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An Accurate Guidance Algorithm
for Implementation Onboard

Satellite Launch Vehicles

M. Marrdonny1 and M. Mobed1;�

Abstract. An algorithm for guiding a launch vehicle carrying a small satellite to a sun synchronous
LEO is presented. Before the launch, a nominal path and the corresponding nominal control law for
the entire journey are computed. For each sampling instant during the guided ight, a linear equation
approximately relating the di�erences between the actual and nominal values is considered, and a Least-
Squares formula using data from on-line state measurements is applied to compute the actual control.
The coe�cient matrices of the Least-Squares formula can be determined by o�-line computations. The
method enjoys simplicity of implementation by onboard computers, as well as robust accuracy against
strong winds and uncertainties in thrust magnitude.
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INTRODUCTION

Arti�cial satellites are placed into Earth orbits using
missiles known as \carrier rockets or launch vehicles".
Some of the issues concerning commercial launch ve-
hicles have been addressed in [1,2]. Today, launching
satellites has become a vast and multifaceted endeavor
with research continuing on its various aspects includ-
ing rocket guidance.

In a previous work of the authors, a guidance
algorithm was proposed in which the so-called path-to-
go and the corresponding control were recomputed at
the juncture at which the rocket left the atmosphere
and entered the exoatmosphere where atmospheric
disturbances were supposed to be negligible or nonex-
istent [3]. The main attribute of the recomputed path
and control was that they were used as the nominal
trajectory to be followed throughout the rest of the
ight, and no further corrections were introduced once
the new path-to-go and control became available. The
algorithm was shown through simulations to work very
well in the absence of exoatmospheric disturbances.
However, since disturbances of various kinds do exist
during all phases of the ight, it stands to reason
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to expect that even during the exoatmospheric ight,
corrections to thee control could be used to improve
precision. The present paper aims at continually
providing such corrections in a manner as e�ciently
as possible from the standpoint of the computational
burden imposed upon the onboard computer. The
term \computational burden" has been used rather
loosely here to refer to any one or more of the
concepts of computational e�ort, computational com-
plexity, computational load etc. Given the nature of
the problem under discussion, the number of sam-
pling periods needed to obtain one sample of the
control signal has been used as a measure of the
computational burden. In the algorithm presented
in this article, the control signal to be applied dur-
ing the kth sampling period is computed during the
(k � 1)th, according to a myopic policy, and this
continues throughout the exoatmospheric phase until
the moment of orbit insertion. As such, it takes
only one sampling period to obtain each sample of
the control signal. This is to be compared with [3]
where several sampling periods were needed to com-
plete the updating computations, which were done
only once at the beginning of the exoatmospheric
phase.

Guiding a satellite launch vehicle traditionally
involves an open-loop phase for the endoatmospheric
part, and a closed-loop phase for the exoatmospheric
part of the ight. Moreover, it is sometimes helpful
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to distinguish between the trajectory selection and the
control issues of guidance. The trajectory, the control,
or both, may be optimal or near-optimal, with respect
to appropriate criteria. In this regard, the Linear
Tangent Law (LTL) has been shown to have certain
desirable properties [4,5].

Guidance computations fall into two categories:
O�-line and on-line. \O�-line" refers to computations
performed before the take-o� of the launch vehicle.
Usually, in o�-line computations, an optimal or near-
optimal trajectory and control law are found for the
entire rocket mission before it leaves the launch pad.
The trajectory thus determined is treated as the
nominal or reference trajectory, and the corresponding
control law may be applied to track and keep the
vehicle near the reference trajectory during the guided
ight. In �nding the nominal trajectory and control,
o�-line computations must also take into account the
structural limitations of the rocket's fuselage, which
is longitudinally strong and laterally weak. This can
be accomplished either by introducing constraints into
the underlying thrust-controlled optimization, as in for
example [6-9], or by using pitch-over and gravity-turn
maneuvers, as in [10]. References [6,11-15] discuss some
of the methods of computing the optimal trajectory.
Methods of tracking the reference trajectory can be
found in [7,8,11,14]. Some of the methods of imple-
menting entirely closed-loop guidance laws have been
discussed in [9,15-17]. These methods involve on-line
computations.

The term \on-line" refers to computations per-
formed by an onboard computer after the take-o�. On-
line guidance algorithms tend to be computationally
demanding and challenging to implement on small- to
medium-powered computers.

An important consideration, especially in the case
of on-line guidance, is the availability of computation
results in a short, de�nite time. However, convergence
does not always hold in computations involving in�nite
sequences of iterations. Even in cases where conver-
gence does hold, its rate may be di�cult to determine
or estimate. Thus, algorithms that employ in�nite
sequences of iterations for on-line computations seem
to be of limited interest.

It is now possible to summarize the overall scheme
as follows: O�-line computations determine a nom-
inal trajectory-and-control pair for the entire launch
mission by using gravity-turn and LTL, respectively,
for the endoatmospheric and exoatmospheric phases.
During the vertical launch and the pitch-over maneu-
ver, control is open-loop and it is as found previously
by the o�-line computations. The nominal trajectory
remains in force for the entire ight period. However,
control becomes closed-loop during the gravity-turn
maneuver, and it stays closed-loop throughout the rest
of the ight. The closed-loop control at each sampling

instant is realized via a gain matrix calculated by Least-
Squares methods devised to minimize error at the next
sampling instant.

