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Research Note

Optimal Trajectory Planning with the
Dynamic Load Carrying Capacity of a
Flexible Cable-Suspended Manipulator

M.H. Korayem1;�, E. Davarzani1 and M. Bamdad1

Abstract. This paper presents an indirect method for computing optimal trajectory, subject to robot
dynamics, 
exibilities and actuator constraints. One key-issue that arises from mechanism 
exibility is
�nding the Dynamic Load Carrying Capacity (DLCC). The motion planning problem is �rst formulated
as an optimization problem, and then solved using Pontryagin's minimum principle. The basic problem
is converted to the Two-Point Boundary Value Problem (TPBVP), which includes joint 
exibility. Some
examples are employed to compare three models, dynamic, 
exible joint, and rigid. The results illustrate
the e�ectiveness of this indirect method.

Keywords: Path planning; Payload; Flexible cable-suspended manipulator; Optimal control; Two point
boundary value problem.

INTRODUCTION

Several advantages distinguish cable-based systems
from common manipulators. First, the mechanical
architecture is rather simple and cost-e�ective even
in the case of multiple DOF spatial systems. As a
further consequence, these robots often present very
high payload-to-weight ratios. RoboCrane, as one of
the early works on cable-actuated manipulators, was
developed based on the Stewart platform parallel link
manipulator, providing a precise, six degrees of freedom
control of loads.

The Dynamic Load Carrying Capacity (DLCC)
of a conventional serial manipulator is usually de�ned
as the maximum load that a manipulator can lift and
carry in a fully extended con�guration. If the end-
e�ector trajectory is prede�ned, DLCC would be the
maximum value of load that the manipulator is able to
carry [1,2].
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The other de�nition of DLCC will be obtained
by �nding the maximum payload that a manipu-
lator can carry between the given initial and �nal
position of the end-e�ector. In this case, �nding
the maximum payload and corresponding optimal
path is formulated as a trajectory optimization prob-
lem [3].

In practice, the methods of solving deterministic
optimal control problems are divided into two cate-
gories: direct and indirect methods. Direct methods
are based on a discretization of dynamic variables
(states, controls), leading to a parameter optimization
problem, and it is solved by using one of the nonlinear
programming codes. On the other hand, indirect meth-
ods are based on the minimum principle of Pontryagin.
In this method, necessary conditions for optimality are
found and the obtained equations establish a Two Point
Boundary Value Problem (TPBVP) that is solved by
numerical techniques [4].

There have been a number of researchers who have
developed trajectory planning and dynamic modeling
for cable-actuated robots. Hiller et al. studied the
workspace, forward kinematics and trajectory planning
of one type of planer cable robot. In his paper, the
optimal path is found by using a Powell algorithm and
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the method of simulated annealing [5]. One typical
spatial cable robot was investigated and one direct
method was used for sti�ness optimization and optimal
trajectory planning [6]. Recently, Korayem et al. have
introduced a procedure for �nding the optimal path
of maximum load for a cable suspended robot and a
cable planar robot [7,8]. They used an indirect method
and, as mentioned before, the optimization problem is
converted to a two-point boundary value problem as
by solving that, we can have a precise solution of the
problem. This method could be used for any kind of
system wherein the state space form of equations is
achievable. This method is used as a competent tool
for analyzing nonlinear systems and the path planning
of di�erent types of system.

On the other hand, considering 
exibility in
modeling, the 
exibility of joints exists in all robots,
so achieving better precision in the modeling and
control of a robot must be considered. This kind
of 
exibility could be the consequence of di�erent
determinatives, such as looseness of gears and forced
transmission systems (like belts and shafts), as they
are determinatives of error generation between theo-
retical and practical results. Flexibility of joints could
generate a low resonance frequency in the structure
and unwanted vibrations in the robot. Towards this
end, Korayem and Nikoobin devoted themselves to
�nding the optimal path of a two link manipulator by
considering the 
exibility of joints. This paper also
used the optimal control method and the minimum
principle of Pontryagin [9].

Flexible manipulators vibrate not only during
tracking, but also after reaching the goal point. Ko-
rayem et al. investigated this residual vibration, which
continues with a speci�c amplitude and frequency
after reaching the goal point and the e�ect of this on
the carried payload [10]. The sti�ness and stability
of cable-suspended manipulators with application to
load optimal determination are studied. Korayem
and Bamdad addressed computation of the maximum
load carrying capacity of large cable-suspended parallel
manipulators [11].

