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Separated Continuous Linear Programs
with Fuzzy Valued Objective Function

M.M. Nasrabadi1;2;�, M.A. Yaghoobi3 and M. Mashinchi3

Abstract. Fuzzy linear programming problems can be used to model a wide variety of practical
applications in which all or some decision parameters are stated in an imprecise fashion. These problems
have been investigated and expanded by many researchers from various points of view. In this paper, we
study a class of in�nite-dimensional linear programming problems, so-called separated continuous linear
programs with a fuzzy valued objective function. For this class of problem, we develop a strong duality
result and present an approximation algorithm. The basic idea is to use the discretization technique to
establish a relationship between the problem and an ordinary fuzzy linear programming problem.
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INTRODUCTION

Linear programming is one of the most frequently
applied operations research techniques and has appli-
cations in a wide range of �elds, including economics,
computer science, most branches of engineering, manu-
facturing, scheduling and routing, telecommunication,
transportation and logistics etc. A crucial feature of
linear programming occurring in real-world applica-
tions is that all or some of the parameters may be
stated in an imprecise fashion. This characteristic is
not captured by classical linear programming and in
conventional models, parameters must be precise and
well de�ned. However, in a real world environment,
this is not a realistic assumption. Usually the value
of many parameters of a linear programming model is
estimated by experts. Clearly it cannot be assumed
that the knowledge of experts is so precise.

The traditional way to handle the uncertain pa-
rameters of a linear programming model is to perform
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post-optimization analysis or parametric programming.
In this approach usually parameters are analyzed sep-
arately, which is not suitable for an overall analysis
of the e�ect of imprecision in parameters. Therefore,
since the single parameter sensitivity analysis is not
appropriate when there are many uncertain param-
eters, other approaches such as robust optimization
or stochastic programming are used in order to in-
vestigate the overall e�ect of all uncertain parameters
simultaneously. One practical way is to express the
uncertain parameters by fuzzy numbers. In this
approach, although, again the knowledge of experts
may be utilized, the parameters are not expressed by
deterministic data. They are estimated in term of
fuzzy numbers, which are more realistic and create a
conceptual and theoretical framework for dealing with
imprecision and vagueness [1,2]. Many authors have
extensively studied di�erent features of fuzzy linear
programming since Bellman and Zadeh [3] proposed
the notion of fuzzy decision making (see e.g. [1,2,4-
20]).

Although fuzzy linear programming has been
investigated and expanded for more than two
decades by many researchers and from various
points of view to best of our knowledge, there is
no work on continuous-time linear programming
in the framework of fuzzy theory. Bellman [21,22]
introduced continuous-time linear programming
to model some economic processes. A subclass of
continuous-time linear programming is the class of
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Separated Continuous Linear Programs (SCLP):

SCLP:

min
Z T

0
c(t)0x(t)dt;

s.t.Z t

0
Gx(s)ds+ y(t) = a(t); (1)

Hx(t) � b(t); (2)

x(t) � 0; y(t) � 0; t 2 [0; T ]; (3)

where G and H are given �xed n2 � n1 and n3 �
n1 matrices, and c(t), a(t) and b(t) are given n1,
n2, and n3 vectors as functions of time, t 2 [0; T ],
respectively. All vectors are as columns, and the
superscript, 0, denotes the transpose operation. The
unknown variables are x(t) = (x1(t); � � � ; xn1(t))0 and
y(t) = (y1(t); � � � ; yn2(t))0 as function of time, t 2
[0; T ]. Here, the description \separated" refers to the
fact that the constraints are in two sets: the integral
constraints given by Equation 1 and the instantaneous
constraints given by Relation 2.

SCLP was �rst introduced by Anderson [23] as
a continuous model for large job shop scheduling
problems. SCLP has attracted the most attention in
the class of continuous-time linear programs due to its
applications. It serves as a useful model for various
dynamic network problems, where storage is permitted
at the nodes (see [24] for more details). It can also be
viewed as a type of optimal control problem with linear
dynamics and linear state constraints. Problems of this
kind arise in a number of engineering applications (see
for example [25,26]).

SCLP has been studied by a number of authors,
whose work can be divided into two areas: duality
theory and computational methods. The most progress
was achieved by Pullan. In a series of papers [27-
31], he extensively studied the SCLP, characterized
the solution structure, established duality theory, and
developed a class of convergence algorithms. Philpott
and Craddock [32] proposed an adaptive discretization
algorithm for solving a network-based SCLP by using
some results of [27]. Fleischer and Sethuraman [33]
presented polynomial-time approximation algorithms
for a special subclass of SCLP. In contrast to previ-
ous approaches [27,30,32,34], their algorithm used a
�xed partition of [0; T ] speci�cally designed to meet
the accuracy requirement on the solution. Recently,
Weiss [26] studied SCLP in a di�erent sense from
Pullan's work. Assuming that a non-degeneracy con-
dition holds, he developed a simplex-like algorithm,
which always �nds an exact optimal solution in �nite

steps, albeit requiring, typically, a large amount of
computations.

Recently, the authors of the present work [35]
introduced a class of separated continuous linear pro-
grams with fuzzy valued objective functions, since
the objective coe�cients are usually imprecise and
ambiguous in practical applications. In this paper,
following our previous work [35], we study in more
detail SCLP with a fuzzy valued objective function
called for simplicity, \Fuzzy Separated Continuous
Linear Program (FSCLP)". In particular, we introduce
two di�erent discretizations of the problem to obtain
a lower and an upper bound on the optimal value of
the original problem. Then, we show that the gap
between lower and upper bounds approaches zero when
the discretization gets arbitrarily �ne. This leads to
the development of a strong duality result and an
approximation algorithm for FSCLP.

