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Classi�cation of Mean Arterial Pressure
Regimes in ICU Using a Model-Based

Support Vector Machine: Acute
Hypotensive, Critical and Survival Episodes

A. Gha�ari1;2, M.R. Homaeinezhad1;2;�, M. Akraminia1;2,
M. Atarod2;3 and R. Rahmani4

Abstract. In this study, a new pattern discrimination method for the classi�cation of Mean Arterial
Pressure (MAP) regimes in ICU via an appropriately regulated Radial Basis Function (RBF) Support
Vector Machine (SVM) is described. The aim of this classi�cation is to detect hazardous cardiogenic
shock situations to prevent probable fatal failure of organs. To this end, �rst, electrocardiogram (ECG)
and Blood Pressure (BP) waveforms are processed via a Modi�ed Hilbert Transform (MHT), and QRS
complexes (equivalently obtaining heart rate-HR trend) and pressure pulses (equivalently obtaining trends
of systolic, diastolic and mean arterial pressures) are detected, respectively. In the next step, a RBF-
SVM classi�er is tuned using features obtained from the cardiogenic shock risk scoring model developed by
Hasdai et al. (2000) to classify MAP regimes into three categories; survival (the status that will not fall
into shock), critical (the transient status that may lead to shock or a return to the survival episode) and
Acute Hypotensive Episode -AHE (meaning cardiogenic shock will certainly occur.) Then, the regulated
RBF-SVM classi�er is applied to 60 records of the Computers in Cardiology (CinC) Challenge 2009 and
the values of Se = 92% and P+ = 93% are obtained for sensitivity and positive predictivity, respectively.
As some results of this study, the proposed classi�cation method recognized truly 15 subjects out of 15
normal (without shock episodes) subjects of the MIMICII database as belonging to the \survival class",
while the algorithm could classify 24 subjects as \AHE", 3 subjects as of the \critical class" and 3 subjects
as in the \survival" situation out of 30 shock containing records of the MIMICII database.

Keywords: Acute hypotensive episode; Cardiogenic shock; Blood pressure pulse detection; Piecewise
polynomial �tting; Support vector machine; Risk scoring model.

INTRODUCTION

AHE is one of the most critical events that occur
in Intensive Care Units (ICUs) and requires e�ective
and prompt intervention. It is generally de�ned as
any period of 30 minutes or more during which at
least 90% of the MAP measurements are at or below
60 mmHg [1]. AHE can lead to intense organ damage
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and death if not treated appropriately. Diagnosing
the causes of this episode including sepsis, myocardial
infarction, cardiac arrhythmia, pulmonary embolism,
hemorrhage, dehydration, hypovolemia, insu�cient
cardiac output, or vasodilatory shock, and conducting
timely and proper intervention can remarkably reduce
the risk of this fatal episode [2-4].

