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Abstract. In this paper, we try to explain the origin of the anomalous elastic behavior of nanometer-
sized DNA molecules, which has been observed in all-atom molecular dynamic simulations [A.K. Mazur,
Biophys. J. 2006]. It is shown that this anomalous behavior is a consequence of nonlocal interactions
between DNA base pairs and the intrinsic curvature of DNA. A nonlocal harmonic elastic rod model is
proposed, which can successfully describe the elastic behavior of short DNA molecules.
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INTRODUCTION

DNA is one of the most important biomolecules, not
only for its ability in carrying and transferring genetic
information of biological systems, but also because of
its mechanical 
exibility that helps it to do its biolog-
ical function. Studying the elastic behavior of DNA
is important for understanding its biological functions.
One of the best theoretical models to explain the elastic
behavior of DNA is the local harmonic elastic rod
model (also called the wormlike chain model) [1,2].
In this model it is assumed that the base pairs only
interact with their nearest neighbor, and the elastic
energy is a harmonic function of the deformation. The
wormlike chain model can predict the elastic properties
of long DNA molecules very accurately [2]. Despite this
success, there is some doubt about the applicability of
the wormlike chain model for short, nanometer-sized,
DNA molecules [3,4].

All-atom simulations are the best approach to
study the elastic behavior of DNA at the base pair
level [5,6]. Recently Mazur has performed all-atom
MD simulations to study the elastic properties of a
double helical DNA fragment of 25 base pairs with
the AT-alternating sequence [5]. Mazur measured
a quantity Da(L) = � lnhcos �(L)i, where � is the
bending angle of a DNA molecule of length L. He
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observed that Da(L) is a nonlinear function of L. This
is contradictory to the wormlike chain model, which
predicts thatDa(L) is linear. In this paper we will show
that the nonlinearity of Da(L) is a direct consequence
of nonlocal interactions between DNA base pairs and
the intrinsic curvature of DNA. We propose a nonlocal
harmonic model that can explain the anomalous elastic
behavior of DNA observed in [5].

MODEL AND METHODS

Nonlocal Harmonic Elastic Rod Model

In the elastic rod model, DNA is represented by a

exible inextensible rod [1,2], which can be deformed
in response of the external forces or torques. Here we
use a coarse-grained version of the elastic rod model [2]
where the rod is divided into discrete segments, each
representing a DNA base pair. In this model, the
internal degrees of freedom of the base pairs are
neglected, and each base pair is considered as a rigid
body. A local coordinate frame is attached to each
base pair [2,7]. Since it is assumed that the DNA is
inextensible, separation of successive base pairs is �xed
and each base pair only has three rotational degrees
of freedom. The orientation of the (n+ 1)th base pair
with respect to the nth base pair is then determined
by rotation R(n). The rotation matrix R(n) can be
parameterized by a vector

*
�(n), which its direction

points to the axis of the rotation and its magnitude
is equal to the rotation angle. The components of
*
�(n) in the local coordinate system attached to the
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nth base pair are denoted by �1(n), �2(n) and �3(n).
These three angles can be regarded as the rotational
degrees of freedom of the (n + 1)th base pair, and
are called tilt, roll and twist respectively. If the
values of these three angles are known for all the base
pairs, the conformation of the DNA can be uniquely
determined.

For an inextensible DNA with N base pair steps,
the elastic energy is a function of 3N rotational degrees
of freedom. For small deformations, the elastic energy
can be expanded in a Taylor series about the equilib-
rium con�guration. If we expand the elastic energy to
the second order, we arrive at the harmonic elastic rod
model which is given by:

EH [�]=
1
2
kBT

3X
i;j=1

NX
m;n=1

Qij(n;m)��i(n)��j(m);
(1)

where ��i(n) denotes the deviation of �i(n) from the
equilibrium value �0

i (n), (��i(n) = �i(n)��0
i (n)). In

Equation 1, Qijs are N�N matrices with the property
Qij(n;m) = Qji(m;n), and are called elastic matrices.

The stability of the elastic energy imposes some
constrains on the elastic matrices. We de�ne Q as a
3N�3N matrix with nine N�N blocks whose ij block
is Qij . One can see that Q is symmetric. The necessary
and su�cient condition for the stability of the elastic
energy is that the matrix Q is positive-de�nite.