The paper has been organized in seven sections.
First three dimensional model of the launch vehicle is
described. Then, the nominal ight path and the pro-
posed guidance algorithm for closed-loop operation are
introduced and its convergence is studied. Following
that, simulation results of the proposed algorithm for
a two-stage launch vehicle are discussed and, �nally,
concluding remarks are given.

PHYSICAL MODEL

Models of the launch vehicle, gravitational �eld and
atmosphere are exactly the same as those used in [3]
from which this section has been taken almost verbatim
and presented here for ease of reference.

A two-stage launch vehicle is considered. Each
stage is powered by a liquid-propellant engine. The
engines cannot be throttled. However, Thrust Vector
Control (TVC) is possible. By design, the �rst stage
separates when its fuel is depleted and the second
stage ignites. The objective is to insert a research
satellite with a mass of 10-kg into a sun synchronous
low Earth orbit at a height of 200 km. The three-
degree-of-freedom equations of motion relative to the
Earth are [18]:

_� =
V cos  cos 

r cos �
; (1)

_� =
V cos  sin 

r
; (2)
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1
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(T cos��D �mg sin 
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_ = � 1
mV cos 

[(T sin�+ L) sin�+ wE sin 

� wN cos ]� V
r

tan � cos  cos 

+ 2!(cos � tan  sin � sin �)

� r!2

V cos 
cos � sin � cos ; (6)

_m = �ci: (7)

In Equations 1-7, � is the longitude, � is the latitude, h
is the altitude above mean sea level, V is the velocity,
 is the ight path angle,  is the heading angle, m
is the sum of the masses of the launch vehicle and
the payload, r is the distance between the launch
vehicle and the Earth centre, g is the local gravitational
acceleration, ! is the rotational velocity of Earth, � is
the angle of attack, � is the velocity roll angle, and
T , D, L are the thrust, drag and lift magnitudes,
respectively. Furthermore, wE , wN and wU are wind
force components in the east, north and up directions.
Thus, wind force components have been introduced
explicitly in the equations and not implicitly through
aerodynamic forces. This allows for a more direct
evaluation of the algorithm's performance against wind
disturbances. Figure 1 depicts the coordinate frame in
which the equations have been written.

The thrust model is given by:

T = Tvac � pAe; (8)

where Tvac is the engine thrust in vacuum, p is
atmospheric pressure, and Ae is the exit area of the
engine.

The air density and pressure are modeled as the
following exponential functions of altitude [18]:

� = �s exp
�
� h
h1

�
; (9)

p = ps exp
�
� h
h2

�
; (10)

Figure 1. Coordinate frame.

where �s and ps are the air density and pressure at sea
level, � and p are those at altitude h, and h1 and h2
are positive constants. The Earth is assumed to be a
rotating, spherical body with an inverse squared law
of gravity �eld. The speed of sound is given using the
perfect gas law:

a =
r
�
p
�
; (11)

where a is the speed of sound and � is the ratio of
speci�c heat of air. The dynamic pressure, q, the drag,
D, and the lift, L, are given by:

q =
1
2
�V 2; (12)

D = qAbCD; (13a)

L = qAbCL: (13b)

In the above, CD is the drag coe�cient, CL is the lift
coe�cient, and Ab is the aerodynamic reference area of
the launch vehicle. The drag and lift coe�cients, CD
and CL, are modeled as polynomials in � during the
�rst stage:

CD = CD0(M) + CD1(M)�+ CD2(M)�2

+ CD3(M)�3; (14)

CL = CL1(M)�: (15)

Wind force components are given by:

wE =
1
2
��2
EALCD; (16a)

wN =
1
2
��2
NALCD; (16b)

wU =
1
2
��2
UALCD; (16c)

where �E , �N and �U are the east, north and up
components of the wind speed, and AL is the lateral
cross section area of the launcher.

After staging, the vehicle will y at hypersonic
velocities and aerodynamic force coe�cients will be
independent of the Mach number. The aerodynamic
models for the second stage are:

CD = CD0 + CD2�2; (17)

CL = CL1�+ CL2�j�j: (18)

The drag and lift coe�cients in Equations 14, 15,
17 and 18 are obtained by applying interpolation
techniques to tabular data [19]. In the dense part of the
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Table 1. Numerical value of the launch parameters.