PRELIMINARIES

In this section, preliminaries from the fuzzy set theory
needed for the purposes of this paper are presented.

Fuzzy Numbers

Let ~a be a \fuzzy number" that is a convex normalized
fuzzy subset of real line R, whose membership function
is piecewise continuous. Denote the set of all fuzzy
numbers on real numbers, R, by FN (R).

An h-cut (0 � h � 1) of a fuzzy set, ~a, is de�ned
by ~ah = ft 2 Rj~a(t) � hg if h > 0, and by ~ah =
clft 2 Rj~a(t) > 0g if h = 0 where cl means the closure
operator. It is a well-known result that the h-cut of
a fuzzy number, ~a, is a closed interval and, hence, is
denoted by ~ah = [~aLh ; ~aRh ] throughout this paper.

Among fuzzy numbers, \Trapezoidal Fuzzy Num-
bers" (TFNs) are mostly used due to their simplicity
of application them (see [36]). We use notation ~a =
(aL; aR; �L; �R) to represent a TFN. Here, aL and aR
denote the left and right centers of ~a, respectively, and
�L > 0 and �R > 0 denote the left and right spreads
taken as real numbers, respectively. The membership
function of ~a is shown in Figure 1 and is given by:

~a(t) =

8>>>>>><>>>>>>:
0 t < aL � �L;
1� aL�t

�L aL � �L � t < aL;
1 aL � t < aR;
1� t�aR

�R aR � t < aR + �R;
0 aR + �R � t:

We denote the set of all trapezoidal fuzzy numbers by
T FN (R).

There are two important topics in real world ap-
plications of the fuzzy set theory: fuzzy arithmetic on
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Figure 1. The membership function of TFN
~a = (aL; aR; �L; �R).

the fuzzy numbers and comparison of fuzzy numbers.
By using an extension principle [37], some of the fuzzy
arithmetic of fuzzy numbers could be written in an
e�cient computational form. Suppose that � is an
algebraic operation on R, the algebraic operation, 
,
on FN (R) is de�ned by:�

~a
 ~b
�

(z) := sup
x�y=z

minf~a(x);~b(y)g:

Particularly, when � is +, �, and �, we can induce
operations �, 	 and � on FN(R), respectively. Some
results of applying fuzzy arithmetic on the TFNs ~a =
(aL; aR; �L; �R) and ~b = (bL; bR; �L; �R) are as follows:

Scalar multiplication:

t:~a = (taL; taR; t�L; t�R); t 2 R; t � 0;

t:~a = (taR; taL;�t�R;�t�L); t 2 R; t < 0:

Addition:

~a� ~b = (aL + bL; aR + bR; �L + �L; �R + �R):

Subtraction:

~a	 ~b = (aL � bR; aR � bL; �L + �R; �R + �L):

However, for comparison of fuzzy numbers, there are
many methods (see [38,39] and the references therein),
including those which use crisp relations to rank fuzzy
numbers. An e�ective approach for ordering the
elements of FN (R) is to de�ne a \ranking function",
R : FN (R) 7! R, where every fuzzy number is mapped
into a point on the real line, where a natural order
exists. Then, a ranking on fuzzy numbers can be
de�ned as:

� ~a �R ~b if and only if R(~a) � R(~b);
� ~a =R ~b if and only if R(~a) = R(~b);
� ~a >R ~b if and only if R(~a) > R(~b),

where ~a and ~b are two fuzzy numbers. Also, ~a �R ~b if
and only if ~b �R ~a. We shall use notation ~a = ~b without

subscript R when ~a and ~b have the same membership
functions and notation ~a � 0 when ~a(t) = 0 for every
t < 0.

A ranking function, R, is said to be \linear" if:

R
�

~a+ k~b
�

= R (~a) + kR
�

~b
�
;

for any ~a;~b 2 FN (R) and any k 2 R.
The linear ranking functions have been mostly

used in solving fuzzy linear programming (see
[15,16,38]). In this paper, we restrict our attention to
linear ranking functions. Therefore, the results that
will be presented later are valid for any arbitrary, but
�xed, linearranking function, R.

There are many ranking functions which have
been de�ned by authors according to their require-
ments (see [38,39]). Some examples are as follows:

1. Yager [40] proposed a ranking function based on
the concept of h-cuts. Let ~ah = [~aLh ; ~aRh ] be the h-
cut of ~a. Then, the ranking function proposed by
Yager [40] is de�ned as:

R(~a) =
1
2

Z 1

0
(~aLh + ~aRh )dh;

which reduces to R(~a) = aL+aR
4 + �R��L

2 for a TFN
~a = (aL; aR; �L; �R).

2. Let ~a = (aL; aR; �L; �R) be a TFN. The mean of
the density function of ~a is de�ned by:

E[X~a] =
1
3

"
2(aL + aR) + (�R � �L)

+
aL(aL � �L)� aR(aR + �R)

2(aR � aL) + (�R + �L)

#
:

Then, a ranking function can be de�ned by R(~a) =
E[X~a] (see [14]).

Integral of Fuzzy Number Valued Functions

The Lebesgue integral and the Henstock integral of
fuzzy number valued functions have been discussed by
a number of authors (see [41-44] and the references
therein). Here, we de�ne the Lebesgue integral as
well as the Lebesgue-Stieltjes integral of fuzzy number
valued functions slightly di�erently from those in the
mentioned works.

