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A New Evidential Distance
Measure Based on Belief Intervals

V. Khatibi1 and G.A. Montazer1;�

Abstract. So far, most of the evidential distance and similarity measures proposed in the Dempster-
Shafer theory literature have been based on the basic belief assignment function, so as the belief and
plausibility functions as two main results of the theory are not directly used in this regard. In this paper,
a new evidential distance measure is proposed based on these functions according to nearest neighborhood
concept. After assigning basic belief values to propositions and constructing the belief and plausibility
functions or the belief interval, this evidential distance measure compares the similarity between the
unknown pattern and class belief intervals. For this purpose, we �rst acquire the belief and plausibility
functions or the belief intervals and then the distance between the belief intervals of uncertain pattern
feature vectors and samples are calculated. We applied this novel distance measure to the bacillus colonies
recognition and coronary heart disease patients classi�cation problems to examine the proposed measure
capability in contrast to other evidential measures. Our experiment illustrates that the belief interval
distance measure yields the accuracy rates of 91.66 and 92.45 percent for unknown bacillus patterns
recognition and coronary heart disease patients classi�cation, respectively, which in contrast to other
evidential measures shows superior performance.

Keywords: Evidence theory; Approximate reasoning; Pattern recognition; Belief interval distance;
Bacillus colony recognition; Coronary heart disease patients classi�cation.

INTRODUCTION

Pattern classi�cation is concerned with the assignment
of unknown patterns, represented by feature vectors,
to prede�ned categories or classes [1]. In fact, pattern
recognition problems typically involve the classi�cation
of an unknown pattern L to a given set of K prototypes
Pk, k 2 f1:2; :::;Kg [2-4]. Each prototype Pk belongs to
a given class Cm, m 2 f1; 2; :::;Mg, which is speci�ed
by the indicator function Ak:

Ak = lm; if Pk belongs to the mth class lm: (1)

Let S(L;Pk) be a similarity measure which measures
the degree of similarity, or compatibility, between the
unknown pattern L and the kth prototype Pk. Then,
formally we may write the process of classifying or
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assigning the unknown pattern L to the class l� = Ak� ,
where%
k� = arg max

k
(S(L;Pk)): (2)

The pattern recognition problems could be found in
many scienti�c disciplines [5-7], and are considered as
one of the most applicable topics in engineering [8-10].
On the other hand, several evidential measures have
been proposed so far, which use basic belief assignment
function as a basis in classi�cation [11-18], whereas
in evidence theory literature, there is no work which
relies mainly and directly on the belief intervals in
this regard. The belief interval comprised of belief
and plausibility functions constitutes all the knowledge
available in the problem for a proposition, regardless of
baseless assumptions [19]. Hence, using belief intervals
leads us to an approximate reasoning approach which
is more accurate than other methods. In this paper,
a novel evidential distance measure based on nearest
neighborhood concept is proposed. Our goal is to
develop an approach of approximate reasoning in which
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uncertain feature vectors and samples are classi�ed
according to existing knowledge and partial truth while
considering problem uncertainty. In this approach, we
�rst acquire basic belief assignments for the proposi-
tions, and then construct the belief and plausibility
functions or the belief intervals. This procedure is done
for all the attributes, so as we have a feature vector of
belief intervals for the attributes. On the other hand,
the appropriate feature vector of belief intervals for
the classes can be built on several mechanisms such
as investigations, observations, expertise etc. Then,
applying the proposed evidential distance, we could
identify the most similar class to each unknown pattern
according to nearest neighborhood concept. Also, this
evidential distance is applied to two medical diagnosis
problems, and the acquired results are compared with
other evidential measures.

This paper is organized as follows: In the next
section, the fundamental notions of evidence theory
are presented briey. Besides, the evidential distance
measures in Dempster-Shafer theory literature are
discussed. Also, a new evidential distance measure
is proposed which relies mainly on belief intervals.
Then, we apply the proposed measure to the bacillus
colonies recognition and coronary heart disease patients
classi�cation problems, and the experimental results
are illustrated and compared with other evidential
measures in the last section.

DEMPSTER-SHAFER EVIDENCE THEORY

Evidence theory was �rst introduced by Dempster
in 1968 [20]. Later, it was re�ned and further de-
veloped by Shafer in 1976 [21]. Also, Smets intro-
duced Transferable Belief Model (TBM) which extends
Dempster-Shafer model to represent nonprobabilistic
beliefs [22,23].

Evidence theory starts by de�ning a frame of
discernment that is a set of mutually exclusive \elemen-
tary" propositions. The �nest subdivision of the set is
considered as the elementary proposition. Therefore,
the frame of discernment denoted by 
 or X consists
of all elementary propositions [24].

In evidence theory, the basic propagation of in-
formation is through Basic Belief Assignment (BBA)
function [19]. BBA expresses our degree of belief in
a proposition. It is determined by various forms of
information: sources, experimental methods, quantity
and quality of information, experts' opinions and so on.
BBA is assigned by making use of a mapping function
(m) in order to express our belief in a proposition with
a number in the unit interval [0,1], as shown below%
m : 2
 ! [0; 1]: (3)

This measure m (the basic belief assignment function)

must satisfy the following three properties%
i. m(A) � 0 for any A 2 2
; (4)

ii. m(�) = 0; (5)

iii.
X
A22


m(A) = 1: (6)

After assigning the basic belief degrees to the propo-
sitions, we can proceed to determine the belief and
plausibility functions. Due to a lack of information, it
is more reasonable to present bounds for the result of
uncertainty quanti�cation as opposed to a single value
of belief. Our total degree of belief in a proposition
\A" is expressed within an interval, [Bel(A); P ls(A)],
called the Belief Interval (BI) [19], which lies in the
unit interval [0,1], as shown in Figure 1, where Bel and
Pls functions are explained forth.