Parameter Symbol Value Unit

Mass burning rate in the �rst stage ci 120 kg/s

Mass burning rate in the second stage ci 12 kg/s

Thrust magnitude in the �rst stage Tvac 352800 N

Thrust magnitude in the second stage Tvac 35280 N

Initial mass of launcher and payload m(t0) 28174 kg

Mass of launcher and payload after separation of the �rst stage 504 kg

Mass of fuel of the �rst stage 23880 kg

Mass of fuel of the second stage 420 kg

Payload (satellite) mass 10 kg

Exit velocity of gases from launcher motor 2940 m/s

Air density constant h1 8240 m

Air pressure constant h2 8240 m

Orbit altitude (nominal value) h(T ) 200 km

Earth's radius 6377940 m

Earth's rotation rate ! 7:2722� 10�5 rad/s

Staging time 199 s

Engine exit area Ae 2.7 m2

Lateral cross sectional area of launcher AL 15.0 m2

Cross sectional area of launcher Ab 5.0 m2

Air density at sea level �s 1.29 kg/m3

Air pressure at sea level ps 101326 Pa

Ratio of speci�c heats of air � 1.4 -

Constant in Equation 26 !p 0.05 Rad/s

End of vertical launch time tv 20 s

Burnout time 234 s

End of pitch-over time 23 s

End of gravity-turn maneuver 165 s

Gravitational acceleration at sea level 9.78 m/s2

atmosphere, the thrust and velocity vectors are almost
aligned; therefore, the pitching moments are assumed
negligible for both stages. Numerical values for the
launch vehicle parameters are listed in Table 1.

The control variables are the angle of attack �
and the velocity roll angle �. Therefore, the guidance
system must have two outputs. As a matter of fact,
in a model slightly more elaborate than Equations 1
to 7, � and � would themselves appear as state
variables rather than controls. But, even then, � and �
would have relatively fast dynamics and, thus, a good
approximation may be obtained by considering them
as control variables.

The singularities in Equations 5 and 6, due to

V = 0 at the take-o� instant and  = 90 deg during
the vertical launch, are removed by modifying the
equations of motion for the vertical launch segment,
as follows:

_� = 0; (19)

_� = 0; (20)

_h = V; (21)

_V =
1
m

(T �D �mg) + r!2; (22)

_ = 0; (23)
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_ = 0; (24)

_m = �ci: (25)

NOMINAL PATH

The target orbit is a near-circular sun synchronous
LEO at an altitude of 200 km above mean sea-level.
The launch site is at latitude of 35 deg. The launch
program consists of four segments in chronological
order, as follows:

� Segment 1 is the vertical ight. During this
segment, control variables are kept at zero and the
vehicle gains both altitude and speed. Take o�
occurs at a time instant when the launch site reaches
the target orbit plane. This yields a planar nominal
trajectory. Numerical values for the duration of
Segment 1 and the altitude and speed at its end
are, respectively, 20 s, 430 m and 44 m/s.

� Segment 2 is the pitch-over maneuver during which
the angle of attack is increased slightly from zero
according to the following equation:

�nom(t) =
�
2
� nom(t)� !p(t� t�): (26)

The ight path angle decreases slightly and by the
end of this segment it will be less than, but very
close to, 90 deg. to prepare the vehicle for its
next maneuver. The pitch-over maneuver lasts for 3
seconds. Numerical values for the time-independent
constants, !p and t� , are determined by trial-and-
error through simulation.

� Segment 3 is the gravity-turn maneuver during
which the control variables, � and �, are kept at
zero to eliminate lateral aerodynamic forces and
moments. Flight path angle, , decreases, and the
vehicle completes its journey across the dense part
of the atmosphere [10]. By the end of Segment 3, the
vehicle will have gained altitude, velocity and a ight
path angle su�cient for the insertion maneuver to
begin.

� Segment 4 begins as soon as the vehicle leaves
the atmosphere. Here, the aerodynamic forces
and moments are negligible, and control through
� and � becomes possible. O�-line computations
corresponding to this segment use, through the
following equation, the Linear Tangent Law (LTL)
of guidance for its simplicity, e�ectiveness and near
optimality:

tan[�nom(t) + nom(t)] = at+ b: (27)

Parameters a and b are determined by satisfying two
�nal conditions of the powered ight, namely, �nal

height and �nal ight path angle:

hnom(T ) = 200; 000 m;

nom(T ) = 0 deg. (28)

Final time T is the fuel depletion time of the second
stage engine. The nominal value of �(t) is identically
zero throughout the powered ight, �nom(t) � 0,
because the launch site and hence the entire nom-
inal trajectory are both on the target orbit plane.
Using Newton's method, the numerical values of a
and b of Equation 27 have been found to be a =
�0:022739 s�1 and b = 4:657243. This concludes
the last segment of o�-line computations for nominal
guidance.