Let ~f : [a; b]! FN (R) be a fuzzy number valued
function and:

~fh(t) = [ ~fLh (t); ~fRh (t)]; t 2 [a; b]; h 2 (0; 1]:

We say that ~f is bounded measurable (Lebesgue-
integrable, of bounded variation, monotonic increas-
ing, continuous or continuous from right) on [a; b], if
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functions ~fLh and ~fRh are both bounded measurable
(Lebesgue-integrable, of bounded variation, monotonic
increasing, continuous or continuous from right) on
[a; b] for any h 2 (0; 1].

The integral of Lebesgue-integrable ~f from a to b
is de�ned to be a fuzzy set as: Z b

a

~f(t)dt

!
(x) := sup fh 2 (0; 1]

: x 2
"Z b

a

~fLh (t)dt;
Z b

a

~fRh (t)dt

#)
;

x 2 R:
Lemma 1
Let ~f : [a; b] ! T FN (R) be a Lebesgue-integrable
function with:

~f(t) = (fL(t); fR(t); �L(t); �R(t)):

If fL(t), fR(t), �L(t) and �R(t) are Lebesgue-integrable
functions, then:Z b

a

~f(t)dt =

 Z b

a
fL(t)dt;

Z b

a
fR(t)dt;

Z b

a
�L(t)dt;

Z b

a
�R(t)dt

!
:

Proof
It is clear that the h-cut of

R b
a

~f(t)dt is as follows: Z b

a

~f(t)dt

!
h

=

"Z b

a

~fLh (t)dt;
Z b

a

~fRh (t)dt

#
:

Also we have:
~fh(t) = [fL(t)� (1� h)�L(t); fR(t) + (1� h)�R(t)];

for every t 2 [a; b]. Hence: Z b

a

~f(t)dt

!
h

=

"Z b

a

�
fL(t)� (1� h)�L(t)

�
dt;

Z b

a

�
fR(t) + (1� h)�R(t)

�
dt

#
=

"Z b

a
fL(t)dt� (1� h)

Z b

a
�L(t)dt;

Z b

a
fR(t)dt+ (1� h)

Z b

a
�R(t)dt

#
;

which implies that
R b
a

~f(t)dt is a TFN with left cen-

ter,
R b
a f

L(t)dt, right center,
R b
a f

R(t)dt, left spread,R b
a �

L(t)dt, and right spread,
R b
a �

R(t)dt. �
Lemma 2
Let ~f and ~g be two TFN valued functions on [a; b],
which are Lebesgue-integrable and � 2 R. Then:Z b

a
( ~f(t) + �~g(t))dt =

Z b

a

~f(t)dt+ �
Z b

a
~g(t)dt:

Proof
The result follows from the de�nition of an integral. �
Lemma 3
Let ~f : [a; b] ! T FN (R) be Lebesgue-integrable. If
~f(t) � 0 for every t 2 [a; b], then;Z b

a

~f(t)dt � 0:

Proof
The result follows from Lemma 1. �

We now de�ne the Lebesgue-Stieltjes integral for
fuzzy number valued functions.

De�nition 1
Let ~g : [a; b]! FN (R) be of bounded variation on [a; b]
and f : [a; b]! R be bounded measurable on [a; b]. The
Lebesgue-Stieltjes integral of f(t), with respect to ~g(t),
from a to b is de�ned to be a fuzzy set as: Z b

a
f(t)d~g(t)

!
(x) := sup

(
h 2 (0; 1]

: x 2
"Z b

a
f(t)d~gLh (t);

Z b

a
f(t)d~gRh (t)

#)
;

for every x 2 R.

Lemma 4

Let ~g : [a; b] ! T FN (R) be of bounded variation on
[a; b] with:

~g(t) = (gL(t); gR(t); �L(t); �R(t));

and f : [a; b] ! R be bounded measurable on [a; b].
Then:Z b

a
f(t)d~g(t)dt =

 Z b

a
f(t)dgL(t);

Z b

a
f(t)dgR(t);

Z b

a
f(t)d�L(t);

Z b

a
f(t)d�R(t)

!
:
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Proof
We can proceed by a similar argument as proof of
Lemma 1. �
Theorem 1
If ~g : [a; b] ! T FN (R) and f : [a; b] ! R are
continuous and bounded measurable functions, then
integration by parts holds, that is:Z b

a
f(t)d~g(t)=R [f(b)~g(b)�f(a)~g(a)]�

Z b

a
~g(t)df(t);

where
R b
a ~g(t)df(t) is a fuzzy set given by: Z b

a
~g(t)df(t)

!
(x) := sup

(
h 2 (0; 1]

: x 2
"Z b

a
~gLh (t)df(t);

Z b

a
~gRh (t)df(t)

#)
;

x 2 R:
Proof
The result follows from Lemma 4.

Lemma 5

If ~g : [a; b] ! T FN (R) is monotonic increasing on
[a; b], and f : [a; b] ! R+ is a bounded measurable
function, then:Z b

a
f(t)d~g(t) � 0:

Proof
The result follows from Lemma 4. �

FUZZY SEPARATED CONTINUOUS
LINEAR PROGRAMS

The Separated Continuous Linear Program (SCLP)
can be used to model a variety of problems that arise
in communications, manufacturing and urban tra�c
control (see [25,26]). Since the objective coe�cients
are usually imprecise and ambiguous in real-world
problems, in this section we consider an extension of
SCLP with a fuzzy valued objective function, called,
for simplicity, \Fuzzy Separated Continuous Linear
Program (FSCLP)", de�ned as:

FSCLP:

min
Z T

0
(~ + t~c)0x(t)dt;

s.t.Z t

0
Gx(s)ds+ y(t) = �+ ta; t 2 [0; T ];

Hx(t) � b; t 2 [0; T ];

x(t) � 0; y(t) � 0; t 2 [0; T ]:

Here, ~; ~c 2 T FN (R)n1 ; �; a 2 Rn2 ; b 2 Rn3 ; G 2
Rn2�n1 ;H 2 Rn3�n1 , x(t) 2 Ln11 [0; T ] and y(t) 2
Cn2 [0; T ]. Notice that T FN (R)n1 denotes the set
of all n1-vectors whose components are trapezoidal
fuzzy numbers, Ln11 [0; T ] denotes the space of n1
dimensional vectors whose components are bounded
measurable functions over [0; T ], and Cn2 [0; T ] denotes
the space of n2 dimensional vectors whose components
are continuous functions over [0; T ].