The elastic energy given in Equation 1 represents
the most general form of the harmonic elastic rod
model. Usually it is assumed that interactions between
DNA base pairs are local, that is each base pair only
interacts with its nearest neighbors. In this case,
there is no coupling between the rotational degrees
of freedom of di�erent base pairs. In the harmonic
approximation, the locality assumption implies that
the elastic matrices, Qijs, are diagonal. Thus the local
harmonic elastic rod model, also known as wormlike
chain model, is given by [1,2]:

EWLC [�] =
1
2
kBT

3X
i;j=1

NX
n=1

Aij(n)��i(n)��j(n);
(2)

where Aijn = Qij(n; n).
In the general case, where nonlocal interactions

exist between DNA base pairs, the elastic matrices have
nonzero o�-diagonal elements, and the elastic energy
can be decomposed into two terms:

EH [�] = EWLC [�] + ENL[�]: (3)

The �rst term in Equation 3 is the local part of the
elastic energy given in Equation 2, and the second term
comes from nonlocal interactions that can be written

as:

ENL[�] =
1
2
kBT

3X
i;j=1

NX
n=1

N�nX
r=1

[Jij(n; r)

��i(n)��j(n+ r)]; (4)

where Jij(n; r) are the nonlocal coupling constants
which are related to o�-diagonal elements of the elastic
matrices via equation:

Jij(n; r) =
1
2

[Qij(n; n+ r) +Qji(n+ r; n)]: (5)

Calculating the Elastic Parameters of DNA
from Simulation Data

In the harmonic approximation, the elastic constants of
DNA can be calculated from the correlation matrices
in a standard way [6]. We de�ne a 3N � 3N matrix G
with nine N�N blocks whose ij block is the correlation
matrix Gij given by:

Gij(n;m) = h�i(n)�j(m)i � h�i(n)ih�j(m)i: (6)

Then we have:
Q = G�1: (7)

Also the equilibrium conformation of DNA in the
harmonic approximation is given by:

�0
i (n) = h�i(n)i: (8)

3DNA software [8] was used to calculate the rotational
degrees of freedom of the base pairs for all MD
trajectories obtained in [5]. In this way, we found
a statistical ensemble for the rotational degrees of
freedom of all DNA base pairs. We then calculated the
elastic parameters of DNA using Equations 7 and 8.

It must be noted that 3DNA uses CEHS (Cam-
bridge University, Engineering department { helix
Computation Scheme) de�nition for the rotational
degrees of freedom [9] which is di�erent from the
de�nition we used in this paper. However, the two
de�nitions are related via simple equations [9], and
the rotational degrees of freedom in our de�nition were
easily calculated from 3DNA output.

Monte Carlo Simulation

We use a simple Monte Carlo simulation to calculate
the statistical properties of DNA in our model. In each
Monte Carlo move, we randomly choose a base pair,
and for that base pair we change the vector

*
� by �

*
�.

The direction of �
*
� is random, and its magnitude is

chosen randomly in the interval [0;�max], where �max
is chosen so that the accept ratio is about 0.5. We do
not include the self avoiding in the simulation, since
the probability of self crossing is small for the short
simulated DNA molecules.
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RESULTS AND DISCUSSION

The nonlocal nature of elastic behavior of DNA in
the MD simulations done by Mazur [5] is revealed in
the autocorrelation functions of rotational degrees of
freedom of DNA, which are de�ned as:

gi(r) =
1

(N � r)�i
N�rX
n=1

Gii(n; n+ r); (9)

where Gij is the correlation matrix given by Equa-
tion 6, and �i is a normalization constant chosen so
that gi(0) = 1. If the interactions between the DNA
base pairs are local, the degrees of freedom of di�erent
base pairs must be uncorrelated, i.e. gi(r) = 0 for
r 6= 0. Therefore, if the auto correlation functions have
a nonzero value at a nonzero distance, this implies that
there exist nonlocal interactions between DNA base
pairs. Figure 1 shows the autocorrelation functions
of rotational degrees of freedom in MD simulations.
As can be seen, there are large negative correlations,
specially at r = 1. This indicates that there are
nonlocal interactions between DNA base pairs in MD
simulations. In another work, Lankas et al. have ob-
tained a similar result for the autocorrelation functions
of rotational degrees of freedoms [6].

