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Free Vibration Analysis of Microtubules
as Cytoskeleton Components: Nonlocal

Euler-Bernoulli Beam Modeling

�O. Civalek1;� and B. Akg�oz1

Abstract. Free vibration analysis of microtubules (MTs) is presented based on the Euler-Bernoulli
beam theory. The size e�ect is taken into consideration using the Eringen's non-local elasticity theory.
The governing di�erential equations for MT vibrations are being solved using the Di�erential Quadrature
(DQ) method. Numerical results are presented to show the e�ect of nonlocal behavior on the frequencies
of MTs. It is hoped that the results in the manuscript may present a benchmark in the study of vibration
for microtubules.
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INTRODUCTION

It is well known that microtubules (MT), micro�la-
ments and intermediate �laments are the main com-
ponents of a cytoskeleton. Microtubules (Figure 1) are
proteins organized in a network that is interconnected
with micro�laments and intermediate �laments to form
the cytoskeleton structures [1]. The mechanical proper-
ties of microtubules play an important role in processes
such as cell division and intracellular transport [2].

There have been a number of experimental and
mathematical studies in the past ten years dealing
with the mechanical properties of MTs. Microtubules
are the most rigid of the cytoskeletal �laments and
have the most complex structure. The structure of
microtubules is cylindrical and it typically involves 13
parallel proto�laments that are connected laterally into
hollow tubes. MTs are considered as hollow cylinders
having 25 nm external and 15 nm internal diameters.
The length of MTs can vary from tens of nanome-
ters to hundreds of microns. Furthermore, MTs are
considered as self-assembling biological nanotubes that
are essential for cell motility, building the cytoskeleton,
cell division and intracellular transport. The average
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Figure 1. A typical microtubules.

Young's modulus of a microtubules is � 2:0 GPa [2-
5]. Among the three types of cytoskeletal �laments,
microtubules are the most rigid. The bending rigidity
of microtubules is about 100 times that of intermediate
and actin �laments.

Recently, much attention has been devoted to the
mechanical behavior of micro/nano structures, such as
nanobeams, nanorods, nanotubes and microtubules [6-
19]. In general, orthotropic shell models have been
applied for the modeling of MTs. In the present
work, consistent governing equations for the beam
model for microtubules are derived for bending anal-
ysis. Numerical results are presented to show the
e�ect of the small-scale e�ect on the vibration of
microtubules under di�erent boundary conditions. To
the authors' best knowledge it is the �rst time that the
nonlocal elasticity theory has been successfully applied
to microtubules for the numerical analysis of vibration.
This paper is organized as follows. Nonlocal elasticity
theory is investigated brie
y. Then, the formulation
of microtubule vibration as a nonlocal Euler-Bernoulli
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beam is given. The method of DQ and application
to the title problem is given in the following section.
The numerical results for free vibration of MTs are
presented and discussed. Finally, the conclusion is
given.

NONLOCAL ELASTICITY THEORY OF
ERINGEN

It is known that the stress state of any body at
point x is related to the strain state at the same
point x in classical elasticity. Namely, the constitutive
equations of classical (macroscopic) elasticity are an
algebraic relationship between the stress and strain
components. But, this theory is not in con
ict with
the atomic theory of lattice dynamics and experimental
observation of phonon dispersion.

As stated by Eringen [20], the linear theory
of nonlocal elasticity leads to a set of integropartial
di�erential equations for the displacements �eld for
homogeneous, isotropic bodies. The solutions of these
equations are di�cult, in general. But, these equations
can be reduced to a set of singular partial equations
for some types of kernel. Thus, these spatial integrals
in constitutive equations of the nonlocal elasticity
theory can be transformed to the equivalent di�erential
constitutive equations under certain conditions.

According to the nonlocal elasticity theory of
Eringen, the stress at any reference point in the body
depends not only on the strains at this point, but also
on strains at all points of the body. This de�nition
of Eringen's nonlocal elasticity is based on the atomic
theory of lattice dynamics and some experimental
observations on phonon dispersion. In this theory, the
long range force about atoms is considered, and thus
an internal scale e�ect is introduced in the constitutive
equation. In this theory, the fundamental equations
involve spatial integrals that represent the weighted
averages of the contributions of the related strain
tensor at the related point in the body. This theory
introduces the small length scale e�ect through a
spatial integral constitutive relation. For homogenous
and isotropic elastic solids, the linear theory of nonlocal
elasticity is described by the following equations [21]:
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where �kl is the nonlocal stress tensor, � is the mass
density of the body, fl is the body (or applied) force
density, ul is the displacement vector at reference point
x in the body, �kl(x0) is the classical (Cauchy) or local
stress tensor at any point x0 in the body, "kl(x0) is
the linear strain tensor at point x0 in the body, t
denotes the time, V is the volume occupied by the
elastic body, �jx � x0j is the distance in Euclidean
form, and � and � are the Lame constants. The
non-local kernel �jx � x0j de�nes as the impact of
the strain at point x0 on the stress at point x in
the elastic body. The value of � depends on the
ratio (e0a=l), which is a material constant. The value
a depends on the internal (granular distance, lattice
parameter, distance between C-C bonds as molecular
diameters) and external characteristics lengths (crack
length or wave length), and e0 is a constant appropriate
to each material for adjusting the model to match
reliable results by experiment or some other theories.
If �jxj takes on a Green function of a linear di�erential
operator given as:

<� (jx0 � xj) = �(jx0 � xj); (5)

the nonlocal constitutive relation given by Equation 2
is reduced to the following di�erential equation:

<�kl = �kl: (6)

Furthermore, the integropartial di�erential equation
given by Equation 1 is also reduced to the following
partial di�erential equation:

�kl;l + <(fl � ��uk) = 0: (7)

Eringen [20] proposed a nonlocal model for this linear
di�erential operator given as:

< = 1� (e0a)2r2 = 0; (8)

where r2 is the Laplacian. Consequently, the consti-
tutive relations can be written as:�

1� (e0a)2r2��kl = �kl: (9)

VIBRATION ANALYSIS OF MTs AS
EULER-BERNOULLI BEAM MODEL

The in
uences of the small size e�ects on the mechan-
ical properties of nanostructures cannot be properly
predicted based on classical (macro) elasticity theory.
In order to take into consideration the small size scale
e�ect during the modeling and analysis stage, the
theory of nonlocal elasticity proposed by Eringen [20]
is used to modify the theory for vibration and buckling
analyses of micro and nano scale beam devices. It is
also accepted that some mechanical properties, such as
vibration, bending and buckling of the beam like micro
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structures based on the nonlocal elasticity theory are
entirely di�erent from their counterparts based on the
classical (macro) beam theory [22-28]. Thus, the theory
based on the size dependent nonlocal elasticity theory
could serve as a more reasonable and proper approach
to the mechanical modeling of micro and nano sized
components of nano mechanical devices [29-41].

The nonlocal theory of elasticity proposed by
Eringen [20] has been widely used in the past �ve
years in many nano mechanical problems including
dislocation, crack, wave propagation, vibration anal-
ysis of nanobeams nanotubes, carbon nanotubes, and
microtubules. The theory includes scale e�ects and
long-range atomic interactions. General nonlocal con-
stitutive equations for a beam can be written as [26]:

�(x)� (e0a)2 d2�(x)
dx2 = E"(x); (10)

�(x)� (e0a)2 d2�(x)
dx2 = 2G"(x): (11)

For a microtubule in a one dimensional case, the
nonlocal constitutive relations (uniaxial Hooke's law)
can be written as below:

�xx � (e0a)2 @2�xx
@x2 = E"xx; (12)

where �xx is the axial stress, "xx is the axial strain
and E is the Young modulus. Assume that the
displacement of the beam along the y axial axis is
w(x; t) in terms of spatial coordinate x and time
variable t. For transverse vibration of microtubules,
the equilibrium conditions of the Euler-Bernoulli beam
(Figure 2) can be written as:

@V (x; t)
@x

= �A
@2w(x; t)
@t2

; (13)

Figure 2. The illustration of microtubules as
Euler-Bernoulli beam and cross-section.

V (x; t) =
@M(x; t)

@x
; (14)

where V (x; t) and M(x; t) are resultant shear force and
bending moment of the beam, � is the mass density, A
is the area of the cross-section of the beam, w(x; t) is
the transverse displacement of the microtubules, and t
is the time variable. We obtain the following relation
from Equations 13 and 14:

@2M(x; t)
@x2 = �A

@2w(x; t)
@t2

: (15)

According to the linear theory of the Euler-Bernoulli
beam, strain-displacements and the moment are given
by:

" = �y @2w(x; t)
@x2 ; (16)

M(x; t) =
Z
A

y�dA: (17)

At this stage, multiplying by y on both sides of
Equation 12 and integrating over the cross-section area
of the beam, we obtain:Z
A

�xxydA� (e0a)2
Z
A

y
@2�
@x2 dA�

Z
A

Ey"dA = 0:
(18)

By substituting Equations 16 and 17 into Equation 18,
we have:

M(x; t)� (e0a)2 @2M(x; t)
@x2 + EI

@2w(x; t)
@x2 = 0: (19)

By performing the di�erentiating of this equation, with
respect to variable x, twice, we obtain:

@2M(x; t)
@x2 � (e0a)2 @4M(x; t)

@x4 + EI
@4w(x; t)
@x4 = 0:

(20)

By substituting Equation 15 into Equation 20, we
obtain the below governing nonlocal equation for the
motion of microtubules based on the Euler-Bernoulli
beam theory:

EI
@4w(x; t)
@x4 + �A

@2w(x; t)
@t2

� (e0a)2�A
@4w(x; t)
@x2@t2

= 0: (21)

For free vibration, the transverse displacement w(x; t)
is assumed as:

w(x; t) = W (x)ei!t: (22)
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Substituting Equation 22 into Equation 21 one obtains:

EI
@4W (x)
@x4 � !2�AW (x)

+ (e0a)2�A!2 @2W (x)
@x2 = 0: (23)

It is exactly seen from Equation 22 that the local Euler-
Bernoulli beam theory is obtained when parameter e0
is set identically to zero. In the present study, three-
types of boundary condition are considered. These are:

Simply supported (S) end:

w = 0; and M = 0: (24a)

Clamped (C) end:

w = 0; and dw=dx = 0: (24b)

Free (F) end:

V = 0; and M = 0: (24c)

DIFFERENTIAL QUADRATURE (DQ)
METHOD

In the past ten years, some new methods for numerical
analysis of engineering problems have become quite
popular. These are di�erential quadrature methods,
meshless methods, and discrete singular convolution
methods [42-61]. Some other numerical and analytical
methods for nano scale modeling can also be possi-
ble [62-68].

The Di�erential Quadrature (DQ) method is a rel-
atively new numerical technique in applied mechanics.
The method of DQ can yield accurate solutions with
relatively fewer grid points. It has been also success-
fully employed for di�erent solid and 
uid mechanic
problems.

Unlike the DQ that uses polynomial functions,
such as power functions, Lagrange interpolated, and
Legendre polynomials as the test functions, Har-
monic Di�erential Quadrature (HDQ) uses harmonic
or trigonometric functions as the test functions. Shu
and Xue [43] proposed an explicit means of obtaining
the weighting coe�cients for the HDQ. When f(x)
is approximated by a Fourier series expansion in the
form [62]:

f(x) = c0 +
N=2X
k=1

�
ck cos

k�x
L

+ dk sin
k�x
L

�
; (25)

and the Lagrange interpolated trigonometric polyno-
mials are taken as:
hk(x) =

sin (x�x0)�
2 :: sin (x�xk�1)�

2 sin (x�xk+1)�
2 :: sin (x�xN )�

2

sin (xk�x0)�
2 :: sin (xk�xk�1)�

2 sin (xk�xk+1)�
2 :: sin (xk�xN )�

2

;
(26)

for k = 0; 1; 2; � � � ; N . According to the HDQ, the
weighting coe�cients of the �rst-order derivatives, Aij ,
for i 6= j can be obtained by using the following
formula:

Aij =
(�=2)P (xi)

P (xj) sin[(xi � xj)=2]�
;

i; j = 1; 2; 3; � � � ; N; (27)

where:

P (xi) =
NY

j=1;j 6=i
sin
�
xi � xj

2
�
�
;

for j = 1; 2; 3; � � � ; N: (28)

The weighting coe�cients of second-order derivatives
Bij for i 6= j can be obtained using the following
formula:

Bij = Aij
�
2A(1)

ii � �ctg
�
xi � xj

2

�
�
�
;

i; j = 1; 2; 3; � � � ; N; (29)

The weighting coe�cients of �rst-order and second-
order derivatives A(p)

ij for i = j are given as:

A(p)
ii = �

NX
j=1;j 6=i

A(p)
ij ;

p = 1 or 2;

for i = 1; 2; � � � ; N: (30)

A natural and often convenient choice for sampling
points is that of equally spaced points. It was also
reported that the Chebyshev-Gauss-Lobatto or non-
equally sampling grid (NE-SG) points for spatial dis-
cretization as follows:

xi =
1
2

�
1� cos

�
i� 1
N � 1

�
�
�
; (31)

performed consistently better than the equally spaced.
By using DQ discretization, Equation 23 takes the
following form for vibration of MTs:

EI
NX
j=1

DijWj � !2�AWi

+ (e0a)2�A!2
NX
j=1

BijWj = 0: (32)
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NUMERICAL RESULTS