In this context, Cowley et al. [5] investigated the
role of the baroreceptor re
ex in the daily control of
Arterial Blood Pressure (ABP) and concluded that the
hypotension in denervated dogs was proportional to
the preexisting arterial blood pressure level. Hasdai et
al. [6] analyzed baseline variables associated with the
development of shock after thrombolytic therapy and
devised a scoring system predicting the risk of shock.
An innovative study was then conducted by Picard
et al. [7] to identify the echocardiographic features
of cardiogenic shock, and assess the advantages of
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the �ndings on early echocardiograms associated with
mortality after cardiogenic shock. Afterwards, Morris
et al. [8] proposed a potential algorithm for hypotension
based on reports of hypotension during anesthesia from
the �rst 4000 incidents reported to the Australian
Incident Monitoring Study (AIMS). An ECG-based
method was next developed by Solem et al. [9] for
the detection of acute hypotension, which was able to
provide information regarding the patient's propensity
to hypotension at an early stage of hemodialysis. In
another study conducted by Halkin et al. [10], seven
risk factors were identi�ed as accurate predictors of
mortality for cardiogenic shock. According to their
research, measurement of the baseline left ventricular
function was the single most powerful predictor of
survival, which should be incorporated into risk score
models. Recently, multivariable logistic regression
modeling techniques are used by Zhang et al. [11] to
develop a model for predicting the occurrence of car-
diogenic shock. On the basis of the coe�cients in their
model, they developed a risk score for the probability of
cardiogenic shock. This year, the subject of Computers
in Cardiology (CinC) Challenge 2009 was about the
detection and prediction of AHE phenomenon from
some selected records of the MIMICII database [12].
In the original work of Chen et al. [13], six indices
are introduced to predict AHE phenomenon: the 5-
minute average of MAP vital signs before the forecast
window, the 5-minute average of the ABP waveform
before the forecast window, the optimal exponentially
weighted average of the 10-hour ABP mean before
the forecast window, the ABP mean value at the
midpoint of the forecast window via linear regression
of the 1-hour ABP mean trend before the forecast
window, the �ve minute average of the diastolic vital
sign before the forecast window, and a combined index
consisting of the 5-minute averages of the second and
�fth indices. Herriques and Rocha [14] introduced
a generalized regression neural network multi model,
which is introduced for the prediction of AHE. Multi
model schemes do not recursively use model outputs
as inputs for the step ahead of prediction. Therefore,
prediction errors are not propagated over the forecast
horizon and long term predictions can accurately be
estimated. In the study of Langley et al. [15], an au-
tomated computer prediction algorithm is introduced
in which an AHE index was based on the observation
that patients with documented AHE experienced more
transient reductions in MAP compared to those with-
out AHE. Mneimneh and Povinelli [16] proposed three
approaches that were used to determine a method for
the prediction of AHE. Their classi�cation approach is
based on a reconstructed phase space neural network
approach, K-nearest neighborhood, and a rule based
methodology. In the work of Chiarugi et al. [17],
signi�cant features are extracted from ABP and HR

time series and a median �lter is used to suppress
most artifacts. A decision tree classi�cation is then
designed based on the obtained features and is com-
pared with SVM classi�cation. Fournier and Roy [18]
proposed a method in which the ABP trend is used for
feature extraction and the Kullback-Liebler divergence
between to identify the most discriminative features.
In this algorithm, the nearest neighborhood method
is used as the classi�cation routine. In the model of
Hayn et al. [19], a system including several standard
algorithms, most of them for ECG processing, as well
as diverse algorithms designed for speci�c purposes and
applications, is introduced. Jin and Stockbridge [20]
proposed cubic b-splines used to approximate MAP
curves. b-splines generally re
ect the local features
of the target curve and a rank-based discrimination
algorithm is used as the classi�cation scheme. In the
work of Jousset et al. [21], the MAP trend is used as
the source of the feature selection and a SVM classi�er
is implemented to categorize the MAP modes into two
AHE and normal subgroups. In the model of Ho and
Chen [22], after the calculation and processing of the
MAP trend in a 30 minute long window frame, the
obtained segments are allocated into some bins to form
a histogram for the analysis; using color histograms
is a very well known method in computer vision and
pattern recognition. The presented study concentrates
on the detection of AHE and MAPDRs on the basis
of the ECG signal and ABP waveform measurements.
To this end, the QRS complexes and end-systolic end-
diastolic pulses are �rst identi�ed using two versions of
the MHT algorithm, namely ECGMHT and BPMHT,
respectively. Then, using the obtained SBP and DBP
waveforms, the MAP trend is speci�ed. Afterwards,
in order to smooth the fast 
uctuations observed in
the RR-tachogram and MAP trend, we have designed
an innovative smoothing algorithm based on Piecewise
Polynomial Fitting (PPF) (see Figure 1). Fitting N
numbers of polynomials sequentially to the original
signal and determining the corresponding coe�cients
based on the BLUE approach [23], is the basis of
the PPF algorithm operation. In order to consider
the mutual in
uence of parameters on the evalua-
tion of shock probability, a RBF-SVM classi�er is
regulated using Hasdai et al. parameters as input,
with appropriate exponential kernel functions for each
parameter. Using this network, it will be possible to
incorporate the possible mutual in
uences between risk
parameters, such as Heart Rate (HR), Systolic Blood
Pressure (SBP), Diastolic Blood Pressure (DBP), age,
gender, weight and some miscellaneous factors, to
the calculation of shock occurrence probability. The
block diagram of the present study is illustrated in
Figure 1. Finally, the proposed algorithm is applied
to 60 subjects of the MIMICII Database, and AHE
and MAPDRs are consequently detected (MAP �
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Figure 1. General overview of the proposed shock probability evaluation algorithm via a RBF-SVM trained model.