Any pair of (x(t); y(t)) with x(t) 2 Ln11 [0; T ], and
y(t) 2 Cn2 [0; T ] which satis�es the set of Constraints 1-
3, is called a feasible solution for FSCLP. Let S be the
set of all feasible solutions for FSCLP. We shall say
that (x�(t); y�(t)) 2 S is an optimal feasible solution,
if:

V [FSCLP; (x�(t); y�(t))] �R V [FSCLP; (x(t); y(t))];

for all (x(t); y(t)) 2 S.
Here and subsequently notation V [OP; x] is used

to denote the objective function value of an Optimiza-
tion Problem (OP) for a given feasible solution, x. Also
notation V [OP ] will be used to denote the optimal
value of an OP where it is in�nity if OP is an infeasible
minimization problem and �1 if OP is an infeasible
maximization problem.

Before we proceed, we introduce some more
de�nitions and notations. Let f be a real-valued
function de�ned on the time interval, [0; T ], and P =
ft0; � � � ; tmg be a partition of [0; T ], that is: 0 = t0 <
t1 < � � � < tm�1 < tm = T: Function f is said to
be \piecewise constant (linear)", with respect to the
partition P , if it is constant (linear) on [tk�1; tk) for k =
1; � � � ;m. We say that f is piecewise constant (linear)
on [0; T ], if it is piecewise constant (linear), with
respect to some partition of [0; T ]. The \breakpoints"
of a piecewise linear or piecewise constant function
are the discontinuity points in the function and its
derivatives.

It is shown [45] that if the feasible region for SCLP
is bounded and nonempty, then there exists an optimal
solution for SCLP for which the components of x(t) are
piecewise constant. The same result is true for FSCLP.
This leads to the following assumption.

Assumption 1

The feasible region for FSCLP is bounded and
nonempty.
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It is clear that if jjx(t)jj �M for some constant M
and any feasible solution x(t), then the feasible region
for FSCLP is bounded.

Following Pullan [27], the dual problem of FSCLP
can be de�ned as follows:

FSCLP�:

max�
Z T

0
(�+ ta)d~�(t)0 �

Z T

0
~�(t)0bdt;

s.t.

~ + t~c�G0~�(t) +H 0~�(t) �R 0;

with variables ~� : [0; T ] ! T FN (R)n3 whose compo-
nents are Lebesgue-integrable functions on [0; T ] and
~� : [0; T ] ! T FN (R)n2 , where ~�(t) is monotonic
increasing and right continuous on [0; T ] with ~�(T ) = 0,
in the sense that each component of ~�(t) is monotonic
increasing and right continuous. Here, the following
expression:Z T

0
(�+ at)d~�(t)0;

is understood to be a Lebesgue-Stieltjes integral.
The following weak duality result can be con-

cluded for FSCLP.

Theorem 2

Weak duality holds between FSCLP and FSCLP�, i.e.:

V [FSCLP�] �R V [FSCLP]:

Proof
Consider any two feasible solutions, (x(t); y(t)) and
(~�(t); ~�(t)) for FSCLP and FSCLP�, respectively.
Then by Lemmas 2, 3, 5 and Theorem 1, we have:Z T

0
(0 + t~c0)x(t)dt�

 
�
Z T

0
(�+ ta)d~�(t)0

�
Z T

0
~�(t)0dt

!
=R

Z T

0
(~ + t~c)0x(t)dt

+
Z T

0

�Z t

0
Gx(s)ds+ y(t)

�
d~�(t)0

+
Z T

0
~�(t)0bdt =R

Z T

0
(~ + t~c�G0~�(t)

+H 0~�(t))x(t)dt+
Z T

0
y(t)d~�(t)0

+
Z T

0
~�(t)0(b�Hx(t))dt �R 0: �

The weak duality result motivates the notion of com-
plementary slackness optimality conditions given in the
following corollary.

Corollary 1

Strong duality holds between FSCLP and FSCLP� if,
and only if, there are feasible solutions, (x(t); y(t))
and (~�(t); ~�(t)) for FSCLP and FSCLP�, respectively,
which satisfy the following complementary slackness
conditions:Z T

0
(~ + t~c�G0~�(t) +H 0~�(t))x(t)dt =R 0;Z T

0
y(t)d~�(t)0 =R 0;Z T

0
~�(t)0(b�Hx(t))dt =R 0:

DISCRETE APPROXIMATIONS

In this section, two discrete approximations of FSCLP
are introduced followed by a discussion of their prop-
erties. We �rst introduce the standard and natural
discretization of FSCLP.

Given a partition, P = ft0; � � � ; tmg of [0; T ], the
standard discrete approximation of FSCLP, so-called
FDP(P ), is de�ned as follows:

FDP(P ):

min
mX
k=1

(tk�tk�1)
�

~0+
�
tk+tk�1

2

�
~c0
�
x̂(tk�1+);

s.t.