CLOSED-LOOP GUIDANCE ALGORITHM

The nominal path and its computation described in
the previous section refer to ideal conditions where
no disturbances are present. In reality, disturbances
can distract the vehicle and even divert it from the
nominal plane, resulting in nonplanar motion. Thus,
in order to insert the satellite into its prescribed orbit
as precisely as possible, both variables � and � should
be used for control purposes, particularly during the
exoatmospheric phase. A control law meeting this
requirement will be devised directly in discrete time.
However, it would be helpful to �rst write the original
continuous-time state-space equations more compactly
in a vector form as follows:

_x(t) = �[x(t);u(t);n(t)];

_xnom(t) = �[xnom(t);unom(t);nnom(t)];

y(t) = `[x(t)];

ynom(t) = `[xnom(t)]; (29)

where nnom(t) � 0 and the subscript \nom" every-
where refers to the nominal path. The state vector is
x = [� � h V   m]0, the control vector is u = [� �]0,
the disturbance vector is n = [wE wN wD]0; � : R12 !
R7 and ` : R7 ! R3 are �xed known nonlinear
functions, and y , [h  (cos )(cos �)]0 is the output
vector in which (cos )(cos �) = cos i and i is the orbit
inclination. Function � is a composition of functions
given by Equations 1-7 and several others, such as r, T ,
CL, CD, p, �, q etc. Disturbance-induced perturbations
in state, output and control are given by:

�x(t) , x(t)� xnom(t);

�y(t) , y(t)� ynom(t);

�u(t) , u(t)� unom(t): (30)
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Because of structural constraints, the angle of at-
tack during Segment 3 is kept near zero, hence, the
guidance algorithm is almost open-loop during this
segment, which is a substantial part of the path.
The impact of disturbances is compensated mainly in
Segment 4.

The analysis and design pertaining to Segment 4
are in discrete time. For the continuous-time processes
of state x(t), output y(t), control u(t) and disturbance
n(t), the notations x[k];y[k];u[k] and n[k] will be used
to represent x(tk);y(tk);u(tk) and n(tk) where tk =
k�t;�t is the �xed known sampling period, and k is
an integer. At each sampling time during Segment 4,
input vector u is determined so as to minimize a metric
between y[k+1] and ynom[k+1]. To that end, y[k+1] is
�rst written as function F of state vector x[k], control
vector u[k] and disturbance vector n[k]:

y[k + 1] = F(x[k];u[k];n[k]): (31)

On linearizing F in Equation 31, by using Jacobians
evaluated at the nominal path and using discrete-time
versions of Equation 30, one arrives at the follow-
ing expression for �y[k + 1] as a linear function of
�x[k];�u[k] and n[k]:

�y[k + 1] =
@F
@x

(Z(k))�x[k] +
@F
@u

(Z(k))�u[k]

+
@F
@n

(Z(k))n[k]; (32)

where Z(k) , (xnom[k];unom[k];0) denotes the nomi-
nal path and controls.

On replacing the zero-mean random quantity n[k]
in Equation 32 by its mean, that equation is further
simpli�ed as follows:

�y[k + 1] =
@F
@x

(Z(k))�x[k] +
@F
@u

(Z(k))�u[k]:
(33)

Designing the control law is accomplished through
minimization of errors. To compute u[k], the control
to be applied at time t, one seeks to minimize, by an
appropriate choice of �u[k], the quantity

jj�y[k + 1]jj2 = jj@F
@x

�x[k] +
@F
@u

�u[k]jj2;
a measure of error at time t. However, the matrix
@F
@u (Z(k)) may in some cases be ill-conditioned or
singular. There is also the question of di�erences
among the output variables in their orders of mag-
nitude, importance and dimension. Thus, instead of
minimizing jj�y[k + 1]jj2, one minimizes jjQ�y[k +
1]jj2 + jjru�u[k]jj2 by choosing �u[k] where ru is a
Tikhonov regularization parameter and Q a scaling

matrix. Treating this as a Least-Squares problem, the
solution is given in terms of �x[k] as:

�u[k] = �(A0[k]A[k] + r2
uI)�1A0[k]B[k]�x[k]; (34)

where:

A[k] = Q
@F
@u

(Z(k)); (35a)

B[k] = Q
@F
@x

(Z(k)): (35b)

The Jacobians in Equations 35 are computed o�-line
and numerically for every sampling time. Vector
�x[k] is computed through �x[k] = x[k] � xnom[k]
where, of course, nominal state xnom[k] is available
from o�-line computations and the actual state, x[k],
is measured during the ight using various sensors
and measurement devices. The �x[k] thus found
is substituted in Equation 34 and �u[k] is, thereby,
computed. The control to be applied at time k is
obtained from u[k] = �u[k]+unom[k] where, again, the
nominal control is known from o�-line computations.
In consideration of structural limitations, the control
variables are restricted to �1 deg while the launch
vehicle is inside the atmosphere. The scaling matrix
was taken to be Q = diag [10�5 1 1] in simulations.

AN ANALYSIS OF ERROR

The results presented in the next section show how the
closed-loop guidance algorithm succeeds in reducing,
practically to zero, by the time of orbit insertion, the
error between actual and nominal quantities of interest,
which consist of altitude, h, ight path angle, , and
orbit inclination, i. This is essentially the question of
convergence to zero of the di�erence between actual
and nominal outputs: limt!1�y(t) = 0, where
�y(t) = y(t) � ynom(t). Clearly, one would like such
convergence to hold not just for a few simulation runs
corresponding to a few choices of initial state errors,
but for all possible initial state errors, �x(0), where
�x(0) = x(0)� xnom(0). Thus, one would ideally like
to satisfy the following property or condition:

lim
t!1�y(t) = 0 8�x(0) 2 B; (36)

