has
been proposed. Compactness indicates variation of the
data within clusters and separation indicates isolation
between clusters. The numerical performance of the
proposed index was compared with some well know
cluster validity indices, using di�erent types of numer-
ical and real data sets. Moreover, it was applied to
color image segmentation to show the performance of
its validity. Next, the proposed cluster validity index
was extended to be capable of validating clustering
with fuzzy data. In both proposed indices, it is shown
that they have good performance in determining the
suitable number of clusters, and are robust in noisy
environments.

This paper has some potential future work. In
this research, the value of weighting exponent m is
assumed to be prede�ned. Developing a new strategy
to select an appropriate m, based on the behavior
of the index, needs further work. Moreover, in this
research, the norm of the proposed index is Euclidian.
Generating a heuristic to select the suitable norm,
based on the situation of the data set, needs more
investigation.
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