ŷ(t0) = �;

(t1 � t0)Gx̂(t0+) + ŷ(t1) = �+ t1a;

(tk � tk�1)Gx̂(tk�1+) + ŷ(tk)� ŷ(tk�1)

= (tk � tk�1)a;

k = 2; � � � ;m;
Hx̂(tk�1+) � b; k = 1; � � � ;m;
x̂(tk�1+); ŷ(tk) � 0; k = 1; � � � ;m:

Notice that FDP(P ) is fuzzy linear programming and
it can be e�ciently solved by the methods presented
in [15,16]. As with the notation in [27], the labeling of
the variables in FDP(P ) is for convenience and does not
mean that they explicitly refer to a function but rather
in an implicit way as shown in the following lemma.
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Lemma 6

For any partition P , we have:

V [FSCLP] �R V [FDP(P )]:

Proof
It is easy to see that any feasible solution for FDP(P )
can be used to construct a feasible solution for FSCLP
with the same objective function value. Speci�cally if
(x̂; ŷ) is a feasible solution for FDP(P ), then:

x(t) =

(
x̂(tk�1+); t 2 [tk�1; tk); k = 1; � � � ;m;
x̂(tm�1+); t = T; (4)

y(t) =
�

tk � t
tk � tk�1

�
ŷ(tk�1) +

�
t� tk�1

tk � tk�1

�
ŷ(tk);

t 2 [tk�1; tk]; k = 1; � � � ;m; (5)

form the desired feasible solution for FSCLP. �
In the following, we introduce another discrete

approximation of FSCLP for a given partition, P =
ft0; � � � ; tmg, named FAP(P ), as follows:

FAP(P ):

min
mX
k=1

�
tk � tk�1

2

�
((~0 + ~c0tk�1)x̂(tk�1+)

+ (~0 + ~c0tk) x̂(tk�));

s.t.

ŷ(t0) = �;�
t1�t0

2

�
Gx̂(t0+)+ŷ

�
t1+t0

2

�
=�+

�
t1+t0

2

�
a;�

tk � tk�1

2

�
Gx̂(tk�) + ŷ(tk)� ŷ

�
tk + tk�1

2

�
=
�
tk � tk + tk�1

2

�
a;

k = 1; � � � ;m;�
tk � tk�1

2

�
Gx̂(tk�1+) + ŷ

�
tk+tk�1

2

�
�ŷ(tk�1)

=
�
tk + tk�1

2
tk�1

�
a;

k = 2; � � � ;m;
Hx̂(tk�1+) � b; k = 1; � � � ;m;

Hx̂(tk�) � b; k = 1; � � � ;m;

x̂(tk�1+); x̂(tk�); ŷ(tk); ŷ
�
tk + tk�1

2

�
� 0;

k = 1; � � � ;m:
This is a fuzzy variation of the second discretization in
Pullan [27] for SCLP.

Notice that the feasible set of FAP(P ) is the same
as the feasible set of FDP( �P ) where:

�P =
�
t0;

t0+t1
2

; t1;
t1+t2

2
; t2; � � � ; tm�1+tm

2
; tm
�
;

and we identify x̂(tk�) in FAP(P ) with x̂([(tk +
tk�1)=2]+) in FDP( �P ). As a consequence, any solution
for FAP(P ) can be turned into a feasible solution
for FSCLP, but unlike FDP(P ), not with the same
objective function value.

In the following, some properties of discretization
FAP(P ) that are needed for the purposes of this paper
are stated.

Lemma 7

Let P be an arbitrary partition. Then, FSCLP is
feasible if, and only if, FAP(P ) is feasible.

Proof
Let P = ft0; � � � ; tmg 2 P and (x̂; ŷ) be a feasible
solution for FAP(P ). It is clear that this solution forms
a feasible solution, (x(t); y(t)), to FSCLP de�ned by:

x(t) =

8>>>>>>><>>>>>>>:
x̂(tk�1+); t 2 htk�1; tk�tk�1

2

�
;

k = 1; � � � ;m;
x̂(tk�); t 2 h tk�tk�1

2 ; tk
�
;

k = 1; � � � ;m;
x̂(tm�); t = T;

(6)

with y(t) derived from Equation 4. Now assume that
(x(t); y(t)) is a feasible solution for FSCLP. De�ne
(x̂; ŷ) by:

x̂(tk�1+) =
2

tk + tk�1

Z tk�1+tk
2

tk�1

x(t)dt;

k = 1; � � � ;m; (7)

x̂(tk�) =
2

tk + tk�1

Z tk

tk�1+tk
2

x(t)dt;

k = 1; � � � ;m; (8)
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ŷ(tk) = y(tk); k = 1; � � � ;m; (9)

ŷ
�
tk + tk�1

2

�
= y

�
tk + tk�1

2

�
;

k = 1; � � � ;m: (10)

Then, (x̂; ŷ) is a feasible solution for FAP(P ). �

Theorem 3

Let P be any arbitrary partition and suppose that
FAP(P ) has an optimal solution. Then:

V [FAP(P )] �R V [FSCLP]:

Proof
The dual problem FAP�(P ) for FAP(P ) can be written
as:

FAP�(P ):

max ~̂�0(t0+)�

+
mX
k=1

�
tk � tk�1

2

�
a0
�

~̂�(tk�1+) + ~̂�(tk�)
�

�
mX
k=1

�
tk � tk�1

2

�
bT
�

~̂�(tk�1+) + ~̂�(tk�)
�
;

s.t.