60 mmHg with endurance more than 30 minutes). The
regulated RBF-SVM classi�er is applied to 60 records
of the MIMICII and the values of Se = 92% and
P+ = 93% are obtained for sensitivity and positive
predictivity, respectively. As some results of this study,
the proposed classi�cation method recognized truly 15
subjects out of 15 normal (without shock episodes)
subjects of the MIMICII database as belonging to the
\survival class", while the algorithm could classify 24
subjects as \AHE", 3 subjects as belonging to the
\critical class" and 3 subjects as being in a \survival"
situation out of 30 shock containing records of the
MIMICII database.

MATERIALS AND METHODS

Modi�ed Hilbert Transform (MHT) Algorithm

Conventional Hilbert Transform for Local
Extremum Detection
A quadrature �lter with the following transfer function
is called a Hilbert transform, which is an all-pass �lter
that changes the phase of the input signal �90� and
has an impulse response of 1=(�t) [24]:

G(!) = �jsign(!) =

8><>:�j ! > 0
0 ! = 0
+j ! < 0

(1)

Therefore, the Hilbert transform of the signal s(t) can
be obtained from the following convolution:

sH(t) = s(t) � 1
�t

=
1
�

Z +1

�1
s(�)
t� �d�: (2)

The most signi�cant characteristic of the Hilbert trans-
form is its mapping of local maxima and minima
values of the original signal to the values crossing the
zero [24,25]. Assume that y(t) represents the original
ECG signal and;

y0(t) = y(t) � hBP(t); (3)

where hBP(t) is the impulse response of the bandpass
FIR �lter, and y0(t) is the output of the �lter. Suppose:

y1(t) = Hilbert[y0(t)];

t = 0; 1; 2; � � � ; nt � 1: (4)

Also, assume that the signal y(t) represents an ECG
lead, in which R-peaks are upward. As seen in Figure 2
(sections a to g), a sign change from positive to negative
in the Hilbert transform of a signal is an indicator of
the existence of a local maximum; however, an opposite
sign change shows the existence of a local minimum in
the signal. Using the following mapping, it would be
possible to push down the positive part of the Hilbert
transform to zero, while the negative part is mapped
to a constant value:

y2(t)=K2magy0(t) exp
���att

2
[1+sign(y1(t))]y1(t)

�
;
(5)

in which K2mag is the ampli�cation coe�cient, y0(t)
is the �ltered ECG signal and �att is the attenuation
coe�cient, which is a positive value and always �att �
1. The sign(.) operator is the sign function and
y1(t) is the Hilbert transform of the �ltered signal.
According to Equation 5, it can be realized that for a
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negative value of y1(t), y2(t) = K2magy0(t) exp(0) =
K2magy0(t), and the output would be the ampli�ed
version of the �ltered signal. However, for positive
values of y1(t), y2(t) = K2magy0(t) exp[��att y1(t)] �
0. Thus, for negative values of the Hilbert transform,
the �ltered signal will be ampli�ed, and for positive
values of the Hilbert transform, the �ltered signal will
be mapped near zero. In the next step, using another
nonlinear function, the negative values of the signal,
y2(t), are eliminated as follows:

y3(t) = K3mag[1 + sign(y2(t))]y2(t); (6)

where K3mag represents the ampli�cation coe�cient.
According to this equation, for a negative value of y2(t),
signal y3(t) will be equal to zero; however, for positive
values of y2(t), signal y3(t) will be ampli�ed with
the proportional factor, K3mag. Afterwards, signal
y3(t) is normalized and then re-ampli�ed to de�ne a
proper subject-independent thresholding on the signal
as follows:

y4(t) = exp
�

y3(t)
max(y3(t))

�
; (7)

where max(y3(t)) represents the maximum value of the
signal, y3(t).