In this section, some numerical examples related to
the vibration analysis of MTs are presented. The
material and geometric constants of MTs are given in
Table 1. The symbol C-F, for example, represents the
microtubules having a clamped edge at x = 0 and a
free edge at x = L. Using the developed DQ method,
as given in the above section, the free vibration of
microtubules was studied under four di�erent boundary
conditions. The results are listed in Table 2 for di�erent
nonlocal parameters. It is seen from this table that
the e�ect of nonlocal parameters on frequency values is
more signi�cant. In general, nonlocal parameters result
in a decrease of the frequency values of MTs, except for
the case of C-F. Under clamped boundary conditions
(C-F), the frequencies increase slowly as the nonlocal
parameter increases. In order to establish the accuracy
and applicability of the described approach, numerical
results were computed for an isolated pinned MTs
vibration problem for which comparison values were
available in the literature [6]. The results obtained by
DQ and the results calculated by the formula given by
Gu et al. [6] are presented in Table 3. The geometrical
and material values are taken as Gu et al. [6] for
comparison. The results obtained for the �rst two
modes were found to be in excellent agreement with

Table 1. Material and geometric values of microtubules.

Parameter Value

E 2� 109 N/m2

I 105� 10�34 m4

� 1470 kg/m3

� 0.3

L (1 � 8)� 10�6 m

those available (obtained via given formula) in the
literature [6]. The variation of frequency values of S-S
microtubules for di�erent lengths is depicted in Fig-
ure 3. Generally, it is shown that the increasing value
of length always decreases the frequency parameter.
Similarly, the frequency values increase considerably
with mode numbers. The variation of frequency values
of microtubules for di�erent scaling e�ects is shown
in Figures 4 to 8 for di�erent boundary conditions.
These �gures indicate that for a given mode number
of a microtubules, the maximum frequency values are
obtained for C-C support conditions. Furthermore, the
lowest frequency values are obtained for C-F support
conditions. It is seen that the frequency parameters
decrease as nonlocal parameters increase. Figure 9
describes the manner of variation of the frequency
parameter, with respect to nonlocal parameters, under

Figure 3. Variation of frequency values of S-S
microtubules for di�erent length.

Table 2. Frequency values (Hz)�105 of microtubules (L = 1� 10�6).

(eoa)=L Boundary Conditions
S-S C-S C-C C-F

0 164.93214 256.77254 373.85116 58.74609

0.1 157.58652 243.81196 349.56428 59.00957

0.2 135.78036 204.86781 290.96837 60.25963

Table 3. Comparison of �rst two frequencies (!)� 107 of an isolated pinned microtubules (E = 2� 109 N/m2;
L = 2� 10�6 m).

m [6]� Present N = 5 Present N = 7 Present N = 9 Present N = 11

1 2.5993 2.5971 2.5968 2.5968 2.5968

2 10.3972 10.3964 10.3964 10.3962 10.3962
*: Results are calculated formula [!2 = (ExIy=�A)(m�=L)4] given this reference with the same values

for Iy , A, Ex (beam model).
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Figure 4. Variation of frequency values of S-S
microtubules for di�erent scaling e�ect (L = 4 �m).

Figure 5. Variation of frequency values of C-S
microtubules for di�erent scaling e�ect (L = 4 �m).

di�erent boundary conditions. As can be observed from
this �gure, the frequency parameters generally decrease
with increasing the nonlocal parameter; except for
C-F microtubules. Namely, the increasing value of
a nonlocal parameter causes an increase for clamped
MTs.

CONCLUDING REMARKS

This paper has presented a free vibration analysis
of MTs in a computationally e�cient manner using
the nonlocal continuum beam theory. A numeri-
cal simulation is carried out to study the vibrations
under di�erent boundary conditions. The problem
is analyzed using the Di�erential Quadrature (DQ)

Figure 6. Variation of frequency values of C-C
microtubules for di�erent scaling e�ect (L = 4 �m).

Figure 7. Variation of frequency values of C-F
microtubules for di�erent scaling e�ect (L = 4 �m).

method. The numerical results show that the non-
local parameter has an important e�ect on the vi-
bration of microtubules. The major conclusion of
this investigation is that the nonlocal continuum the-
ory approach is superior to average (local) elastic-
ity, especially for some boundary conditions. The
method is suitable for the problem considered due
to its generality, simplicity and potential for further
development. Although not provided here, the method
is also useful in providing the bending and buckling
solutions of microtubules using the nonlocal beam
theory. Even though the analysis presented is for
linear static deformation cases only, the nonlinear static
and vibration of microtubules based on nonlocal Euler
and Timoshenko beam theories which can also be
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Figure 8. Variation of frequency values of microtubules
with di�erent boundary conditions (L = 8 �m).

Figure 9. Variation of fundamental frequency of
microtubules with nonlocal parameter for boundary
conditions (L = 4 �m).

analyzed, using the numerical method, are presently
under study.
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