The lower bound, Belief (Bel), also known as
Support (Sup), for a set A is de�ned as the sum of all
the basic belief assignments of the proper subsets Ci of
the set of interest A, i.e., Ci � A. The general relation
between BBA and belief functions can be written as:

Bel(A) =
X
Ci�A

m(Ci): (7)

It can be shown that Bel(�) = 0 and Bel(
) = 1.
The upper bound, Plausibility (Pls), is the sum-

mation of basic belief assignments of the sets Ci whose
intersection with the proposition A is not an empty set,
i.e. Ci \A 6= �, and therefore, it can be written as:

Pls(A) =
X

Ci\A 6=�

m(Ci): (8)

Also, it can be shown that Pls(�) = 0 and Pls(
) = 1.
In fact, every proposition that allows for the proposi-
tion A to be included at least partially is considered to
imply the plausibility of the proposition A.

Belief functions cannot be directly used for deci-
sion making. Hence we can apply the pignistic transfor-
mation: a particular mapping of a belief function m to
a Bayesian belief function (probability function) BetP .
The resulting pignistic probability for the singletons
�i 2 � is given by [5]:

BetP (f�ig) =
X

�i2A��

1
jAj

m(A)
1�m(�)

: (9)

Figure 1. Belief (Bel), plausibility (Pls), and uncertainty.
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In a sense, belief and plausibility measurements rep-
resent lower and upper bounds which surround the
certain belief value. In other words, the Belief Interval
(BI) is an interval between belief and plausibility func-
tions representing range in which exact belief resides.
A narrow belief interval represents more precise beliefs.
It can be shown that the belief is uniquely determined
if Bel(A) = Pls(A). If BI(A) has an interval [0,1],
it means that no information about hypotheses is
available; on the other hand, if the interval is [1,1],
it means that A has been completely con�rmed.

Therefore, the degree of uncertainty which is
the di�erence between belief and plausibility functions
becomes smaller as we obtain more information and
knowledge. Even though evidence theory does not give
us a single value, the given belief interval [Bel; P ls]
retains all the information without any excessive and
baseless assumptions. That is, the result of evidence
theory is consistent with given partial truth, and
therefore leads us to approximate reasoning. Since
the belief interval represents the current uncertainty
situation based on available evidence, a decision maker
can obtain insight into the problem and avoid mistakes
made by misusing assumptions [25].

Evidential Distance Measures

Several works could be found in the literature which
tried to propose distance measures through the evi-
dence theory framework [11,12,14-16,18]. In the Ev-
idential Distance-based Classi�er (EDC) proposed by
Denoeux [12], k-NN classi�cation rule is addressed from
the point of view of Dempster-Shafer theory. This
evidence-theoretic k-NN rule considers each neighbor
of a sample to be classi�ed as an item of evidence
that supports certain hypotheses regarding the class
membership of that sample. The degree of support
is de�ned as a function of the distance between the
two feature vectors. Also, a learning algorithm was
proposed by Zouhal and Denoeux [26] for determining
the parameters of the proposed approach equation
to reduce the classi�cation errors. Denoeux argued
that unknown samples can also be classi�ed according
to their distances to a limited number of reference
patterns through multi-layer neural network to reduce
computation time [13]. A characteristic of this ap-
proach resides in the possibility of taking into account
partial knowledge of the class of training samples [27].
In this way, a Euclidean measure for the evidence
theory has been proposed as follows:

d(m(A);m(B)) =
X
A2Fi

X
B2Fj

mi(A)mj(B); (10)

where Fi is the set of all focal elements of mi.
Another evidential measure has been represented by

Tessem [18]: The error due to an approximation of
BBAs is quanti�ed by the maximal deviation in the
pignistic probabilities before and after approximation,
so as we have:

d(i; j) = max
�l
jBetPi(�l)�BetPj(�l)j ; (11)

where BetPi is the pignistic probability corresponding
to BBA mi.

Bauer [11], on the same problem, introduced two
other measures of error to reect the quality of a
decision based on the pignistic probability distribution
after approximation. The idea to de�ne a measure
on the power set � has been used by Petit-Renaud,
where an error criterion between two belief structures
based on the generalized Hausdorf distance has been
de�ned [15].

Also, Denoeux introduced the Interval-valued Be-
lief Structures (IBS) allowing to model the situation
in which hypotheses may only be expressed with some
imprecision [28]. Actually, IBS copes with imprecision
in the belief value itself attached to each hypothesis
which is only known to lie within a certain interval.
Using the theory of fuzzy sets as a very e�cient tool for
representing the vague quantities, belief values could
also be expressed as fuzzy numbers, so called fuzzy-
valued belief structures [29].