where B is an open ball of nonzero radius centered
at the origin of R7. The time t = 0 in �x(0)
in Equation 36, refers to the time of leaving the
atmosphere after which there will be no forces of
atmospheric disturbance. An analogy exists between
Condition 36 and the de�nition of global asymptotic
stability for a nominal solution of a dynamical system.
However, there exists also an important distinction
between the two. Condition 36 is concerned with
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the convergence of �y(t), whereas the said notion
of stability traditionally addresses the convergence of
�x(t) = x(t) � xnom(t). Whether Condition 36 is
regarded as a condition of convergence or of stability,
and proposing such distinctions do not seem to be
particularly fruitful anyway, it is hard to achieve an
analytical proof of Condition 36, even with strong
ad hoc assumptions. Therefore, we shall settle for
the modest goal of computationally verifying a more
tractable, yet important aspect of Condition 36, as
explained in the sequel.

To begin, a discrete-time version of Equations 29
is obtained for the actual trajectory by applying Euler's
forward approximation, _x � x(t+�T )�x(t)

�t , at each
epoch of discrete time, t = tk = k�t:

x[k + 1]� x[k]
�t

= �(x[t];u[t];n[t]);

y[k] = `(x[k]): (37)

The approximation sign in Equations 37 may be re-
placed by an equality sign in order to get the following
set of state and output equations in discrete time:

x[k + 1] = 
(x[k];u[k];n[k]);

y[k + 1] = F(x[k];u[k];n[k]); (38)

where:


(x;u;n) def= �t:�(x;u;n);

F(x;u;n) def= `(
(x;u;n)); (39)

or F = `�
. Function F in Equations 38 and 39 is the
same as the one already encountered in Equation 31.
Needless to say, x[k] and y[k] in Equations 38 and
39 and all subsequent equations only approximately
represent x(k�t) and y(k�t), respectively. Such
approximation is a result of having substituted in
Equation 37 the � sign by = and used, subsequently,
in Equation 38, x[k], which is an approximation to
x(k�t) instead of x(k�t) itself. For the discretization
approximation to be good, �t must be su�ciently
small. A suitable value for �t is determined through
trial-and-error in simulations. Discrete-time equations
of the nominal path are obtained in a like manner from
Equations 29 and they correspond to n(t) = n[k] = 0.
They are:

xnom[k + 1] = 
(xnom[k];unom[k]; 0);

ynom[k + 1] = F(xnom[k];unom[k]; 0): (40)

The idea is to consider, as state and output errors,
the quantities �x[k] = x[k] � xnom[k] and �y[k] =
y[k]�ynom[k] instead of, respectively, �x(t) and �y(t),
alluded to before:

�x[k + 1] = x[k + 1]� xnom[k + 1]

= 
(x[k];u[k];n[k])

�
(xnom[k];unom[k]; 0);

�y[k + 1] = y[k + 1]� ynom[k + 1]

= F(x[k];u[k];n[k])

� F(xnom[k];unom[k]; 0) : (41)

Under smoothness conditions on 
 and F, Equatios 41
may be linearized with respect to the nominal path to
yield:

�x[t+ 1] � 
x(Z[k])�x[k] + 
u(Z[k])�u[k]

+ 
n(Z[k])n[k];

�y[t+ 1] � Fx(Z[k])�x[k] + Fu(Z[k])�u[k]

+ Fn(Z[k])n[k]; (42)

where, of course, Z[k] , (xnom[k];unom[k];0). Nota-
tion �, instead of �, will be used henceforth on account
of the additional approximation introduced through
linearization. This is done in order to emphasize the
distinction between �x[k] and �x[k], between �y[k]
and �y[k], and also between �u[k] and �u[k] where
the sequences �x[k], �y[k] and �u[k] are de�ned as
being governed by the following sets of equations:

�x[t+ 1] � 
x(Z[k])�x[k] + 
u(Z[k])�u[k]

+ 
n(Z[k])n[k];

�y[t+ 1] � Fx(Z[k])�x[k] + Fu(Z[k])�u[k]

+ Fn(Z[k])n[k]: (43)

According to the result obtained previously in Equa-
tion 34, quantity �u[k] or more precisely �u[k], is
given by:

�u[k] = �G[k]�x[k];

where:

G[k] def= (A0[k]A[k] + r2
uI)�1A0[k]B[k]; (44)

where A[k] and B[k] are as in Equations 35. On
substituting �u[k] from Equation 44 into Relation 43,
one will arrive at:

�x[k + 1] = C[k]�x[k] + D[k]n[k];

�y[k + 1] = K[k]�x[k] + L[k]n[k]: (45)
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The coe�cient matrices in Equations 45 are given by
the following de�nitions:

C[k] def= 
x(Z[k])�
u(Z[k])G[k];

D[k] def= 
n(Z[k]);

K[k] def= Fx(Z[k])� Fu(Z[k])G[k];

L[k] def= Fn(Z[k]): (46)

By choosing k = 0 as the moment of departure from
the atmosphere, one will get n[k] = 0 8k � 0. Thus,
Equations 45 simpli�es to �x[k + 1] = C[k]�x[k] and
�y[k+1] = K[k]�x[k] from which it now readily follows
that:

�y[k + 1] = K[k]C[k � 1] � � �C[0]�x[0]

= M[k]�x[0];

where:

M[k] def= K[k]C[k � 1] � � �C[0] 8k � 1: (47)

On taking the norms of both sides of �y[k + 1] =
M[k]�x[0] and using a basic property of norms, there
follows the inequality:

jj�y[k + 1]jj � jjM[k]jj � jj�x[0]jj: (48)

As shown in Figure 2, the graph of jjM[k]jj becomes
rapidly decreasing with increasing k, as soon as the
vehicle leaves the atmosphere. The graph also suggests
jjM[k]jj converges to zero, as k ! 1. Since matrices
C[k], K[k] and M[k] are predetermined and not depen-
dent upon or a�ected by the actual trajectory or errors
therein, it may be concluded that:

lim
k!1�y[k] = 0 8�x(0) 2 R7: (49)

Figure 2. jjM[k]jj monotonically decreases as k increases
and it converges to zero as k !1.

The limiting property (Equation 49) asserts that in a
linearized discrete-time model, the closed-loop control
law obtained from �u[k] = �G[k]�x[k] does indeed
bring the actual output variables very close to the
desired, i.e. nominal values for all errors in the initial
state vector. Therefore, it is possible to conclude that,
if the sampling period is su�ciently small, the same
assertion must be true in the cases of the correspond-
ing nonlinear discrete-time and the original nonlinear
continuous-time models, for all initial state vector
errors belonging to a su�ciently small neighborhood of
the origin of the state space, R7. It is worth noting that
in spite of Equation 49, limk!1 �x[k] 6= 0, i.e. some
state variables do not approach their nominal values as
k !1.

Equations 36 and 49 have important implications.
However, there is another equally important practical
consideration as follows. It is not enough for the output
error to converge to zero in the limit as k ! 1; the
output error must become negligible before the rocket
runs out of fuel. In other words, the fuel depletion
time must not be less than the orbit insertion time.
The length of time it takes for the output error to
become negligible depends on the size of the initial
state error. Therefore, it may be helpful to have
an estimate, however crude, of how large the initial
state error can become before the closed-loop guidance
algorithm fails to correct the trajectory by the fuel
depletion time. Denoting the acceptable tolerance in
output error by " and the fuel depletion time by kF
what has just been said may be restated in terms of
the inequality, k�y[kF ]k < ". A su�cient condition
for the last inequality is now obtained with the aid of
Inequality 48 as follows:

jj�x[0]jj < "
jjM[kF � 1]jj : (50)

Thus, the guidance algorithm will be able to bring the
actual output vector within the "-neighborhood of the
nominal output by the insertion time, if the initial state
error is less than "=jjM[kF � 1]jj.

RESULTS AND DISCUSSION

Performance of the guidance method discussed in
previous sections will be examined here through graphs
and tables.

O�-line computation of the nominal path is based
on the assumption that there are no disturbances at
any time during the entire ight. As is well-known,
however, disturbances are present at all times during
the entire ight, stemming from two main sources:
wind, which can be signi�cant particularly during
the so-called endoatmospheric phase, and uncertainty
in the thrust magnitude of the engine, which exists
always.
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The wind is modeled in terms of its components
in the NED coordinate system. Thus, for example, the
wind velocity along the west-east direction is taken to
be a scalar random process:

�E [t] = �E0(1 + 0:2nE [t]); (51)

where �E0 is a constant and nE [t] is another scalar
random process generated through the dynamical equa-
tion:

nE [t] = �EnE [t� 1] +
q

1� �2
EzE [t]; (52)

corresponding to a digital �lter with a pole at z =
�E(�1 < �E < 1), a zero at z = 0, a gain of

p
1� �2

E ,
and driven by the zero-mean unit-variance white Gaus-
sian process zE [t]. The initial condition nE [0] in
Equation 52 is a N(0; 1) random variable statistically
independent with the zE [t] process. Thus nE [t] and,
hence, �E [t] are Gauss-Markov random processes with
EfnE [t]g = 0, varfnE [t]g = 1, Ef�E [t]g = �E0, and
varf�E [t]g = 0:04�2

E0. What has been said about the
wind in a west-east direction holds true also for wind
velocities �N [t] and �U [t] in the south-north and down-
up directions, respectively; only the subscript E needs
to be replaced by N for the south-north or U for the
down-up wind, as the case may be. The input white
processes, zE [t], zN [t] and zU [t], are independent. The
N(0; 1) initial conditions, nE [0], nN [0] and nU [0], are
also independent. Moreover, independence holds also
between the set of input processes and the set of initial
conditions. Neither the means, �E0, �N0 and �U0, nor
the �lter poles, �E , �N and �U , need be the same in

general though, of course, it is possible for the two or
three of them to be taken equal in simulations. E�ects
of wind in di�erent directions for both Open-Loop
(OL) and Closed-Loop (CL) strategies are presented
in Tables 2 and 3, where \open-loop" means, of course,
use of the nominal control during the entire powered
ight, and \closed-loop" implies use of the proposed
guidance scheme.

