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Adaptive Decoupling for
Open Chain Planar Robots

M. Moradi1, A. Nikoobin2;� and S. Azadi1

Abstract. Decoupling of dynamic equations in robotic mechanisms has attracted many researchers in
the recent years. This kind of decoupling can be achieved by modifying the original kinematic structure
through the use of counterweights attached to the moving links. Therefore, the robotic control becomes
easier due to reducing the coupling disturbances. In this paper, di�erent methods of decoupling including
the static balancing, Coriolis and centripetal force eliminating and dynamic balancing are introduced and
their concepts are described based on Lagrange-Euler equations. The systematic adaptive approach is
proposed for any open-chain planar robots whose links are connected by revolute joints. The method is
tested for two-link and three-link manipulator. The results indicate that the system is fully-decoupled and
simple classical approach is su�cient to control it.
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INTRODUCTION

Practically, serial robots are extensively used for ma-
terials handling, pick and place applications, welding,
cutting, painting and other repeatedly industrial pro-
cesses. So a small improvement in their operations
leads to more economical usage. In these manip-
ulators, coupling forces generated among the joints
provides some complex and nonlinear dynamics [1].
Diken [2] showed that simple feedback controller (like
PD-controller) is ine�ective for unbalanced manipu-
lator due to highly nonlinear dynamics. Decoupling
can reduce the nonlinear terms considerably. When
decoupling take places, each actuator is responsible for
its link. Therefore, many researchers tried to apply
decoupling in manipulators.

Paul reviewed some decoupling methods. The
�rst conceivable method is simpli�cation based on
neglecting Coriolis and centripetal forces in the robots
which provides big errors in high-speed motions [3].
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Another approach to overcome this problem is in-
troducing the inverse dynamics controller that gives
totally a decoupled system [4]. Performance index ap-
proach is another choice for improving the mechanism
behavior. This method is based on introducing the
nonlinear performance index (npi) for identifying and
quantifying nonlinear e�ects during the manipulator
motion [5]. In this �eld, Herman addressed quasi-
velocity terms to de�ne the acceptably approximate
decoupling scheme [6,7].

Besides these three methods, to provide a good
performance using structural mechanism modi�cation,
one should ensure that magnitudes and directions of
shacking forces and moments do not change signi�-
cantly. If the former approach is considered, some min-
imization method should be applied on the mechanism
structure [8]. Although application of optimization
method is very intelligent method for balancing, it
generally has not a high performance [9]. In the later
approach, for structural modi�cation based decoupling
of robot, the model dynamic is really simpli�ed without
neglecting the nonlinear terms. Therefore, the control
becomes easier even in the high speed motions. Struc-
tural modi�cation is achieved by adding mass or spring
to the mechanism. Selecting the proper additional
masses can eliminate gravity and all of the coupling
terms from the dynamical equations [9]. Many e�orts
have been applied on the structural balancing of planar
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robots until now. Bagci [10] showed that the revolute
joint planar mechanisms are only linkages that they can
be fully balanced. Toumi and Asada [11] proposed a
method based on conditions that completely decoupled
the mechanisms based on theoretical concepts.

Two types of balancing can be considered, statical
and dynamical. Mechanism is statically balanced if
it has a stationary centroid or equivalently constant
potential energy in each con�guration. Although
static balancing eliminates the shaking force, it cannot
essentially remove the shaking moment, so dynamical
balancing is also necessary. In this case, Kochev [12]
reviewed the moment balancing methods, and also
provided a general theory for the moment balancing
based on adding some members. Another review has
been prepared by Arakelian and Smith [13]. Kolarski
and Vukobratovi�c show that regardless of balancing
method, the direct balancing by masses or springs may
have positive e�ects on the dynamic characteristics of
the mechanism [14]. Herder and Gosselin [15] used
Counter-Rotating-Counter-Weight method (CRCW)
to complete balancing and then optimized additional
masses. But this method cannot been applied on
balancing in cause of complication [16]. Wijk et al. [17]
compared the various dynamic balancing method re-
garding additional mass and additional inertia. In
most of the works dealing with balancing, close chain
manipulators are considered.

Recently Coelho proposed adaptive balancing
method for open chain two-link manipulator in which
the whole nonlinear e�ects are removed by adding two
rotary and movable masses [18]. The applied method is
based on annulling the coe�cients of the cross inertia,
centripetal and Coriolis. Such coe�cients for a two-link
manipulator are obtained after deriving the dynamic
equations by Lagrange formulation.