Among numerous papers in the �eld of parallel
manipulator path planning, 
exibility in the joint has
rarely been considered. Moreover, in no previous
work in the area of cable-suspended parallel robots,
has joint 
exibility been considered in the dynamic
equation.

In this paper, the problem of the optimal path
and maximum dynamic load carrying capacity of a
sample spatial cable robot is studied. The open loop
optimal control approach is applied, and using the
indirect method and Pontryagins' minimum principle,
the original problem is converted to a two-point bound-
ary value problem. A number of simulations for a
cable-suspended manipulator with 
exible joints are

carried out to investigate the e�ciency of the presented
method.

The paper is organized as follows: First, the
dynamic modeling of a system, considering the 
exi-
bility of joints, for one type of six cable spatial robot,
is introduced. Then, the optimal control problem
and necessary conditions for optimality are dealt with.
Then, based on the solution of TPBVP, an algorithm
is developed for �nding the optimal path for a speci�c
payload and another is then given for determining
maximum payload and corresponding optimal path.
Finally, simulation results are presented and discussed
including veri�cation.

PROBLEM FORMULATION

In cable-suspended manipulators, the weight of the
end-e�ector provides tension in the cables. The
type of cable robot is as an Incompletely Restrained
Parallel Manipulator, IRPM, because the kinematics
of the robot are not su�cient to completely restrain
the end-e�ector and, thus keep all cables in ten-
sion. Since the end-e�ector has six degrees of free-
dom, the minimum number of cables or actuators is
six.

First, the dynamic model of a typical cable-
suspended robot will be presented and, then, the e�ects
of 
exible joints are exerted in an ideal model. Finally,
the full dynamic model is derived. The paper will be
continued with the formulation of necessary conditions
for optimality.

Dynamic Modeling of Spatial Cable Robot

A spatial cable robot has a triangular shaped end-
e�ector, as shown in Figure 1, which is suspended
through 6 cables and has 6 degrees of freedom.
If we show the direction and position of the end-
e�ector relative to the reference coordinate by six
variables of X = [x; y; z;  ; �; �]T , cable length by
l = [q1; q2; q3; q4; q5; q6]T and cable tension by T =
[T1; T2; T3; T4; T5; T6]T , the dynamic model of the sys-

Figure 1. Six cable spatial robot with 
exible joints [6].
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tem will be as follows [1,6]:

D(X) �X + C(X; _X) +G(X) = �JT (X)T;

J =
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in which J(X) is the conventional matrix of the robot's
Jacobian, D(X) is the inertia matrix of the robot,
C(X; _X) is the vector of Coriolis and centrifugal forces
and G(X) is the vector of gravity forces. The cables
must be capable of exerting a positive force and torque
on the end e�ector.

Dynamic Modeling of Cable Robot with
Flexible Joints
A torsional spring is considered between the motor
and pulley .for the dynamics of the 
exible joint. In
this case, the rotation of motors and pulleys can be
di�erent, and the following relations will be from the
vibration modeling of the system:

j �� +K(� � �0) = �rT; (2)

in which K (N.m /rad) is the torsional spring co-
e�cient, � (rad) is the motor rotation angle and
�0 (rad) is the pulley rotation angle. Also, we
have:

j0 ��0 �K(� � �0) = �; (3)

in which j0 (kg.m2) is motor inertia and ��0 (rad/s2)
is angular acceleration of motors. The following
equation is for the velocity and acceleration of pul-
leys:
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We need to rewrite the dynamic equations into a
state space equation form for solving the optimization
problem. With regard to 
exibility in the joints, we

have 12 degrees of freedom. Therefore, there are 24
state variables de�ned as:
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Now concerning these variables from Equation 1, we
have:

_X2 = D�1(�JTT � C �G): (6)

By the placement of Equations 2 and 4 in the above
equation and the elimination of T , we have:

_X2 =
h
I6�6 +

D�1JT jJ
r2

i�1h
D�1

nJTK(� � �0)
r

�C �Goi) _X2 = F1(X1; X2; X3): (7)

It is important to note that in the placement of the
second derivative of the pulley rotation angle, the
non-linear term is relinquished because, �rstly, in
previous studies conducted, the linear term is e�ective
and, secondly, by regarding the nonlinear term, the
size of the MATLAB �le becomes 30 MB, which no
software can solve.