Jousselme et al. [15] apply a classical similarity
measure to achieve the comparison of the focal elements
of two BBAs, in order to de�ne a distance in a vector
space generated by the focal elements. This distance
is then used as a measure of performance of di�erent
algorithms and helps evaluate how fast they converge
to the desired known solution. A BBAi can be seen
as a vector !mi in the mentioned vector space and the
normalized distance is a function%

d( !m1;
!m2) =

r
1
2

( !m1;
!m2)T S

=
( !m1;

!m2); (12)

where S
=

is a similarity matrix between the focal ele-
ments �lled by the application of the Jaccard measure
between the corresponding subsets. Also, another way
to write Equation 12 is:

d( !m1;
!m2)=

r
1
2

����� !m1
����2+

���� !m2
����2�2

D !m1;
!m2

E�
;
(13)

where
D !m1;

!m2

E
is the scalar product de�ned by:

D !m1;
!m2

E
=

2NX
i=1

2NX
j=1

m1(Ai)m2(Aj)
jAi \Aj j
jAi [Aj j ; (14)

where Ai; Aj 2 P (�) for i; j = 1; :::; 2N .
����!m����2 is then

the square norm of !m:
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����!m����2 =
D!m;!mE : (15)

A popular approach has been to take the conict of two
Basic Belief Assignments (BBAs) as an indication of
the belief that they do not belong to a same class, and
then assume it as a measure of dissimilarity or distance
between them. Schubert [17] presents a clustering of
BBAs based on a measure of conict, resulting from
the aggregation of the BBAs members of the cluster
using Dempster's rule of combination. This measure
gives an indication of how likely it is that they belong
to the same class or not. The conicts from each cluster
are then combined to �nd the overall meta-conict of
the partition. The clustering algorithm minimizes the
metaconict to obtain the most credible partition of
the pieces of evidence. Once the clusters are de�ned, a
BBA prototype is found among members of each cluster
by analyzing the evolution of the cluster's conict
when removing each BBA. These prototypes can be
then used to classify new samples to the cluster whose
prototype has the smaller conict with.

Also, another distance measure is Bhattacharya
distance [14,16] which is de�ned in probability theory
as:

dB(p1; p2) = � ln
�Z

x

p
p1(x)p2(x)dx

�
; (16)

where p1, p2 represent the probability density functions
of vector x of any dimension. This measure has the
advantage that is designed to compare features for the
two classes. It is a special case of the Cherno� bound
of the error probability in binary classi�cation [30]. It
is well known that the Cherno� information gives the
highest achievable exponent for the error probability.
The Bhatacharya distance has the symmetric property,
(d(p1; p2) = d(p2; p1)). The triangle property is only
satis�ed for speci�c con�gurations. Also, the discrete
expression of Equation 16 is:

dB(h1; h2) = � ln

 X
i

p
h1(i)h2(i)

!
; (17)

where i is an index of the bins of the normalized
histograms h1 and h2. Also, Bhattacharya distance
de�nition in evidence theory [16] is as follows:

d(mi;mj) =

vuut1�
 X
A2Fi

X
B2Fi

q
mi(A)mj(B)

!
;
(18)

where Fi is the set of all focal elements of mi. Diaz
et al. [14] proposed a similarity measure between the
focal elements, making way for the application of
classical classi�cation algorithms in this �eld. The
properties of this measure are particular to its context,
considering the characteristics of the focal elements,

their relationship with each other and their proximity
to the vacuous belief function that represents the state
of total ignorance.

Another evidential measure has been proposed by
Ristic and Smets [16] which derives the global cost of
assignment (i.e. a dissimilarity measure) based on the
plausibility of the global assignment. This measure is
directly related to the conict as described in the TBM.
The plausibility of the global assignment V is given by:

Pl�
2n

(�(o1i) = �(o2�i) : i = 1; 2; :::; n) =

nY
i=1

1�m�
1i�2�i(�); (19)

where o1 and o2 represent bodies of evidence, � the null
set, and � combination of the basic belief assignments
or the global assignment. Also, they de�ned an
additive global dissimilarity measure of an assignment
as follows:

D = � log
h
Pl�

2n
(�(o1i) = �(o2�i)) : i = 1; 2; :::; n

i
=

nX
i=1

di�i ; (20)

where:

dij = � log(1�m�
1i�2j(�)): (21)

A NEW EVIDENTIAL DISTANCE
MEASURE BASED ON THE BELIEF
INTERVALS

In the real world problems, usually several features,
components or criteria inuence the problem, and
play important roles in proposing a solution, whereas
each of them may be uncertain [31]. For instance, a
cardiologist has to consider several medical markers
to assess the Coronary Heart Disease (CHD) risk
in the patients, whereas each marker indicates CHD
occurrence risk with uncertainty. Therefore, it is more
intuitive and reasonable to exploit the evidence theory
and construct a belief interval through determining the
belief and plausibility functions.

In this paper, we propose a new evidential dis-
tance measure based on belief intervals. This mea-
sure presents the distance between belief intervals
associated to the imprecise unknown patterns and
classes. In other words, this measure is based on
the di�erence between the analogous features' belief
intervals which are assigned to unknown patterns and
classes. Hereafter, we refer to this measure by the
name of Belief Interval Distance (BID). In doing so, we
develop an approach of approximate reasoning in which
uncertain feature vectors are classi�ed according to
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existing knowledge and partial truth while considering
problem uncertainty.