~ + tk~c�G0 ~̂�(tk�) +H 0 ~̂�(tk�) �R 0;

k = 1; � � � ;m;
~ + tk�1~c�G0 ~̂�(tk�1+) +H 0 ~̂�(tk�1+) �R 0;

k = 1; � � � ;m;
~̂�(tk�); ~̂�(tk�1+) �R 0; k = 1; � � � ;m;
~̂�(tk�)� ~̂�(tk�1+) �R 0; k = 1; � � � ;m;
~̂�(tk+)� ~̂�(tk�) �R 0; k = 1; � � � ;m� 1;

~̂�(tm�) �R 0:

Now, suppose that (x̂; ŷ) is an optimal solution for
FAP(P ). From the duality theory for fuzzy linear
programming [15,16], there is some (~̂�; ~̂�) that solves
FAP�(P ) with:

V [FAP(P ); (x̂; ŷ)] =R V [FAP�(P ); (~̂�; ~̂�): (11)

Now, let:

~�(t) =8>>>><>>>>:
~̂�(t+); t = t0; t1; � � � ; tm�1;
0; t = T;�

tk�t
tk�tk�1

�
~̂�(tk�1+) +

�
t�tk�1
tk�tk�1

�
~̂�(tk�);

t 2 (tk�1; tk); k = 1; � � � ;m;
(12)

~�(t) =8>>>><>>>>:
~̂�(t+); t = t0; t1; � � � ; tm�1;
0; t = T;�

tk�t
tk�tk�1

�
~̂�(tk�1�) +

�
t�tk�1
tk�tk�1

�
~̂�(tk+);

t 2 (tk�1; tk); k = 1; � � � ;m:
(13)

It is not di�cult to check that (~�(t); ~�(t)) is a feasible
solution for FSCLP� and:

V [FSCLP�(P ); (~�(t); ~�(t))] =R V [FAP�(P ); (~̂�; ~̂�)]:

Thus, we have:

V [FAP�(P ); (~̂�; ~̂�)] �R V [FSCLP�]: (14)

The result now immediately follows from Equations 11
and 14, and Theorem 2. �

Combining Lemma 6 and Theorem 3 leads to the
following important result.

Corollary 2

For any two partitions, P and Q, we have:

V [FAP(Q)] �R V [FSCLP�] �R V [FSCLP]

�R V [FDP(P )]:

STRONG DUALITY

In this section, we �rst show that the optimal values of
discretizations, FDP(P ) and FAP(P ), close up to the
same value as the norm of partition P tends to zero.
Then, we establish a strong duality result.

Suppose that P = ft0; t1; � � � ; tmg is a partition
of interval [0; T ], and (x̂; ŷ) is an optimal solution
for FAP(P ). Let (x(t); y(t)) be the corresponding
feasible solution for FSCLP constructed from (x̂; ŷ) by
Equation 6. We de�ne:

�[x̂; ŷ] :=
Z T

0
(~ + ~ct)0x(t)dt

�
mX
k=1

(tk � tk�1)
2

f(~ + ~ctk�1)0x̂(tk�1+)

+ (~ + ~ctk)0x̂(tk�)g: (15)
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The value �[x̂; ŷ] gives the di�erence in objective
function values yielded by (x(t); y(t)) for FSCLP and
(x̂; ŷ) for FAP(P ). By Theorem 3, it can be seen that
�[x; y] �R 0, and �[x̂; ŷ] =R 0 implies that (x(t); y(t))
is optimal for FSCLP. Other properties of �[x̂; ŷ] are
as follows.

Lemma 8

The value of �[x̂; ŷ] can be computed by the following
formula:

�[x̂; ŷ] =
mX
k=1

(tk � tk�1)2

8
~c0 fx̂(tk�)� x̂(tk�1+)g :

Proof
The result follows after simple integration and algebra.
�

The norm of partition P = ft0; � � � ; tmg denoted
by jjP jj can be de�ned by:

jjP jj := max
k

(tk � tk�1):

Then, we can establish the following result.

Lemma 9

There is a constant K such that for any partition P ,
the following inequality holds:

�[x̂P ; ŷP ] �R jjP jjK; (16)

where (x̂P ; ŷP ) is an optimal solution for FAP(P ).

Proof
By Assumption 1, jjx(t)jj �M for any feasible solution,
x(t). Moreover, suppose that jjR(~c)jj � C for any
~c 2 TFN(R). Let P = ft0; t1; � � � ; tmg be an arbitrary
partition. Then:

�[x̂P ; ŷP ] =
mX
k=1

(tk � tk�1)2

8
~c0fx̂(tk�)� x̂tk�1+)g

�R MC
4

mX
k=1

(tk � tk�1)2 � MCjjP jjT
4

:

The result follows by setting:

K =
MCT

4
: (17)

Corollary 3

Let fPng1n=1 be any sequence of partitions such that
limn!1 jjPnjj = 0, and (x̂n; ŷn) be an optimal solution
for FAP(Pn). Then:

lim
n!1�[x̂n; ŷn] =R 0:

Corollary 3 implies that the optimal values of dis-
cretizations, FDP( �Pn) and FAP(Pn), close up to the
same value, as the norm of sequence fPng tends to zero
value. This fact leads to the strong duality theorem.

Theorem 4

If FSCLP has an optimal solution, then, strong duality
holds between FSCLP and FSCLP� with respect to an
arbitrary linear ranking function, R.