On the other hand from Equation 3 we have:

_X4 = �� =
[� +K(� � �0)]

j0 ) _X4 = F2(X1; X3; U):
(8)

Finally, state equations of the system will be as follows:2664
_X1
_X2
_X3
_X4

3775 =

2664 X1
F1(X1; X2; X3)

X4
F2(X1; X3; U)

3775 : (9)

Problems of Optimal Control and Necessary
Condition of Optimality

In this optimal control problem, we want to determine
the state function, X(t) , and the control function,
U(t). The general method is, �rst, for a speci�ed
load; the optimal path of the robot for moving between
the primary and �nal point is found. Then, the
maximum load is found through an iterative algo-
rithm.
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Deriving Equations for Flexible Joints Case
According to [4,7], the overall form of the objective
function is as follows:

J0(U) =
1
2
kep1(tf )k2Wp1

+
1
2
kep2(tf )k2Wp2

+
1
2
kev1(tf )k2Wv1

+
1
2
kev2(tf )k2Wv2

+
Z tf

t0
L(X;U)dt; (10)

where:

ep1(tf ) = X1(tf )�X1f ;

ep2(tf ) = X3(tf )�X3f ;

ev1(tf ) = X2(tf )�X2f ;

ev2(tf ) = X4(tf )�X4f ;

L(X;U) =
1
2
� (kX1k2W1

+ kX2k2W2

+ kX3k2W3
+ kX4k2W4

+ kUk2R); (11)

where t0 and tf are known as the initial and �nal
times, and the integrand, L, is a smooth di�eren-
tiable function in the argument. kXk2K = XTKX
is the generalized squared norm, Wp and Wv are
symmetric positive semi-de�nite (n � n) weighting
matrices, W1; � � � ;W4 and R are symmetric positive
de�nite (n � n) matrices. X1f , X2f , X3f and X4f
are the desired values of the position and velocity of
the cable at the �nal time. The performance criteria
de�ned by Equation 10 are minimized on the total
range of motion. On the other hand, the boundary
conditions at the beginning and end of the path
are:

X1(0) = X10; X2(0) = X20;

X3(0) = X30; X4(0) = X40;

X1(tf ) = X1f ; X2(tf ) = X2f ;

X3(tf ) = X3f ; X4(tf ) = X4f ; (12)

which represent the position and velocity of the
end-e�ector at the initial and �nal time. Each of the
pulleys works on an under speci�c curve and in a
particular range;

U = fU�i � Ui � U+
i g; (13)

in which the upper and lower limits of the torques
according to the current-torque characteristics of DC
motors are de�ned as [1]:

U+ = K1 �K2X2; U� = K1 �K2X2; (14)

where:

K1 =
�
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�T ;
K2 = dig

� �s1
!11
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!mn

�
:

�s is the still torque and !mi is the maximum no
load speed of the motor. It is noticeable that since
the cables are only capable of being in tension, the
upper limit of the torque for our robot will be
zero.

As mentioned, for solving the optimality problem,
we use the indirect method, thus �rst the Hamiltonian
function is de�ned as follows:

H = L+ 	T
1 X2 + 	T

2 F1 + 	T
3 X4 + 	T

4 F2; (15)

where:
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Finally, by using the Pontryagin minimum principle,
we have the following relations:

1. _X = @H
@	 !

8>>><>>>:
_X1 = X2
_X2 = F1(X1; X2; X3)
_X3 = X4
_X4 = F2(X1; X3; U)
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We have totally 48 di�erential equations, which with
the last control law form all the required equations. In
solving process, �rst of all control Equation 3 would
be substituted in two other equations for a known load
(Equations 17). Consequently, the resultant equations
establish a set of 4n ordinary di�erential equations,
while Equation 12 describes a 4n boundary value
condition 2n of which are de�ned as t = t0 and the
other 2n as t = tf . The algorithm iterates on the initial
values of the costate until the �nal error converges
to the desired accuracy, ". To put it another way,
the following relation must be satis�ed by TPBVP
solving:

1
2
kX1(tf )�X1fk2Wp1

+
1
2
kX3(tf )�X3fk2Wp2

+

1
2
kX2(tf )�X2fk2W�1

+
1
2
kX4(tf )�X4fk2W�2

� ": (18)

ALGORITHM OF FINDING OPTIMAL
PATH AND MAXIMUM PAYLOAD

Finding Optimal Path for Speci�c Payload

1. Select " and penalty matrices.
2. Select two points that indicate the initial and �nal

positions of the manipulator in the workspace of the
robot, as they use in the boundary condition.