In the current paper the adaptive balancing done
by Coelho for two-link manipulator is developed for n-
link serial robot. Instead of balancing-based dynamic
equations, energy-based index method is used. For
this purpose, Lagrange equation for n-link serial robot
manipulator is considered and equations dealing with
di�erent balancing conditions are derived. In this
paper two balancing conditions are introduced. Static
balancing in which the terms associated with gravity
forces is eliminated. Dynamic balancing in which Cori-
olis, centripetal and cross inertia terms are eliminated.

The paper is organized as follows. At First, the
energy-based decoupling approach based on Lagrange
equations is presented to obtain the decoupling criteria.
Then, this method is applied on proposed structure of
manipulator and the unknown parameters for complete
decoupling are achieved. After that, the proposed
method is applied on two-link and three-link manip-
ulator. Finally, discussion and conclusion about the
method and results are given.

ENERGY-BASED DECOUPLING
APPROACH

Lagrange dynamics method is appealing for extracting
of many degrees of freedom systems. For each dynami-
cal system, it is possible to extract a kinetic energy and
potential energy as de�ned in [3]. In this section, we
obtained the balancing in Lagrange form [19]. Euler-
Lagrange relation for open-loop robots can be derived
from variational concept of Lagrangian as:

d
dt

�
@L
@ _qi

�
� @L
@qi

= ui; i = 1; � � � ; n; (1)

where L = T � P , T denotes kinetic energy, and P
denotes potential energy of system. Also the dynamical
model of a robot manipulator with n degree of freedoms
is described as:

M(q)�q + C(q; _q) + G(q) = u; (2)

where u 2 Rn is the vector of input torques, �q, _q
and q are vectors of joint angular accelerations, ve-
locities and positions, respectively. M(q) 2 Rn�n is
the inertia matrix, and C(q; _q) 2 Rn represents the
centripetal/centrifugal and Coriolis forces and G(q) 2
Rn describes the gravity e�ects.

The unique cause of potential energy in manipula-
tor is gravity, and the mechanism is statically balanced
if its potential energy is constant for any con�gurations.
Static balancing is typically achieved by attaching
additional mechanical elements to the system, such as
counter-weights or springs. The use of counter-weight
is more practical and has been applied to the design of
planar linkages [15]. Static balancing can be achieved
by applying:

G(q) = 0: (3)

By this way, the equation of motion is reduced to:

u = M̂�q + Ĉ(q; _q); (4)

where M̂ is altered inertia matrix, and Ĉ is the altered
vector of centripetal and Coriolis forces of the balanced
manipulator. When Equation 3 retains, the potential
energy becomes constant for any con�guration, there-
fore:

@P
@q

= 0: (5)

By considering Equation 5, Equation 1 for static
balanced system becomes:

d
dt

�
@T
@ _qi

�
� @T
@qi

= ui; i = 1; � � � ; n: (6)

In the second step of decoupling, it is important to
eliminate the Coriolis and cross inertia couple forces.
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If the kinetic energy is only a function of velocity terms
(T = T ( _q)) or:

@T
@q

= 0; i = 1; � � � ; n: (7)

Equation 6 simpli�es to:

d
dt

�
@T ( _q)
@ _qi

�
= ui; i = 1; � � � ; n: (8)

In this case, it is possible to show that the value of
C(q; _q) in Equation 2 becomes zero, and dynamical
system is simpli�ed as:

ui =
d
dt

�
@T ( _q)
@ _qi

�
=

nX
j=1

Mij �qj ; i = 1; 2; � � � ; n;
(9)

where Mij = @2T
@ _qj@ _qi . This equation can be expressed

as:

u = ~M�q; (10)

where ~M is altered symmetric non-diagonal inertia
matrix. However, there are some coupling forces among
actuators. At the end, for diagonalization of the inertia
matrix or equivalently completely decoupling of the
system, the non-diagonal elements of ~M or cross inertia
terms in dynamical equation must be zero. Using
symmetry property of inertia matrix, one can write:

@2T
@ _qj@ _qi

= 0; i 6= j and i; j = 1; 2; � � � ; n: (11)

This can be presented as dynamic balancing that is to
achieve the complete decoupling of dynamic equations.
Thus Coriolis, centripetal, gravitational and cross in-
ertia terms are eliminated and dynamic Equation 2 is
simpli�ed to:

u = ~M�q; (12)

where ~M is a diagonal matrix represents the inertia
terms. Therefore, the criteria for any balancing ap-
proach can be presented in Lagrange form in Table 1.