A convenient geometrical representation of the be-
lief interval can be employed to illustrate this distance.
As mentioned before, all the propositions are sur-
rounded in the frame of discernment and after assigning
BBAs, we quantify problem uncertainty through belief
and plausibility functions which leads to the belief
interval. This process could be expressed through a
geometrical interpretation. We can assume a frame
of discernment M and subset N in the Euclidean
plane with the Cartesian coordinates. For a given
belief interval, BI, a function f from M to N can be
constructed, such that if x 2M , then:

p = f(x) 2 N;
and the point p 2 N has the coordinates x 2 M ha; bi
for which:

0 � a; b � 1;

where:

a = Bel(x) and b = Pls(x):

In fact, function f quanti�es the problem uncertainty
and assigns the appropriate values to the belief and
plausibility functions, in other words, constructs the
belief interval. As illustrated in Figure 2, this geomet-
rical interpretation maps the frame of discernment as
a polygon to the belief interval territory represented in
a triangle area.

Now, we suggest an exact form of the belief
interval which comprises of belief and plausibility func-
tions, beside of uncertainty quantity which represents
the status of problem uncertainty in each situation.
Despite belief and plausibility functions could be used
to reect the uncertainty, none of them could express
the uncertainty alone. Besides, we found that using
three coordinates lead to better results in pattern
recognition. Thus, the exact belief interval has three
coordinates as follows: < Bel; P ls; Uncer >. Hence,
the most natural representation of a belief interval is

Figure 2. A geometrical interpretation of a belief interval.

Figure 3. A three-dimensional representation of a belief
interval.

to draw a cube with edge length equal to 1, as shown in
Figure 3, so as triangle ABD represents a typical belief
interval. This representation of a belief interval is used
to investigate the belief interval distance.

To lighten up this geometrical interpretation,
let us consider a conceptual instance which concerns
comparing the opinions of several experts regarding
a hypothesis. These experts described their beliefs
concerning di�erent perspectives of the hypothesis, and
after uncertainty quanti�cations based on their beliefs,
the belief intervals for each of them were formed. Each
expert i is represented as a point having coordinates
< Bel; P ls; Uncer >. Expert C: < 1; 1; 0 > fully
accepts the discussed hypothesis. Expert A: < 0; 0; 0 >
fully rejects it. The experts on the segment AC �xed
their points of view. In fact, their uncertainty measure
equal zero, so that each expert is convinced to the
belief Beli. Also, expert B: < 0; 1; 1 > is absolutely
uncertain, whereas expert C: < 1; 1; 0 > is absolutely
con�rmed that the hypothesis is true and expert A:
< 0; 0; 1 > believes it is absolutely false. An orthogonal
real representation of a belief interval has been show in
Figure 4.

A line parallel to AC describes a set of experts
with the same level of uncertainty. For instance, two
sets are presented with uncertainty level equal to U1

Figure 4. An orthogonal projection of the real
representation of a belief interval.
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and U2 where U2 > U1. In other words, the triangle
ABC in Figure 4 is an orthogonal projection of the real
situation, i.e. the triangle ABD in Figure 3.

Now, the belief interval distance is proposed using
the Hamming distance measure. Instead of using 1-D
Hamming distance to measure the di�erence between
two analogous crisp values, the di�erences between
two intervals besides their uncertainty quantities have
been measured through 3-D Hamming distance, so
that the di�erences between two belief functions,
two plausibility functions, and also two uncertainty
quantities of both intervals are computed analogously.
To formulate the distance, we depict it through the
following de�nition:

Let A and B be two belief intervals associated to a class
and unknown pattern, respectively. The Belief Interval
Distance (BID) is de�ned as follows:

BID(A;B) =

1
2

X
Ai;Bi

0@ jBel(Ai)�Bel(Bi)j+jPls(Ai)� Pls(Bi)j+jUncer(Ai)� Uncer(Bi)j

1A ; (22)

where Ai and Bi denote components (such as features)
of A and B, respectively. This de�nition satis�es the
appropriate properties of a distance metric which is
proved in following.

Proof

The belief interval represents the upper and lower
bounds which surround the certain belief value. Es-
sentially, if we could not represent the belief associated
to a proposition as a certain value, it is more intuitive
to express the belief through an interval. Hence, the
belief interval implies a certain belief value. With
attention to this point and its geometric interpretation,
measuring the distance between two belief intervals
could be considered as the distance between two values
which are represented through intervals.