To evaluate performance, values of V , as well
as errors in h,  and i at the moment of insertion
have been shown in Tables 2 and 3 for simulations
of both OL and CL strategies. \Error" means di�er-
ence between desired and actual values. The target
being a sun-synchronous orbit, the desired values for
h(T ), (T ) and i(T ) are respectively, 200 km, 0 deg
and 97.5 deg. In Tables 2 and 3, the wind speeds
are, respectively, 6.5 m/s (known as a \moderate
breeze" in the Beaufort scale) and 22 m/s (strong
gale).

As the results indicate, if OL guidance is chosen,
then, west-east winds can create great errors in param-
eters values at the moment of orbit insertion. This
is primarily due to the fact that the launch path is
close to a polar orbit. Errors, particularly in i(T ) and
(T ), are so large, the mission may be considered as
failed for the OL case. The results also demonstrate
the signi�cant improvement brought about by the CL
algorithm at the cost, however, of a slightly lower speed
at orbit insertion.

In reality, winds along down-up directions are
seldom as strong as those in west-east or south-north
directions. However, to see the e�ect of wind direction
alone on guidance performance and for comparison

Table 2. Errors at the orbit insertion moment, T , for wind speed of 6.5 m/s.

Wind
Direction

Altitude
Error

�h(T ) (m)

Flight Path Angle
Error

�(T ) (deg)

Inclination Error
�i(T ) (deg)

Velocity
V (T ) (m/s)

North OL -730 -0.136 -0.028 7798.2

CL 0.87 �2:46� 10�5 �6:68� 10�6 7795.6

South OL 730.0 0.136 0.028 7793.0

CL -0.929 1:47� 10�5 �5:60� 10�6 7795.6

East OL 86.5 0.016 -0.130 7795.3

CL -0.44 4:16� 10�6 �5:89� 10�6 7795.6

West OL -88.0 -0.016 0.130 7795.9

CL -0.099 �3:40� 10�6 �6:1� 10�6 7795.6

Up OL 126.1 0.022 �6:15� 10�6 7795.2

CL 7.36 �1:67� 10�4 �1:06� 10�6 7795.6

Down OL -126.2 -0.022 �6:15� 10�6 7795.9

CL -7.40 �1:56� 10�4 �1:73� 10�6 7795.5
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purposes, down-up winds in simulations were taken
to be as strong as those in other directions. A
�rst conclusion is that, even for OL guidance, the
errors caused by down-up winds are not as large as
those caused by west-east or south-north directions.
Another conclusion is that CL guidance does succeed
in signi�cantly reducing errors.

The thrust magnitude of each stage is assumed

to be within a few percent of its nominal value.
Table 4 shows the e�ects of thrust magnitude (static)
deviations on the accuracy of orbit insertion. For OL
guidance, the error in i(T ) is not so great, however, the
error in (T ) is large enough for the OL guidance to be
considered as failed. In this case, too, the CL guidance
algorithm greatly reduces the errors caused by thrust
magnitude deviations.

Table 3. Errors at the orbit insertion moment, T , for wind speed of 22 m/s.

Wind
Direction

Altitude
Error

�h(T ) (m)

Flight path angle
Error

�(T ) (deg)

Inclination Error
�i(T ) (deg)

Velocity
V (T ) (m/s)

North OL -8.91 �103 -1.64 -0.33 7827.1

CL 9.25 �2:08� 10�4 �1:17� 10�5 7795.5

South OL 8:97� 103 1.70 0.36 7763.6

CL -12.85 2:75� 10�4 �1:52� 10�6 7795.4

East OL 956.9 0.179 -1.60 7792.1

CL -42.1 �9:16� 10�4 1:90� 10�5 7793.1

West OL �1:18� 103 -0.22 1.58 7799.8

CL -37.7 8:20� 10�4 1:63� 10�6 7793.2

Up OL 1:54� 103 0.273 �6:13� 10�6 7791.4

CL 90.11 -0.002 �6:0� 10�5 7794.1

Down OL �1:55� 103 -0.275 �6:16� 10�6 7799.8

CL -90.79 0.002 4:81� 10�5 7795.1

Table 4. Errors at the orbit insertion moment, T , caused by thrust magnitude error.

Thrust
Error
(%)

Altitude
Error

�h(T ) (m)

Flight Path Angle
Error

�(T ) (deg)

Heading Angle Error
�i(T ) (deg)

Velocity
V (T ) (m/s)

+1 OL 1:19� 104 1.86 0 7742.7

CL 2:73� 103 -0.067 -0.0016 7856.3

-1 OL �1:23� 104 -1.94 0 7750.6

CL �2:74� 103 0.068 0.0016 7734.6

+5 OL 5:62� 104 8.55 0 8049.5

CL 1:36� 104 -0.336 -0.0083 8096.8

-5 OL �6:62� 104 -10.5 0 7594.8

CL �1:38� 104 0.34 0.0081 7488.2

+8 OL 8:61� 104 12.86 0 8220.3

CL 2:16� 104 -0.535 -0.0132 8274.6

-8 OL �1:16� 105 -17.84 0 7501.8

CL �2:27� 104 0.56 0.013 7301.4
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To consider a more realistic scenario in the fol-
lowing round of simulations, the thrust magnitude of
each stage is 1% lower than its nominal value and
the wind has components in west-east and south-north
directions given, of course, by Equations 36 and 37,
with �E0 = �N0 = 15p

2
= 10:61 m/s (a moderate gale)

and �E = �N = 0:9. The results are exhibited in
Figures 3 to 12. Solid, dashed and solid-dashed graphs
in each �gure correspond to CL, OL and purely nominal
simulations, respectively.