APPLYING THE ENERGY-BASED
METHOD ON ROBOT MANIPULATORS

In this section, the theory presented in the previous
section is applied on n-link planar open chain robot.

Table 1. Balancing criteria in Lagrange form.

Equation The Kind of Balancing

Equation 5 Static balancing

Equation 7 Eliminating Coriolis and centripetal terms

Equation 11 Completely decoupling

Proposed Mechanism for Decoupling

Figure 1 shows a manipulator containing rotary masses
as adaptive balancing, and counter-weight masses as
static balancing. General mechanism contains revolute
joints, and has assumed to be a planar open kinematic
chain. The joints are numbered from 1 to n, and
the link i is between joint i and i + 1. In addition,
the displacement of link i is denoted by �i which is
the angle of rotation about the joint. In this �gure,
mp;mi;mci (i = 1; 2; � � � ; n) denote payload mass,
link mass and counter-weight mass, respectively. Also
li; rgi; ri denote link length, centroid position of link,
and counter-weight length, respectively. The proposed
mechanism has additional rotary masses more than
static balanced mechanism denoted by mbi. Generally
g is used for gravitational acceleration constant. Also
mb denotes rotary mass and rb denotes the rotary
length.

There is a ratio between pulleys denoted by rti for
ith link. The angular position of ith rotary mass can
be stated as:

�bi =
iX

j=1

�i � rti�i+1: (13)

The detail of transformation has been presented in
Figure 2.

In the next sections procedures of static balanc-
ing, complete decoupling and payload adaptive mode
of balancing is presented.

Figure 1. n-link open chain manipulator including
counter-weights and rotary masses.
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Figure 2. Angular transformation of rotary masses.

Static Balancing of Robot Manipulator

As a �rst step, due to Equation 5, the static balancing
of the proposed mechanism can be achieved by elimi-
nation of the potential energy. Potential energy of each
mass is P = mgh, and the total energy of manipulator
is equal by:

P =
nX
i=1

(mcighci +mighi +mpghp +mbihb) ; (14)

where:

hbi =
i�1X
j=1

(ljS12���j) ;

hi = hbi + rgiS12���i;

hci = hbi � riS12���i;

hp = hb(n+1):

In Equation 14 hbi, hi, hci and hp denote height of
center of rotary rod link, height of centroid of link,
height of counter-weight mass, and height of payload
mass, correspondingly. Also S12���j = sin(�1 + �2 +
� � � + �j) and C12:::j = cos(�1 + �2 + � � � + �j). As
shown in Figure 1, nth link has not the rotary mass, so
the mbn=0. By substituting of values in Equation 14,
potential energy becomes:

P =
nX
i=1

(mcig(hbi � riS12���i) +mig(hbi + rgiS12:::i)

+mpghbn +mbihb ) : (15)

Due to static balancing form, Equation 5 should be
applied, so Equation 15 becomes:

nX
i=1

�i�1X
j=1

((mci +mi +mbi +mp) ljS12���j)

+mirgi �mciri)S12���i +
nX
j=1

(mpljS12���j)
�
� 0;

)
nX
i=1

n
[li � [mp +

nX
j=i

(mcj +mj +mbj)]

�mciri +mirgi]� S12���i) � 0
o
: (16)

Since S12���i is not generally zero, all of the coe�cients
must be zero. So there are n equations that can be
pulled out from Equation 16 to obtain the counter-
weights as follow:

mci =
1
ri

n
li �

h
mp +

nX
j=i+1

(mcj +mj +mbj)
i

+mirgi
o
; i = 1; 2; � � � ; n: (17)

These values of counter-weights and positions satisfy
Equation 5 due to static balancing of manipulator.

Kinetic Energy of the Mechanism

In this section, second condition is applied and the
Coriolis and centripetal forces are eliminated using
Equation 7. Kinetic energy of each link can be written
as Equation 18 by de�ning the virtual payload (mpi)
applied instead of the eliminated link masses. For
instance, virtual payload of nth link is equal by the
actual payload. However, for (n�1)th link, the virtual
payload becomes the sum of all masses in nth link
with its actual payload. Therefore, the ith link kinetic
energy becomes:

Ti =
1
2

(mpi +mi +mci +mbi) v2
i

+
1
2
�
mpil2i +mcir2

i +mir2
gi + Ici

� _�2
1���i

+
1
2
mbir2

bi

�
rti _�i+1 � _�1���i

�2
; (18)

where v is centroid velocity of link, Ici is the inertia of
link around the centroid of link, _�1���i = _�1+ _�2+� � �+ _�i,
and mpi is the virtual payload applied on joint between
ith and (i + 1)th link. In the static balanced link, the
centroid of ith link coincides on joint between ith and
(i� 1)th links as shown in Figure 3. Therefore, we can
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Figure 3. Transferring the mass in balanced planar
manipulator onto prior link.

assume that the ith link masses, as virtual payload,
are on (i � 1)th link, and the ith link has only the
inertia momentum. Then, all the ith link masses are
transferred to (i � 1)th link. Considering previous
transferred masses on link, Equation 18 in this case
becomes:

Ti =
1
2
Miv2

i +
1
2
Ii _�2

1���i +
1
2
mbir2

bi

�
rti _�i+1 � _�1���i

�2

i = 1; 2; � � � ; n; (19)

where Mi and Ii denote the total mass and inertia
accumulated on the ith link as:

Mi =
n�2X
j=i

mbi +
n�1X
j=i

(mj +mcj) +mp;

Ii = Ici +mir2
gi +mcir2

i + (Mi �mi +mci)l2i : (20)

If we apply the transferring procedure on the ith link,
the kinetic energy of link becomes:

Ti =
1
2
Ii _�2

1���i +
1
2
mbir2

bi

�
rti _�i+1 � _�1���i

�2
: (21)

This procedure can be applied for the whole mechanism
starting from the nth link to the �rst link. Then, it is
possible to write the total energy mechanism as:

Ttotal =
nX
i=1

Ti =
1
2
M1v2

1 +
1
2

nX
i=1

�
Ii _�2

1::i

�
+

1
2

n�1X
i=1

�
mbir2

bi

�
rti _�i+1 � _�1::i

�2
�
; (22)

where M1 is the total mass of manipulator transferred
on joint 1, and v1 is the velocity of manipulator's

base. Since the platform is usually stationary, the total
kinetic energy is only a function of angular velocities.

v1 = 0) Ttotal =
1
2

nX
i=1

�
Ii _�2

1::i

�
+

1
2

n�1X
i=1

�
mbir2

bi

�
rti _�i+1 � _�1::i

�2
�
: (23)

Equation 22 coincides with Equation 7, which means
that the nonlinear terms are crossed out. Therefore,
the dynamical equation becomes:

ul =
nX
k=1

Mlk��k; Mlk =
@2T
@ _�k@ _�l

: (24)

So applying the static balancing not only completely
eliminates the potential gravitational e�ects, but it also
eliminates the Coriolis and centripetal terms in the
dynamic equation. Thus Equation 7 is satis�ed.

Inertia Tensor Diagonalization Process

Static balancing may in
uence the dynamic unbalance
of the mechanism (it may even increase it [1,2]).
Therefore, the dynamic balancing may be carried out
in conjunction with the static balancing. Complete
decoupling can be satis�ed if Lagrangian of balanced
system is applied on Equation 11. Total kinetic energy
was derived in Equation 22. Let Ibi = mbir2

bir2
ti as

the ith rotary-link inertia. Now according to the
Equation 11 for completely decoupling, derivative of
T with respect to _�l and _�k can be presented as:

@T
@ _�l

=
nX
i=l

24Ii0@ iX
j=1

_�j

1A35+
Ib(l�1)

rt(l�1)

0@rt(l�1) _�l �
l�1X
j=1

_�j

1A
�
n�1X
i=l

24Ibi
rti

0@rti _�i+1 �
iX

j=1

_�j

1A35;
(25)

@
@ _�k

�
@T
@ _�l

�
=

nX
i=l

24Ii @
@ _�k

0@ iX
j=1

_�j

1A35
+
Ib(l�1)

rt(l�1)

@
@ _�k

0@rt(l�1) _�l �
l�1X
j=1

_�j

1A
�
n�1X
i=l

24Ibi
rti

@
@ _�k

0@rti _�i+1 �
iX

j=1

_�j

1A35;
(26)
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where Ibi = mbir2
bir2

ti. After applying some math-
ematical simpli�cation presented in the Appendix,
Equation 26 becomes:

k � l :
@
@ _�k

�
@T
@ _�l

�
=

nX
i=k

Ii + Ib(k�1) �
n�1X
i=k

Ibi: (27)

According to Equation 11 for complete decoupling,
Equation 27 must be vanished. This leads to obtain
complete decoupling inertia values as:

Ib(k�1) =
nX
i=k

Ii �
n�1X
i=k

Ibi; k = 2; 3; � � � ; n: (28)

Sequentially, direct recursive equation can be shown as:

Ib(i�1) = 2Ibi + Ii;

Ibn = 0;

i = 1; 2; � � � ; n: (29)

Additionally, solution of this di�erence equation can be
obtained as:

Ibi =
n�1X
j=i+1

(2j�iIj+1); (30)

that directly gives rotary value of added inertia value
for decoupling criteria. Table 2 shows the rotary inertia
for n = 2; 3; 4.