Design of Adaptive Thresholding on Signal
y4(t)
Due to the variability of the morphology of QRS
complexes in cases of arrhythmia, it will not be possible
to detect all R-peaks using a �xed threshold value. For
instance, if the threshold value is rather large relative to
unity (unity is the minimum value of the signal, y4(t)),
the QRS complexes with a small y4(t) value will be
located beneath the threshold line and, consequently,
will not be detected. On the other hand, for values
of the threshold highly close to unity, some waves will
be detected in addition to QRS complexes, which will
lead to a decrease in the algorithm accuracy, even if
an improperly-detected QRS elimination algorithm is
implemented. Accordingly, it seems that an adaptive
thresholding is necessary and the algorithm would be
more e�cient. Suppose that the signal, y4(t), is divided
into N number of identical segments with the values of
�j and �j , respectively, for mean value and standard
deviation of the signal segment in the jth interval
(j = 1; 2; � � � ; N). For a threshold �j = �j + ��j ,
where � is the adjustment coe�cient (0 < � � 6), one
can calculate the corresponding suitable comparison
threshold of each sample of signal y4(t) in each interval
of y4(t). Thus, variability in the amplitude of signal
y4(t), even in cases of large variation, will not cause
signi�cant errors in the proposed detection algorithm.

Figure 2. The block diagram of the MHT algorithm.
From a general point of view this algorithm consists of 10
stages.
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Sample to Sample Windowing: Selection of the
Best Local Minimum
In this step, a window with an appropriate length of
samples is selected and is slid on signal y5(t) from
one sample to the next. Each time, the maximum
value in the window and the corresponding index are
calculated and all other points in the window are
padded by zero. If moving forward, the new maxi-
mum entering the window is larger than the previous
one, the previous maximum will be replaced by zero
and the current maximum will play as a new QRS
candidate. Finally, the output of the window will
be called the best candidate for R-peak of the QRS
complex.

Accordingly, using the calculated threshold, the
signal, y5(t), can be obtained from signal, y4(t), as
follows:

y5(t) =

(
y4(t) y4(t) � �(t)
0 y4(t) < �(t)

(8)

Eventually, after applying a local search to the entire
resulted signal, the proper candidates of QRS com-
plexes will be obtained.

Elimination of Improperly-Detected Waves
In order to eliminate the QRS complexes with abnor-
mal time distances from each other, suppose that index
k represents the kth R-wave in the signal. Conse-
quently, using a hypothesis test with the following test
ratio;

LR =
Rk+1 �Rk
Rk �Rk�1

; (9)

and a decision rule based on the following criterion;

� =

(
1 LR � �R
0 LR < �R

; 1 � Holding Rk+1
0 � Rejecting Rk+1

(10)

the (k + 1)th R-wave with abnormal distance from
the preceding R-wave will be eliminated. It should be
noted that in Equations 9 and 10, �R is the rejection
ratio and LR is the decision ratio. In order to detect
PVC beats, the factor, �R, should be chosen between
0.45 and 0.55 (0:45 � �R � 0:55). However, for the
values of �R between 0.55 and 0.70 (0:55 � �R �
0:70), more accurate results will be obtained for R-
wave detection. Finally, to remove much improperly-
detected R-waves, it is assumed that the time sequence
of RR-intervals (RR-tachogram) has a mean value, �C ,
and standard deviation, �C . Thus, if the equation
(Rk � Rk�1) � �C + 3:5�C is held, the Rk peak will
be rejected. The schematic block diagram of the MHT
algorithm is depicted in Figure 2. Figure 3 also shows
how the developed algorithm works to detect QRS
complexes.

Design of Piecewise Polynomial Fitter (PPF)

The design of the Piecewise Polynomial Fitter (PPF)
is based on the least squares method. In the PPF
algorithm, the original signal is �rst divided into
identical segments. In the next step, a pth-order
polynomial (3 � p � 15, this interval is obtained
empirically after numerous simulations) is �tted to each
signal segment in the corresponding windows. Next,
the discontinuities at the beginning and end of the
intervals are eliminated using some simple calculations.
The PPF algorithm has acceptable capability in cases
of noise with non-stationary variance, low signal to
noise ratios and colored noise. In this section, the
design procedure of the PPF algorithm and the cor-
responding implementation method is �rst described
and the related performance characteristics are then
explained.