To study the e�ect of nonlocal interactions on
the elastic properties of DNA, we calculated Da(L) =
� loghcos �(L)i as a function of DNA length L, where
�(L) is the bending angle of a DNA of length L. We
de�ne the bending angle as:

cos � = d̂3(1):d̂3(N + 1); (10)

where d̂3(n) is a unit vector perpendicular to the
surface of the nth base pair. De�ning the bending angle

Figure 1. Autocorrelation functions as a function of
separation. Squares: g1(r), diamonds: g2(r), triangles:
g3(r). There are large negative correlations, specially at
r = 1.

as in Equation 10 has some advantages. This de�nition
does not involve any �tting, and the bending angle
depends only on the de�nition of the local coordinate
frames. For an inextensible DNA, the normal vectors
to the base pairs are locally tangent to the DNA
helical axis. Since the translational degrees of freedom
of DNA usually take small values, Equation 10 is a
good approximation for the bending angle of DNA.
Nevertheless, the bending angle of DNA de�ned in
this way does not depend on the translational degrees
of freedom. Thus the results presented here will
not change if we include the translational degrees of
freedom in the model. Most important of all it is known
that with the bending angle de�ned as in Equation 10,
Da(L) is a linear function of L, provided that DNA has
no intrinsic curvature and the interactions are local.
Therefore, Da(L) is a good candidate to identify the
e�ect of nonlocal interactions.

Figure 2 shows Da(L), calculated directly from
MD simulations data [5] (diamonds). It can be seen
that Da(L) is highly nonlinear. Similar results are ob-
tained if one uses 3DNA or curve softwares to �nd the
bending angle [5,10]. Using Monte Carlo simulation, we
calculate Da(L) for the nonlocal harmonic elastic rod
model, parameterized by Equations 6 and 7. The result
is shown in Figure 2 (solid line). It can be seen that

Figure 2. Da(L) as a function of L. Diamonds show the
functional form of Da(L) as directly calculated from the
MD simulation data [5]. The curves show the predictions
of harmonic elastic rod models with various
parametrizations. Solid curve: the nonlocal model.
Dashed curve: local model. Dot-dashed curve: nonlocal
model with zero intrinsic curvature. As can be seen, in the
local model, as well as the nonlocal model with zero
intrinsic curvature, there is a signi�cant discrepancy
between the prediction of the model and the MD
simulation data. However, if both the intrinsic curvature
and the nonlocal interactions are included, the MD
simulation data can be successfully explained by the
model.
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there is a perfect agreement between the prediction
of the model and MD data. This indicates that the
harmonic elastic rod model is capable to describe the
nonlinear behavior of Da(L).

To clarify the origin of nonlinearity, we study
two other harmonic elastic rod models with di�erent
parametrizations. The dashed line in Figure 2 shows
the prediction of the local harmonic elastic rod model.
We parametrized the local model by Equations 6 and 7,
assuming the correlation matrices are all diagonal and
calculating the diagonal elements of the correlation
matrices from MD simulations data. As can be seen,
Da(L) is not linear, but there is a signi�cant discrep-
ancy between the prediction of the local model and the
MD simulation data. The nonlinearity observed for the
local model is due to the intrinsic curvature of DNA. All
base pairs in AT25 molecule have positive intrinsic roll
and tilt. The intrinsic curvature changes the equilib-
rium bending angle and the e�ective bending rigidity
of DNA. These variations are oscillatory functions of
DNA length, and lead to the nonlinear functional form
of Da(L). If we assume that the DNA has zero intrinsic
curvature, the resultant curve is a straight line as it is
expected (data not shown). The dot-dashed curve in
Figure 2 shows the prediction of the nonlocal harmonic
elastic rod model with zero intrinsic curvature where
the elastic matrices are parametrized by Equation 6,
but we set �0

1 = �0
2 = 0 for all base pair steps. As

can be seen, the resultant curve has no resemblance to
the simulation data. The above analysis indicates that
the nonlinearity of Da(L) is a result of the combined
e�ect of DNA intrinsic curvature and the nonlocal
interactions between the base pairs.

CONCLUSION

In summary we proved that there are nonlocal inter-
actions between DNA base pairs at nanometer length
scales. We showed that these interactions a�ect the
elastic behavior of DNA, and contribute to the non-
linear length dependence of Da(L). We proved that
the nonlinearity originates from the combined e�ect of
DNA intrinsic curvature and the nonlocal interactions.

It is important to �nd the origin of the nonlocal
interactions. The electrostatic interactions and the
backbone elastic properties probably play an impor-
tant role [11]. More detailed analysis is required
to determine the contributing factors to the nonlocal
interactions in DNA molecule.
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