The proposed evidential distance must satisfy four
properties to be a distance metric and show its validity.
The proposed distance is a function that satis�es the
following properties for any belief intervals A and B%

I. Non-negativity:

BID(A;B) � 0:

Because:

jAj � 0! BID (A;B) � 0:

II. Nondegeneracy:

BID(A;B) = 0, A = B;

A = B $ Bel(A) = Bel(B);

P ls(A) = Pls(B);

and:
Uncer(A) = Uncer(B):

So:
BID(A;B)

=
1
2

�jBel(A)�Bel(B)j+jPls(A)�Pls(B)j+
jUncer(A)�Uncer(B)j

�
= 0;

and vice versa.
III. Symmetry:

BID(A;B) = BID(B;A);

BID(A;B)

=
1
2

�jBel(A)�Bel(B)j+jPls(A)�Pls(B)j+
jUncer(A)�Uncer(B)j

�
=

1
2

�jBel(B)�Bel(A)j+jPls(B)�Pls(A)j+
jUncer(B)� Uncer(A)j

�
= BID(B;A):

IV. Triangle inequality:

BID(A;B) � BID(A;C) +BID(C;B);

8C 2 [0; 1];

because of:
jA�Bj � jAj+ jBj ;
BID(A;C) +BID(C;B)

=
1
2

0BBBB@
�jBel(A)�Bel(C)j+jPls(A)�Pls(C)j
+ jUncer(A)� Uncer(C)j

�
+�jBel(C)�Bel(B)j+jPls(C)�Pls(B)j

!+ jUncer(C)� Uncer(B)j
�
1CCCCA

� 1
2

0BB@jBel(A)�Bel(C)�(Bel(C)�Bel(B))j+
jPls(A)�Pls(C)�(Pls(C)�Pls(B))j+
jUncer(A)� Uncer(C)�
(Uncer(C)� Uncer(B))j

1CCA
=

1
2

�jBel(A)+Bel(B)j+jPls(A)+Pls(B)j+
jUncer(A)+Uncer(B)j

�
� 1

2

�jBel(A)�Bel(B)j+jPls(A)�Pls(B)j+
jUncer(A)�Uncer(B)j

�
= BID(A;B):
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So, we have:

BID(A;B) � BID(A;C) +BID(C;B):

Example 1

Let us consider the belief intervals A; B; C; D and E
as follows:

A = (0; 0); B = (1=3; 1=3);
C = (1=2; 2=3); D = (2=3; 4=5); E = (1; 1):

The geometrical interpretation of these belief intervals
is shown in Figure 5.

Let us calculate the BID distance between the
belief intervals based on Equation 22:

BID(B;E) =
1
2

�����13�1
����+����13�1

����+j0� 0j
�

=
2
3
;

BID(C;E) =
1
2

�����12 � 1
����+
����23 � 1

����+
����16�0

�����=
1
2
;

BID(D;E) =
1
2

�����23 � 1
����+
����45 � 1

����+���� 2
15
�0
�����=

1
3
:

As we expected intuitively, these distances are de-
scribing the real di�erences between the belief inter-
vals. For instance, the distance between B and E is
greater than the one between D and E, as Figure 5
implies.

NUMERICAL EXPERIMENTS

In this section, we apply the proposed evidential
distance measure in two medical diagnosis problems
to examine its capability in pattern recognition. Also,
the acquired results are compared with the other
evidential measures. For this purpose, the performance
of the proposed method is evaluated using classi�cation

Figure 5. A geometrical interpretation of the belief
intervals considered in Example 1.

accuracy, sensitivity and speci�city [32], so as their
representations in medical diagnosis are:

Accuracy =
# true positives + # true negative

# all patients
;

(23)

Sensitivity =
# true positives

# all patients with the disease
; (24)

Speci�city =
# true negatives

# all patients without the disease
:
(25)

The true positives are all patients with the disease
and positive test result, whereas the true negatives
are all patients without the disease and negative test
result. We use the accuracy, sensitivity and speci�city
to perform ROC analysis. ROC (Receiver Operating
Characteristic) graphs have long been used in signal
detection theory to depict tradeo�s between hit rate
(sensitivity) and false alarm rate (1-speci�city) [32].
ROC analysis has lately been extended for use in vi-
sualizing and analyzing the behavior of diagnostic sys-
tems, and is used for visualization in medicine, where
speci�city-sensitivity relations are often analyzed. In
the usual setting, the machine learning algorithms
are tuned to maximize classi�cation accuracy. In our
case, the sensitivity and speci�city are more important.
The clinicians especially wanted to see if it is possible
to increase the speci�city of the diagnostic process
without a�ecting the sensitivity too much (this may
lead to the reduction of number of patients that are
being unnecessarily submitted to invasive preoperative
examinations). It must be noted that the ROC analysis
is only used in two-class classi�cations, so as multiclass
problems cannot be analyzed through it. In analyzing a
classi�er through ROC graph, we should note that by
giving samples from the negative class higher scores,
a good classi�er should become more speci�c and less
sensitive. On the other hand, by giving examples from
the positive class higher scores, a good classi�er should
become more sensitive and less speci�c. In fact, a good
classi�er ROC curve takes place in upper left corner of
chart, so as the more upper-left the ROC graph, the
more accurate the recognition rate.

BID Application in Bacillus Colony
Recognition

Microbiologists broadly classify bacteria according to
their shapes [33-35]. Most bacteria come in one of three
shapes: rod, sphere or spiral. Rod-shaped bacteria
are called bacilli, Spherical bacteria, cocci, and spiral
or cockscrew-shaped bacteria are called spirilla, too.
Bacteria may be further classi�ed according to whether
they require oxygen (aerobic or anaerobic) and how
they react to a test with Gram's stain. Bacteria in
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which alcohol washes away Gram's stain are called
Gram-negative, while bacteria in which alcohol cause
the bacteria's wall to absorb the stain, are called Gram-
positive [33,34]. As noted before, bacillus is a rod-
shaped bacterium which is active only in the presence
of the oxygen (aerobic bacterium). Bacilli occur
mainly in chains, produce spores, and include many
saprophytes, some parasites and the bacterium that
causes anthrax [36]. In this research, four intestinal
bacilli named \Shigella, Salmonella, Bacillus coli and
Klebsiella" are considered which have some similarity
in culture medium and are Gram-negative.