Proof
Let P be an arbitrary partition and (x(t); y(t)) be an
optimal solution for FSCLP. By Lemma 7, this solution
can be turned into a feasible solution for FAP(P ),
and, as a consequence, for FDP( �P ). Furthermore, by
Lemma 6, the optimal value of FSCLP is a lower bound
on the optimal value of FDP( �P ). Thus, FDP( �P ) has
an optimal solution. On the other hand, the optimal
value of FSCLP is an upper bound on the optimal
value of the maximization problem FAP�(P ). Since
FAP(P ) is feasible, and the objective function value of
its dual is bounded by the duality theory in fuzzy linear
programming [15,16] both FAP(P ) and FAP�(P ) have
optimal solutions.

Now, let fPng1n=1 be any sequence of partitions
with limn!1 jjPnjj = 0. From the above argument,
all three problems, FDP( �Pn), FAP(Pn) and FAP�(Pn)
have optimal solutions for any n. Let (x̂n; ŷn); (�̂xn; �̂yn),
and (�̂n; ~̂�n) represent optimal solutions for FDP( �Pn),
FAP(Pn) and FAP�(Pn), respectively, and:

an = V [FDP( �Pn)]; bn = V [FAP�(Pn)];

for n = 1; 2; � � � :
By Lemma 6, and the fact that �[�̂xn; �̂yn] given by
Equation 15, is an upper bound on the di�erence
between an and bn, we have:

0 �R bn � an �R �[�̂xn; �̂yn]; for n = 1; 2; � � � :
(18)

Corollary 3 and Relation 18 imply that:

lim
n!1(bn � an) =R 0:

On the other hand, it follows from Corollary 2 that
bn � am �R 0 for all m and n. Thus, both limn!1 an
and limn!1 bn exist (see Lemma 3.8 in [27]) and:

lim
n!1 an =R lim

n!1 bn:

On the other hand, by Corollary 2 we have:

V [FAP�(Pn)] �R V [FSCLP�] �R V [FSCLP]

�R V [FDP( �Pn)]; for n = 1; 2; � � � :
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Therefore, we can deduce:

lim
n!1V [FAP�(Pn)]

=R lim
n!1

(Z T

0
(�+ ta)d~�n(t)T �

Z T

0

~~�n(t)T bdt

)
=R V [FSCLP�] =R V [FSCLP]

=R lim
n!1

Z T

0
(~ + t~c)Txn(t)dt

=R lim
n!1V [FDP( �Pn)];

where (xn(t); yn(t)) is obtained from (x̂n; ŷn) by Equa-
tions 4 and 5, and (~�n(t); ~�n(t)) from (~̂�n; ~̂�n) by
Equations 12 and 13. The above relation shows that
strong duality holds between FSCLP and FSCLP�. �

APPROXIMATION ALGORITHM FOR
FSCLP

In this section, we present an algorithm based on a
sequence of discrete approximations to the FSCLP
problem. First, some needed prerequisites are stated
and then the algorithm is given.

Corollary 3 suggests that FSCLP can be solved by
solving a sequence of discrete approximations to the
problem. Let P be a �xed partition of time interval
[0; T ]. Then, FDP(P ) and FAP(P ) are two ordinary
fuzzy linear programming problems. Recently, two
methods for solving fuzzy linear programming prob-
lems have been proposed in [15,16], based on the
concept of linear ranking functions. In these methods,
a crisp model of the same size is constructed which
is equivalent with fuzzy linear programming and the
optimal solution of this equivalent model is considered
as the desired one. Thus, FDP(P ) and FAP(P ) can be
solved easily. Then, by Corollary 2, optimal values of
FDP(P ) and FAP(P ) yield an upper bound and a lower
bound on the optimal value of FSCLP, respectively.
Furthermore, the explicit error bound in Relation 16
shows that any required accuracy can be achieved by a
partition P of [0; T ] into a su�ciently large number of
equal intervals as the following lemma suggests:

Lemma 10

Let � > 0 be the required accuracy and:

m =
�
TK
�

�
; (19)

where K is given by Equation 17. Then, the error
bound is guaranteed to be no greater than �. Moreover,
the error bound approaches to zero as � tends to zero.

Proof
By the use of Corollary 2 and Lemma 9, we can write:

� � TK
m

= jjP jjK � �[x̂P ; ŷP ]

� V [FDP(P )]� V [AP(P )]

� [FDP(P )]� V [FSCLP];

which establishes the lemma. �
In practical applications, K could be very huge

and consequently the number of breakpoints in par-
tition P , i.e. the value m given by Equation 19,
could be very large. Choosing m can be avoided by
using the Discretization algorithm described as follows.
Starting from some initial partition, P , discretizations,
FDP(P ) and FAP(P ), are solved. Then, the error
bound can be estimated. If the error bound is not small
enough, the number of breakpoints is doubled with a
new breakpoint added at the midpoint of the current
partition. A formal description of the Discretization
Algorithm is as follows:

Discretization Algorithm

Step 0 Let P1 = f0; Tg be an initial partition. Set
i = 1.

Step 1 Solve FDP(Pi) to produce (x̂i; ŷi).

Step 2 Solve FAP(Pi) to give (�̂xi; ^̂yi).
Step 3 Calculate the current error bound, i.e.:

�n = V [FDP(Pi)]� V [FAP(Pi)]:

If �i =R 0, then stop as (x̂i; ŷi) yields an opti-
mal solution for FSCLP. Otherwise, construct
a new partition, Pi+1, with a new breakpoint
added at the midpoints of Pi.

Step 4 Set i = i+ 1 and return to Step 1.