Figures 3 to 7 show graphs versus time t of the
state-variables �(t) (longitude), �(t) (latitude), h(t)
(altitude), (t) (ight-path angle) and  (t) (heading
angle) during the launch, i.e. for t0 � t � T .
Figures 8 and 9 show the graphs versus t of control
variables �(t) (angle of attack) and �(t) (velocity-
roll angle), again for t0 � t � T . Clearly, �(t)
and �(t) are identically zero in OL simulations, and
near zero during the endoatmospheric phase of CL

Figure 3. Longitude during launch.

Figure 4. Latitude during launch.

simulations. However, �(t) and �(t) do take on large
nonzero values during the exoatmospheric phase of
CL simulations in order to e�ect guidance toward the
target orbit.

The amplitude of variations in �(t) and �(t) are
about 40 deg and 30 deg, respectively, implying that

Figure 5. Altitude during launch.

Figure 6. Flight path angle during launch.

Figure 7. Heading angle during launch.
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Figure 8. Angle of attack during launch.

Figure 9. Velocity roll angle during launch.

Figure 10. Inclination during launch.

the vehicle may undergo intensive maneuvering. This,
however, occurs outside the atmosphere and will not
endanger the vehicle. Figure 10 depicts the variations
of inclination i(t) during launch. Figures 11 and 12
show the latitude and velocity for a longer period of
time, namely from lift-o� to 7500 seconds after orbit

Figure 11. Altitude of satellite in orbit.

Figure 12. Velocity of satellite in orbit.

insertion. These �gures make it possible to observe
what happens to the satellite during one complete cycle
around the Earth after insertion into the target orbit.
The performance of the proposed guidance algorithm
may be further veri�ed by comparing the CL and
OL graphs as follows. For the OL graphs, it can
be seen from Figures 10 and 11 that i � 101:7 deg
instead of 97.5 deg, and jhjmin � 50 km, which means
that the satellite will return to the atmosphere and
eventually fall. For the CL graphs, on the other hand,
one obtains i(T ) � 97:5 deg, jhjmin � 200 km from
the same �gures. Furthermore, in the OL graphs,
(T) � �4 deg, implying a failed launch, while in the
CL case, (T ) � 0:01 deg which is an acceptable error.

CONCLUSION

A guidance algorithm for sending a small satellite to
a sun synchronous LEO was devised with the aims
of simplicity of onboard computations and accuracy
of orbit insertion. The onboard computations involve
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no more than multiplying at each sampling time a
2 � 7 gain matrix by a 7 � 1 data vector. The
gain matrices are computed o�-line and stored in the
onboard computer. Data are obtained through onboard
measurements. The proposed algorithm performs accu-
rate orbit insertion against wind disturbances of speeds
of at least 22 m/s and thrust magnitude errors of at
least �5%. Extending the method to launches to non-
LEO environments or to other orbits can be subjects
for future research.

NOMENCLATURE

a speed of sound
a LTL parameter in Equation 28
b LTL parameter in Equation 28
ci mass burning rate of the ith stage
f a function representing dynamics
g gravitational acceleration
h altitude from sea level
h1 air density constant
h2 air pressure constant
m mass
n random process
n disturbance vector
p air pressure
ps air pressure at sea level
q dynamic pressure
r distance from Earth center
t time
t0 launch start time
tv end of vertical launch time
u control vector
w wind force
x state vector
y output vector
z white random process
A see Equatuin 46
B see Equation 47
Ab aerodynamic reference area
Ae engine exit area of launch vehicle
AL lateral cross section area of launch

vehicle
CD drag coe�cient
CD0 drag coe�cient constant
CD1 drag coe�cient constant
CD2 drag coe�cient constant
CD3 drag coe�cient constant
CL lift coe�cient

CL1 lift coe�cient constant
CL2 lift coe�cient constant
D drag
F a function representing the �nal output
L lift
M Mach number
M matrix relating output vector to state

vector
Q scaling matrix
T thrust
T orbit insertion moment
Tvac thrust in vacuum
V velocity
Z denoting nominal values of state and

control vectors
� angle of attack
� ratio of speci�c heat of air
 ight path angle
� see Equation 49
� angle
� longitude
� velocity roll angle
� wind speed
�0 wind speed mean
� air density
�s air density at sea level
� latitude
 heading angle
! Earth rotating rate
!p see Equation 26
� di�erence between actual and nominal

value

Subscripts

nom nominal value
E east component
N north component
U up component
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