Shigella [36] is a rod-shaped Gram-negative bac-
terium (bacillus) that lives in the intestinal tracts
of human beings and animals and causes bacillary
dysentery. There are four species, all causing dysentery
but with varying degrees of severity. Salmonella [36] is
also a rod-shaped bacterium found in the intestine that
can cause food poisoning, gastroenteritis and typhoid
fever. Other two bacilli considered herein Klebsiella
and Bacillus coli are also Gram-negative and found
in the intestine. Primal features used for these bacilli
classi�cation comprise of macro shape which is domical
in these four bacillus colonies, single microscopic shape,
double microscopic shape and existence of agellum.
Our target is to use the proposed evidential distance
to recognize the bacillus type of the samples.

To confront this problem using BID measure,
the next steps were followed. First, a data set
consisted of 283 samples of di�erent bacillus colonies
were obtained from microbiology section of Resalat

Laboratory in Tehran, Iran. Then, the basic belief
assignment formulation has been performed by the
medical experts, so as we rely mainly on the knowledge
and expertise of the microbiologists. Consequently, the
belief and plausibility functions were acquired. Hence,
the bacillus patterns' features were expressed in the
belief intervals. Second, we pursued to determine
each class's feature vector which depict the relationship
between the bacillus type and four features, as shown
in Table 1. In fact, the classes are constructed based on
the beliefs acquired from the microbiologists' medical
knowledge and expertise.

To classify each unknown sample, we used BID
distance. In fact, a sample's distances opposing four
classes were calculated using BID distance measure.
Having compared four BID distance values acquired,
according to nearest neighborhood concept, the class
which has the smallest BID distance to the unknown
sample is chosen as the appropriate class for the
sample. To review the recognition process, an example
is denoted. According to the four bacillus colonies
patterns exhibited in Table 1, the following classes are
depicted:

Bacillus coli =
f(0:9; 0:95; 0:05); (0:9; 1; 0:1); (0; 0; 0); (0:9; 0:94; 0:04)g;

Shigella =
f(0:9; 0:92; 0:02); (0:9; 0:95; 0:05); (0:05; 0:08; 0:3);

(0:08; 0:1; 0:02)g;

Table 1. Imprecise feature vectors of four classes (patterns).

Bacillus class Feature Bel(Ai) Uncer (Ai) Pls (Ai)

Domical shape 0.9 0.05 0.95

Bacillus coli Single microscopic shape 0.9 0.1 1

Double microscopic shape 0 0 0

Flagellum 0.9 0.04 0.94

Domical shape 0.9 0.02 0.92

Shigella Single microscopic shape 0.9 0.05 0.95

Double microscopic shape 0.05 0.03 0.08

Flagellum 0.08 0.02 0.1

Domical shape 0.8 0.1 0.9

Salmonella Single microscopic shape 0.8 0.1 0.9

Double microscopic shape 0.1 0.05 0.15

Flagellum 0.9 0.09 0.99

Domical shape 0.8 0.05 0.85

Klebsiella Single microscopic shape 0.7 0.15 0.85

Double microscopic shape 0.2 0.05 0.25

Flagellum 0.1 0.05 0.15
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Table 2. Classi�cation result using BID distance versus microbiologists opinions.

S. No. Bacillus coli Shigella Salmonella Klebsiella Microbiologists

S1 0.306 1.247 0.357 1.357 Bacillus coli

S2 0.520 1.293 0.405 1.273 Salmonella

S3 1.444 0.575 1.444 0.568 Shigella

S4 1.421 0.558 1.250 0.274 Klebsiella

S5 0.282 0.986 0.350 1.177 Bacillus coli

S6 1.311 0.563 1.227 0.655 Shigella

S7 0.413 1.086 0.408 1.242 Bacillus coli

S8 1.500 0.597 1.242 0.310 Klebsiella

S9 1.166 0.336 1.15 0.470 Shigella

S10 0.354 1.144 0.401 1.414 Bacillus coli

Salmonella =

f(0:8; 0:9; 0:1); (0:8; 0:9; 0:1); (0:1; 0:15; 0:05);

(0:9; 0:99; 0:09)g; and

Klebsiella =

f(0:8; 0:85; 0:05); (0:7; 0:85; 0:15); (0:2; 0:25; 0:05);

(0:1; 0:15; 0:05)g:
If we consider a sample A = f(0:8; 0:9; 0:1); (0:95; 1;
0:05); (0; 0; 0); (1; 1; 0)g; based on Equation 22, we have:

BID(A;Shigella)

=
1
2

8>>>>>><>>>>>>:
j0:8� 0:9j+ j0:1� 0:02j+
j0:9� 0:92j+ j0:95� 0:9j+
j0:05� 0:05j+ j1� 0:95j+
j0� 0:05j+ j0� 0:03j+
j0� 0:01j+ j1� 0:08j+
j0� 0:02j+ j1� 0:1j

9>>>>>>=>>>>>>;
= 1:15:

Also, For other three classes, similar calculations are
performed which lead to:

BID(Bacilluscoli; A) = 0:25;

BID(Salmonella;A) = 0:4;

BID(Klebsiella; A) = 1:45:

From the above results, it is evident that sample A has
the less distance or the most similarity to Bacillus coli
pattern, and therefore is classi�ed as a Bacillus coli
colony.