3. We go to the next step, if the workspace in
two selected points does not include singularity,
otherwise, if Jacobian values at the initial or �nal
con�guration are equal to zero, the algorithm jumps
back to the second step and two new points should
be selected (Condition I).

4. Select a primary path as the initial guess for solving
the problem.

5. Solve the two point boundary value problem using
the given boundary conditions and the BVP4C
command in MATLAB software.

6. Calculate the amount of torque (and if necessary
the other problems, such as tension of cable, length
of cable etc.).

7. If the desired objectives and purposes and the
required accuracy are satis�ed, the obtained path
is optimal and the running should be stopped,
otherwise the algorithm jumps back to step 4
(Condition II).

Calculation of Maximum Payload

The algorithm of the maximum payload has also been
shown in Figure 2. The �rst to third step of this
algorithm is similar to the previous algorithm. In this
algorithm, by selecting penalty matrices, maximum
load is calculated per speci�c objective function. m0

p is
the value of the primary load and �� determines the
increasing value of the load at each stage. The solving
method is based on increasing the minimum amount of
load until the maximum is obtained.

SIMULATION

In this section, simulation is done for di�erent 
exibil-
ities and under rigid conditions. It is noticeable that
the rigid optimal path is used as the initial guess in
each 
exible case.

Simulation is done for a speci�c load of 13 (kg),
and moving between the point (-0.1, -0.1, 1.5) and point
(0.1, 0.1, 1.8) for two di�erent 
exible and rigid cases
to guarantee the results. Applied boundary conditions
in the simulation are according to Table 1, and other
speci�cations are listed in Table 2. In Figure 3,
comparisons between motor torques for the �rst and
sixth ones are shown. It is clear, by considering joint

exibility, that the torques will have vibrations around
the rigid torque and that, by increasing the sti�ness of
the modeled spring, these vibrations decrease.

Then values of the maximum load and also the
required optimal path are obtained for two di�erent

exible and rigid cases.

In this simulation, also the boundary conditions
are the same as in the last simulation and Table 2.
According to conducted simulations, the maximum
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Figure 2. (a) Finding optimal path for speci�c payload. (b) Calculation of maximum payload.

Table 1. Boundary conditions of 
exible joints case.

X1(0) = [�0:1;�0:1;+1:5; 0; 0; 0]T X1(tf = 1) = [+0:1;+0:1;+1:8; 0; 0; 0]T

X2(0) = [0; 0; 0; 0; 0; 0]T X2(tf = 1) = [0; 0; 0; 0; 0; 0]T

X3(0) = [0; 0; 0; 0; 0; 0]T
For K = 5 : X3(tf = 1) = [�4:693;�6:49;�5:317;�4:831;�6:482;�5:119]T

For K = 20 : X3(tf = 1) = [�4:929;�6:849;�5:496;�4:972;�6:846;�5:417]T

X4(0) = [0; 0; 0; 0; 0; 0]T X4(tf = 1) = [0; 0; 0; 0; 0; 0]T

payload for a rigid case is obtained as 22.9 (kg), and
by adding joint 
exibility this value is reduced; for
spring sti�ness of 20 (N.m/rad), it is decreased to
19 (kg) and for spring sti�ness of 5 (N.m/rad), it is
decreased to 17.7 (kg). Figure 4 shows the optimal
path of each case that is listed above. It should
be mentioned that in each of the simulation cases,
before the �rst motor saturation, the optimal paths

of di�erent loads are the same and, then, if the load
increases, the plan attempts to change the path to still
keeping the torques within the allowed range. Also,
increasing the load is possible until the needed accuracy
in the problem is provided. In Figure 5, for example,
in spring sti�ness 5 (N.m/rad), the motor torques
achieve maximum payload. It is noticeable that in
the case of spring sti�ness equal to 5 (N.m/rad), we
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Table 2. Simulation parameters in 
exible joints case.

Parameter Value Unit

Moment of inertia (Ixx) Izz = �b4t
2
p

3
+ �b2t3

4
p

3
kg.m2

Moment of inertia (Iyy) Izz = �b4t
2
p

3
+ �b2t3

4
p

3
kg.m2

Moment of inertia (Izz) Izz = �b4tp
3 kg.m2

a 0.3 m

b 0.3 m

Motor's max. no load speed 330 Rad/s

Motor stall torque 2.84 N.m

Pulley radius 0.05 m

Pulley rotational inertia 8� 10�4 kg.m2

Rotational inertia for motor collection 8� 10�4 kg.m2

Figure 3. Comparison of motor torques in rigid and

exible joint cases for speci�c payload.