Lemma 11

The Discretization Algorithm terminates after a �nite
number of iterations at an optimal solution to FSCLP,
or both V [FDP (Pi)] and V [FAP (Pi)] converge to
V [FSCLP ], i.e.:

limjPij!0
V [FAP(Pi)]= limjPij!0

V [FDP(Pi)]=V [FSCLP]:

Proof
The result easily follows from Lemma 9. �

Now, assume that (x̂i; ŷi) is an optimal solution
for FDP(Pi) generated at iteration i of the Dis-
cretization Algorithm, and (xi(t); yi(t)) denotes the
associated solution for FSCLP. Usually, the xi(t) is
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identical in some consecutive intervals of Pn and,
as a consequence, some breakpoints are redundant.
Speci�cally, breakpoint tk in Pi is said to be redundant
if:

x̂i(tk�1+)
tk � tk�1

=
x̂i(tk+)
tk+1 � tk :

It is clear that if tk is redundant, then it can be removed
from Pi without increasing the objective function value.
Thus, it is desirable to remove the redundant break-
points as they increase the size of the subproblems to
be solved at each iteration. It is worthwhile to mention
that the idea of removing redundant breakpoints is due
to Philpott and Craddock [32].

AN ILLUSTRATIVE EXAMPLE

In this section, one simple example is solved using the
proposed algorithm and Yager's method [40] is used as
the linear ranking function, R, for comparison of fuzzy
numbers.

Consider a given network with four nodes (num-
bered from 1 to 4) and four arcs (numbered from 1 to
4) connecting those nodes as shown in Figure 2. Arc j
has a transit capacity, bj(t), given by:

b1(t) = 0:6; b2(t) = 0:8;

b3(t) = 0:8; b4(t) = 1:6:

In fact, bj(t) is an upper bound of the ow that can
enter in arc j at time t. Moreover, each arc, j, has an
associated transit cost, cj(t), which gives the cost for
sending one unit of ow through arc (i; j) at time t.
An initial storage of 8 units must be routed from node
1 to node 4 over the time interval [0; 10], such that the
transit capacity constraints are satis�ed and the total
cost is minimized. This problem can be formulated as
an instance of an SCLP problem by putting a constant
demand of 1.6 per unit time at node 4 during (5; 10]. In
terms of the SCLP problem, G is the node-arc incidence
matrix of the network and H is an identity matrix.

Figure 2. The given network.

More speci�cally:

T = 10; n1 = n2 = n3 = 4;

G =

2664 1 0 0 0
�1 1 0 0
0 �1 �1 1
0 0 0 �1

3775 ;

H =

26641 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 ;
and ai(t) is given by:

a1(t) = 8; a2(t) = a3(t) = 0;

a4(t) =

(
0; t 2 [0; 5];
�1:6(t� 5); t 2 [5; 10]:

Assume that transit costs are subjected to uncertainty
and they are expressed by TFNs as follows:

~c1(t) = (0:3; 1:5; 0:5; 0:8)� (0:2; 0:8; 0:2; 0:6)t;

~c2(t) = (0:5; 2; 1:5; 0:5) + (0:8; 2:2; 1; 1:2)t;

~c3(t) = (10; 12:5; 2; 1)� t;
~c4(t) = (5:2; 6:5; 0:8; 0:5);

where (aL; aR; �L; �R) denotes a TFN.
The Discretization Algorithm is applied for solv-

ing this example. At each iteration of the algorithm,
redundant breakpoints are identi�ed and removed. The
results of the �rst seven iterations are given in Table 1,
including optimal values of FDP(Pi) and FAP(Pi),
error bound, �i, de�ned as V [FDP(Pi)]� V [FAP(Pi)],
the number of breakpoints at partition Pi (denoted
by \# BP"), and the number of breakpoints after
removing redundant ones on the optimal solution of
FDP(Pi) (denoted by \# BPR").

The results of Table 1 show that the gap between
lower and upper bounds approaches to zero when the
discretization gets �ner. In particular, after seven
iterations, an approximation solution is found with
breakpoints in:

P = f0; 2:5; 2:6563; 2:7344; 2:8125; 3:4375;

3:5938; 3:75; 5; 10g;
such that the error bound is guaranteed to be less than
0.0017.
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Table 1. Results of the discretization algorithm.

i R(V [FDP(Pi)]) R(V [FAP(Pi)]) R(�i) # BP # BPR

1 101.0000 94.6625 6.3375 3 2

2 99.4187 97.5187 1.9000 5 4

3 98.6047 98.4187 0.1859 7 5

4 98.5656 98.4765 0.0929 9 6

5 98.5405 98.5045 0.0360 11 7

6 98.5239 98.5198 0.0041 13 9

7 98.5233 98.5215 0.0017 17 10

CONCLUSIONS

In this paper, a class of a separated continuous linear
program with a fuzzy valued objective function, so-
called FSCLP was introduced. A duality notion for
FSCLP was established via a discretization of the time
interval [0; T ] into a �nite number of subintervals.
In particular, we have shown that the strong duality
between the FSCLP and its dual is concluded by two
related fuzzy linear programming problems. As a
by-product, an algorithm that computes, or at least
converges to an optimal value of FSCLP, was derived.
Although discussion of this paper was con�ned to
FSCLP with constant data (i.e. the vectors ~; ~c; �; a; b),
still, all results can be readily generalized to cases in
which the data are piecewise constants over [0; T ].

In model FSCLP, although the objective function
coe�cients, ~; ~c are fuzzy numbers, matrices G and H
and the right hand side vectors, �, a, and b, must be
well de�ned and precise. Thus, an interesting problem
is to study generalization of FSCLP in cases where
entries of matrices G and H and the entries of vectors
�, a, and b are also fuzzy numbers.
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