After testing phase completion, all the unknown
patterns were classi�ed. The �nal results of classi�ca-
tion have been checked with microbiologists' opinions.

Table 2 summarizes the classi�cation result of ten
samples which are compared with the microbiologists'
opinions, where the shaded cells indicate the appro-
priate class of the sample based on the BID distance
measure.

Having compared all the classi�ed samples with
medical experts' ideas, we observed that 91.66 percent
of the unknown samples have been classi�ed correctly.
For the current research data set, the following num-
bers of cases have been identi�ed correctly through
BID evidential distance: Bacillus coli 34

40 , Shigella
36
40 , Salmonella 20

20 and Klebsiella 20
20 . Also, the error

intervals of misclassi�ed unknown patterns of Bacillus
coli and Shigella classes reside in the following intervals,
respectively: [0.01,0.18] and [0.01,0.09]. The bacillus
recognition using the BID distance for a number of
samples is represented in Figure 6 in which the most
similar class has obtained a lower rank, meanwhile
compared with the microbiologists' opinions.

As shown in Figure 6, the belief distance measure
has been applied for each of the samples, so as its
similarity to each of the classes has been assessed via

Figure 6. Bacillus colonies recognition using BID
measure compared with microbiologists' opinions.
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Table 3. Comparison between BID measure and other evidential measures in bacillus colonies recognition.

Measure BID Bahatacharya Euclidean Tessem Jousellme et al. Ristic and Smets

Accuracy rate 91.66% 48.33% 16.66% 76.66% 85.00% 16.60%

determining their distances to the classes. In this
way, acquiring the least distance to a class means
that the sample belongs to that class. Also, the
microbiologists' opinions are represented in this �gure
which shows the high conformance of the proposed
measure with real classi�cations. The other evidential
distance measures were applied to the bacillus colonies
recognition. Joussellme et al.'s measure [15] could
distinguish 85 percent of the samples properly, while
Bahatacharya [14,16], Euclidean [27] and Tessem [18]
evidential distance measures provided us with 48.33%,
16.66% and 76.66% accuracy rates in recognition. Also,
Ristic and Smets measure [16] yielded weak recognition
rate of 16.6% in this problem. Table 3 compares the
BID distance measure result with the other evidential
measures results in bacillus colonies recognition.

BID Application in Coronary Heart Disease
Patients Classi�cation

Coronary heart disease is an important disease in
heart medicine, so as we observe proliferation in CHD
occurrence in humanity, nowadays, because of machine
presence in various aspects of human being life which
is along with obesity and psychological diseases such as
depression. Annually, twelve million people around the
world die because of heart disease and it is predicted
that cause of 75 percent of mortalities in 2020 will be
these diseases [37]. Recently it is announced that 317
people die in Iran daily because of coronary and heart
diseases among which 47% are young [38].

Coronary heart disease is a chronic disease in
which the coronary arteries, responsible for transport-
ing oxygenized blood to heart muscles, get narrowed
and are not able to convey enough fresh blood to this
bloodpumping organ [39]. Often, narrowing of blood
vessels is because of arteriosclerosis that is a common
arterial disease in which raised areas of degeneration
and cholesterol deposit plaques form on the inner sur-
faces of the arteries obstructing blood ow. When the
blood supply of the heart is reduced, it does not receive
enough oxygen and nutrition to operate properly. This
oxygen shortage leads to two important and critical
results: angina pectoris and heart attack [40].

CHD patients classi�cation assists the physicians
to identify the patients with low and high CHD risk,
and in this way control CHD progress in the appro-
priate patients [41]. One of the best and common
ways of the CHD patients classi�cation is to investigate
CHD medical markers or risk factors [42]. In fact,
physicians through studying the CHD medical markers

in their medical research can diagnose this disease
before being acute. Most important CHD medical
markers are total cholesterol, systolic and diastolic
blood pressures, highdensity cholesterol, age, smoking
and diabetes mellitus [42]. In this section, we want to
apply the BID distance measure to classify the patients
into two classes: healthy and unhealthy, in association
to CHD.

After a survey study on the heart and CHD liter-
ature, it was found that various researches are done on
CHD risk factors and medical markers, so as they could
determine each marker's e�ect on the CHD occurrence.
With reviewing these sources and interviewing with
heart disease experts, the key medical markers a�ecting
CHD were obtained [42]. After studying heart and
CHD literature, importance and a�ection degree of the
medical markers on CHD occurrence were acquired. It
is worthy to note that none of the markers imply the
CHD occurrence certainly and we observe uncertainty
in the relation between the medical markers and CHD
occurrence. To represent the relations between the
markers and CHD risk, Framingham heart study [42]
has been used, so as 28 association rules were extracted
which models the uncertainty in the CHD occurrence,
according to the respective markers, as shown in
Table 4.