Figure 4. Optimal path for maximum payload in
di�erent cases of joint 
exibility in XYZ space.

have seen, on the maximum payload, that only the
�fth motor has reached the saturation limit; in the
second case, the �fth motor has reached the saturation
limit and the second motor is also near the end of
saturation. But, in rigid cases, the 5th, 2nd and
4th motors were saturated and the 6th motor also
reposed near to saturation. In this simulation, the
torques tried to reach their upper bound. In Figure 6,
motor torques in maximum payload for rigid cases are
shown.

To evaluate the accuracy of the obtained curves,
one of the methods is �nding the values of the
tensions that are used here. Concerning Figures 7
and 8, the tension of whole cables, when carrying
the maximum load in the obtained optimal path, is
positive.

As can be seen, obtained optimal paths in both

exible cases are very close to rigid optimal paths. Inci-
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Figure 5. Diagram of motor torques to reach maximum payload for K = 5 (N.m/rad).

dentally, by increasing spring sti�ness and, technically,
decreasing the 
exibility of the system, the vibrations
of the motor torques are reduced and the maximum
load carrying capacity is also increased.

VERIFICATION

In this paper, the proposed algorithm has been
demonstrated as a promising way to predict the pay-
load capacity. It is more uncertain and challeng-
ing for �eld implementation. Therefore, it is urged
that �eld veri�cation of the result should be carried
out.

In [12], direct and indirect kinematic and dynamic
modeling of one 6 cable spatial robot, considering

the 
exibility of joints, is undertaken. In this refer-
ence, the author has used a Matlab simulink toolbox
and, then, veri�ed the results with Sim-Designer soft-
ware.

For veri�cation of our result, �rst, for a speci�c
payload, the optimal path and motor torque are found
from the optimal control program. Then, the ob-
tained optimal path is given to the inverse dynamic
program [10] and the motor torque is obtained. Finally,
the motor torques obtained from the two methods are
compared.

It can be observed that the parameter of sim-
ulation is according to Table 2, and the boundary
conditions are as in Table 1. A comparison of results
for a 8.65 (kg) payload and a spring sti�ness of
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Figure 6. Diagram of motor torque reaching maximum payload in a rigid case.

Figure 7. Cable tension in maximum payload for K = 5
(N.m/rad).

Figure 8. Cables tension in maximum payload for rigid
case.
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Figure 9. Comparison of torques of optimal control and inverse dynamic in optimal path for 8.65 kg payload at K = 20
(N.m/rad).

20 (N.m/rad) is shown in Figure 9. These �gures show
good agreement between results.

CONCLUSION

The problem of the optimal path and maximum
carrying capacity of a 6 DOF spatial cable robot
was studied. Considering 
exibility of joints, the
simulation was undertaken. This paper deals with
the veri�cation of results. The maximum payload

without considering 
exibility at the given boundary
condition was equal to 22.9 (kg), and by adding the

exibility of joints, this value reduced, as for a spring
sti�ness of 20 (N.m/rad) to 19 (kg), and for a spring
sti�ness of 5 (N.m/rad) to 17.7 (kg). Actually, the
vibration has grown in the 
exible systems. The
actuators saturation bounds are �xed for both 
exible
and rigid models. Meanwhile, for controlling the
vibration of the end-e�ector, the maximum value of
the produced torque in a 
exible system versus a rigid
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case is increased. It can be shown that this indirect
method is suitable for high degree of freedom systems
and, moreover, can optimize some objective function
simultaneously.

NOMENCLATURE

D(X) inertia matrix of the manipulator
G(X) vector of gravity forces

C(X; _X) vector of Coriolis and Centrifugal
forces

J(X) matrix of robot Jacobian
l vector of cable length
a half distance between points A & B on

base of robot
b half distance between points D & F on

end-e�ector
K diagonal joints sti�ness matrix
j diagonal pulleys inertia matrix
j0 diagonal motors inertia matrix
� vector of pulley rotation angle
�0 vector of motor rotation angle
r radius of pulleys
�; vector of motors torque
U(t) control function
�s stall torque of motor
!m maximum no load speed of motor
T vector of cable tension
J0(U) objective function
H Hamiltonian function
U+
i ; U

�
I extrimal bound of motor torque

U vector of admissible control torque
X1; X2
X3; X4

state vectors

W1;W2;
W3;W4;
Wp;Wv; R

weighting matrices

 1;  2;
 3;  4

costate vectors

" desired accuracy in TPBVP solution
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