General dynamical Equation 2 is now completely
decoupled and has been simpli�ed to a single term as:

ul =

24 nX
i=l

0@Ii +
n�1X
j=i

�
2j�iIj+1

�1A35 ��l;

l = 1; � � � ; n: (31)

This equation can be simpli�ed as:

ul =

"
nX
i=l

(2Ii + Ibi)

#
��l; l = 1; 2; � � � ; n; (32)

where Ibn is zero.

Table 2. Values of rotary inertia for n=2, 3 and 4.

n i Ibi
2 1 I2
3 1 I2 + 2I3

2 I3
1 I2 + 2I3 + 4I4

4 2 I3 + 2I4
3 I4

Payload Adaption

In this section, the e�ect of payload is analyzed on the
rotary and counter-weight masses and their positions.
Using Equation 17, it is possible to obtain the positions
of counter weights masses in term of payload as follow:

ri =
1
mci

n
li �

h
mp +

nX
j=i+1

(mcj +mj +mbj)
i

+mirgi
o
; i = 1; 2; � � � ; n; (33)

and using Equation 30, the positions of rotary masses
in term of payload as follow:

rbi =

s
Ibi

mbir2
ti
: (34)

So the value of counterweight and rotary masses are
considered to be constant, while their positions are
adjusted to compensate the payload change using
Equations 33 and 34.

ILLUSTRATIVE EXAMPLES AND
SIMULATION

Two-Link Manipulator

In this section proposed method for adaptive balancing
is demonstrated for two-link manipulator as shown in
Figure 4. This model has been considered in [18].
As a �rst step, static balancing should be applied as
mentioned in Equation 17. It can be written as:

mc2 = (m2rg2 +mpl2)=r2;

mc1 = (mpl1 +m1rg1 +m2l1 +mc2l1)=r1; (35)

Figure 4. Dynamically balanced two-link manipulator.
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and by using Equation 30, the rotary inertia can be
driven as:

Ib = I2; (36)

where using Equation 20, I2 is obtained as follow:

M1 = m1 +mc1 +m2 +mc2 +mp;

I1 = Ic1 +m1r2
g1 +mc1r2

1 + (m2 +mc2 +mp) l21;

M2 = m2 +mc2 +mp;

I2 = Ic2 +m2r2
g2 +m2

c2r
2
2 +mpl22

= Ic2 +m2r2
g2 + (m2rg2 +mpl2) r2 +mpl22: (37)

Since Ib = mbr2
br2
t , it is possible to derive rotary mass

as:

mb =
m2rg2(rg2 + r2) +mpl2(l2 + r2) + Ic2

(rbrT )2 : (38)

Using Equation 31, the equation of system can be
presented as:�

u1
u2

�
=
�
M11 0

0 M22

� ���1
��2

�
; (39)

where:

M11 = m1rg1 (r1 + rg1) + Ic1

+m2

�
l1rg2

r2
(r1+l1)+l1 (l1+r1)+2rg2 (rg2+r2)

�
+mp

�
l1l2
r2

(r1+l1)+l1 (l1+r1)+2l2 (l2+r2)
�
;

M22 = Ic2 + 2m2rg2 (rg2 + r2) + 2mpl2 (l2 + r2)

= 2mbr2
brT :

This result is completely decoupled as same as decou-
pled manipulator given in [18].

Three-Link Manipulator Adaptivability
Analysis

In this section, the numerical simulation has been
shown for a three-link manipulator. Figure 5 exhibits
practical three-link robot completely decoupled by
using proposed method. The values of such mechanism
are listed in Table 3.

Using Equations 17 and 31 the rotary inertia
becomes:(

Ib2 = I3
Ib1 = I2 + 2I3

(40)

where:

M1 =mb1+m1+m2+m3+mc1+mc2+mc3+mp;

I1 = Ic1 +m1r2
g1 +mc1r2

1 + (M1 �m1 �mc1) l21;

M2 = m2 +m3 +mc2 +mc3 +mp;

Figure 5. Three-link planar manipulator.