Taking into account the base patterns or classes
for healthy and unhealthy people in association to
coronary heart disease, the unknown patterns are
classi�ed using evidential distance measures. For this
purpose, we acquired the feature vectors of healthy and
unhealthy people from Framingham heart study [42].
Then, the BBAs for the unknown feature vectors of
patients were assigned according to Table 4. Having
applied the di�erent evidential distance measures to
the unknown patterns brought us their respective
distances to healthy and unhealthy classes which were
used as criteria to classify people in the classes, so
as less distance to a class implies assignment to that
class. Having applied the BID distance measure to
the Hungarian institute of cardiology's heart disease
data set in the university of California, Irvine's machine
learning repository [43] comprised of 294 samples,
the acquired CHD patients classi�cation results were
compared with the real diagnoses, so as it was found
that the proposed measure could classify the samples
with 92.54% accuracy rate.

Also, Jousellme et al. measure [15] yielded a
classi�cation with the same accuracy rate, while Ba-
hatacharya [14,16] provided us the weak recognition
rate of 29.24%. Besides, Euclidean [27], Tessem [18]
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Table 4. Coronary heart disease medical markers and
their basic belief assignments in CHD occurrence.

Medical
Markers

Reference
Range

CHD
Occurrence

BBA
30-34 0
35-39 0
40-44 0.02
45-49 0.05

Age 50-54 0.09
55-59 0.13
60-64 0.18
65-69 0.23
70-74 0.27
<160 0

160-199 0
Total cholesterol 200-239 0.03

240-279 0.07
>280 0.12

Smoking No 0
Yes 0.09
<35 0.08

High density 35-44 0.04
cholesterol (HDL) 45-49 0.01

50-59 0
>60 0

Diabetes mellitus No 0
Yes 0.07

Systolic Diastolic
<120 <80 0

Blood pressure 120-129 80-84 0
130-139 85-89 0.03
140-159 90-99 0.05
>160 >100 0.11

and Ristic and Smets [16] evidential distance measures
could distinguish 91.5%, 88.67% and 91.5% of the
samples correctly, respectively. Since this problem is
twoclass classi�cation, we could apply ROC analysis.
For this purpose, sensitivity and speci�city of the
BID measure were acquired, as shown in Figure 7.
As this �gure shows, the BID's ROC graph takes
place in the upper left corner that implies its great
capability in classi�cation, while Tessem measure ROC
graph is nearly in middle of the chart. Also, ROC
graph of Joussellme et al. measure is nearly the same
as BID measure which implies its good capability in
classi�cation too. Table 5 compares the BID distance

Figure 7. ROC analysis of evidential distance measures.
a) BID distance measure; b) Tessem distance measure.

measure result with the other evidential measures in
coronary heart disease patients classi�cation.

Also, the BID measure experimental results in
CHD patients classi�cation have been compared with
the similar researches, as shown in Table 6, which
implies the proposed measure encounters the problem
more e�ciently. In one of these researches, various
machine learning methods such as Bayesian classi�-
cation and neural networks have been applied to the
heart diseases diagnoses [32], so as the accuracy rate
of 80% has been reported for coronary heart diseases
diagnoses based on the appropriate medical markers.
In another research, neural networks have been used
for recognizing the coronary heart diseases, so as the
designed neural network could identify 84% of the CHD

Table 5. Comparison between BID measure and other evidential measures in CHD patients classi�cation.

Measure BID Bahatacharya Euclidean Tessem Jousellme et al. Ristic and Smets

Accuracy rate 92.45% 29.24% 91.5% 88.67% 92.45% 91.50%
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Table 6. Comparison between the proposed measure outcome and the similar researches.

No. Research Methods Accuracy Rate (%)
1 Kukar et al. [32] Bayesian classi�cation and neural network 80
2 Akay [44] Neural network 84
3 Haddad et al. [45] Neural network 48
4 Detrano et al. [46] Probability theory (logistic regression) 77
5 Proposed measure Evidence theory 92.45

occurrence in the patients [44]. Also, a research has
been exploited the heart rate study using the neural
networks which only could identify 48% of the disease
in the patients [45]. Besides, the acquired result of
the proposed evidential distance measure has been
compared with the similar researches applied to the
same data set among which we can mention Detrano
et al. [46] and Gennari et al. [47] that yielded 77 and
78.9 percent accuracy rates, respectively.

CONCLUSION

The evidential measures proposed so far rely on the
basic belief assignment function and do not exploit
the belief intervals directly, whereas the belief interval
could depict all the knowledge available regarding a
pattern's feature. This paper proposed a new evidential
distance measure based on the belief interval. Having
obtained the belief and plausibility functions or the be-
lief interval, the distance between the belief intervals of
uncertain classes' pattern feature vectors and unknown
patterns are calculated, so as the classi�cation could be
take place according to nearest neighborhood concept.

This evidential distance measure can be used
in classi�cation for imprecise and uncertain feature
vectors with a realistic look at problem uncertainty.
In the proposed approach, we �rst construct the belief
intervals, and then examine the similarity between an
unknown pattern and the classes based on the belief
interval distance measure. As practical applications
of proposed distance measure in classi�cation, it was
applied to the bacillus colony recognition and coronary
heart disease patients classi�cation. Experimental
results showed that the proposed distance provided us
with 91.66 and 92.54 percent accuracy rates in these
applications, respectively. Comparison the acquired
results with other evidential measures results depicts
the proposed measure superior performance.
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