Table 3. The parameters of three-link manipulator.

Parameter Value Unit

Mass m1 = 12;m2 = 8;m3 = 7 kg

Length of link l1 = 0:8; l2 = 0:6; l3 = 0:5 m

Moment of inertia I1 = I2 = I3 = 1=12 ml2 kg.m2

Ratio of pulleys rt1 = 2; rt2 = 3 rad/rad

Length of adjacent links r1 = r2 = r3 = 0:5 m

Centroid of links rg1 = 0:4; rg2 = 0:3; rg3 = 0:25 m

Counter-weights masses mc1 = 85;mc2 = 35;mc3 = 15 kg

Counter-rotating masses mb1 = 75;mb2 = 5 kg
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I2 = Ic2 +m2r2
g2 +mc2r2

2 + (M2 �m2 �mc2) l22;

M3 = m3 +mc3 +mp;

I3 = Ic3 +m3r2
g2 +mc3r2

3 + (M3 �m3 �mc3) l23:
(41)

So the equation of system can be presented as:24u1
u2
u3

35 =

24M11 0 0
0 M22 0
0 0 M33

3524��1
��2
��3

35 ; (42)

where Mll =
nP
i=l

(2Ii + Ibi).

For this manipulator, the positions of rotary
masses and counterweights are shown in term of
payload variations in Figures 6 and 7, respectively.
Figure 8 shows the value of inertia tensor of decoupled
mechanism in term of payload mass.

DISCUSSION AND CONCLUSION

Completely decoupling of open-chain robot is presented
in this article. Balancing is related to the Lagrange
energy equation and by using this energy method, the
general decoupling of planar serial robot is o�ered.
Indeed, traditional method for balancing based on
Newton representation is replaced with energy idea
of balancing based on Lagrange representation. The
obtained equations illustrate that the completely de-
coupling for n-link planar robot, using energy-based
indexes, can be achieved and therefore, the control
of mechanism becomes much easier. In fact, by
decoupling the manipulator, the n-nonlinear equations
are replaced with n-linear equation. Reduction of
coupling in robot preserves energy and releases any
coupling between actuators. This elimination decreases

Figure 6. Counter-rotary mass positions.

Figure 7. Counter-weight positions.

Figure 8. Inertia tensor changing for decoupled
mechanism in terms of payload mass.

value of interference among joints and therefore it is
possible to improve the precision of motion. Also
an applicable and adaptive method is proposed to
completely decouple the mechanism due to payload
variations. The results of simulation con�rmed this
approach.

NOMENCLATURE

L Lagrangian of system
t time
P potential energy
T kinetic energy
n degree of freedom
q generalized position
_q generalized velocity
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�q generalized acceleration
u input
M mass matrix
C Coriolis/centripetal matrix
G gravitational matrix

M̂; ~M altered Mass matrix

Ĉ altered Coriolis/centripetal matrix
� angle of link
_� rotational velocity of link
�� rotational acceleration of link
m mass of link
mp mass of payload
mc mass of counter-weight
mb mass of rotary link
l length of link
rg centroid position on link
r counter-weight link's length
g gravitational acceleration constant
rt pulley transition ratio
h height of centroid of link
hc height of counter-weight
hp height of payload mass
hb height of rotary masse
Ic inertia of link around the centroid
I total inertia
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APPENDIX

According to Equation 23, it is possible to derive
derivation as follow:
@T
@ _�l

=
nX
i=1

"
In _�1::i

@ _�1::i

@ _�l

#
+
n�1X
i=1

�
Ibi

rt(i+1)
(rt(i+1) _�i+1 � _�1::i)

@
@ _�l

(rt(i+1) _�i+1 � _�1::i)
�
: (A1)

It is obvious that:
@ _�i
@ _�l

=

(
1 l = i
0 l 6= i

)

@ _�1::i

@ _�l
=

(
1 l � i
0 l > i

(A2)

So by substituting Equation A2 in Equation A1, the
following will be obtained:
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�
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�
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�
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��
: (A3)

The second derivation can be obtained as follow:
@
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So:
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Ii
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and for a third term in Equation A4, one can write:
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After some simpli�cation, it can be written as:
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Finally Equation 27 can be derived as:

k � l :
@
@ _�k
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@ _�l

�
=
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Ii + Ib(k�1) �
n�1X
i=k

Ibi: (A8)
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