Piecewise Signal Isolation and Optimal Fitting
The principle of least squares has been studied ex-
tensively in systems identi�cation [26] and estimation
theory [27] textbooks. Consider the kth segment of a
signal with length WN such as fy(t)jt = 1+(k�1)WN :
kWNg. A typical pth-order polynomial is supposed to
be �tted to this signal segment as follows:

ŷk(t)� y0k =
pX

n=1

ank(t� t0k)n; (11)

where ŷk(t) is estimation of the original signal in the
kth interval, y0k is the initial value of the interval, t0k
is the start time of the interval, and ank represents the
polynomial coe�cients that should be estimated using
a BLUE algorithm.

Assuming the number of samples for each signal
segment to be WN , the following observation vector
and time vector can be obtained for the kth segment
of the signal:(

yobs;k = y[(1 + (k � 1)WN ) : kWN ]
tobs;k = t[(1 + (k � 1)WN ) : kWN ]

(12)

where y[m : n] represents the elements numbers m to
n of a supposed vector, y. Generally, in order to apply
the BLUE algorithm to the problem, the observation
and linear regression vectors must be in column and
row formats, respectively. The observation vector, Yk,
and time vector, Tk, in the kth interval are obtained
using Equation 12 as follows:

(Yk)WN�1 = yobs;k � y0k;

(Tk)WN�1 = tobs;k � t0k; (13)

where y0k and t0k are the initial values of the kth
interval and should be chosen so that the continuity
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Figure 3. Graphical representation of the performance of MHT algorithm in the detection of QRS complexes. (a) Filtered
ECG signal, (b) conventional Hilbert transform, (c) nonlinear mapping according to Equation 5, (d) padding zeros instead
of negative values in signal obtained from previous section, (e) normalization and exponentially ampli�cation of the
preceding signal and application of the adaptive thresholding, (f) application of the sliding window to form the impulses
originated from the best local maxima candidates and (g) application of a local search to the original signal centered on
impulse indices obtained from stage (f).
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of the entire estimated signal is guaranteed. In order
to determine the matrix consisting of linear regression
vectors, the time column vector (Tk)WN�1 is substi-
tuted in the following matrix:

�k = [Tk; (Tk)�2; � � � ; (Tk)�p]; (14)

where the operator (:)�m increases each element of
matrix Tk to the power of m. Suppose that in
observation vector, Yk, the signal is embedded into
an additive noise with covariance matrix, 
k. If so, it
can be shown that the best linear unbiased estimation
of unknown parameters in the presence of correlated
noise is as follows [26]:

�k = (�T
k
�1

k �k)�1�T
�1
k Yk; (15)

in which, �k includes the parameters of the polynomial
in an ascending fashion, i.e. �k = [a1k; a2k; � � � ; apk]T .
The details to derive this equation, as well as the corre-
sponding exhaustive explanation of this type of estima-
tion, can be found in identi�cation textbooks [26,27].
Presenting a simple example, it is shown how to apply
the continuity condition to the beginning and end of
each interval. Consider a sequence consisting of 17
samples with window length WN = 12 as depicted in
Figure 4.

In this �gure, the solid line represents the orig-
inal signal, which should be estimated by the PPF
algorithm, and the dashed lines illustrate polynomials
�tted to the signal in each segment. As observed in
this �gure, the estimated signal is not appropriately
�tted to the original signal at end point A (end
e�ect 1). To solve the problem, it is assumed that the
corresponding polynomial of each interval is �tted to
W 0N number of samples where W 0N = WN +Waug and
Waug is the number of samples borrowed from the next
adjacent window augmented to vector Tk. According
to Equation 12, vectors yobs;k and tobs;k are obtained

Figure 4. Schematic representation of end e�ects in the
PPF algorithm and extra samples augmentation.

as follows:
yobs;k = yb(1 + (k � 1)WN ) : kWN +Waugc;
tobs;k = t[(1 + (k � 1)WN ) : kWN +Waug]: (16)

In this way, the polynomial parameters are determined
from Equation 15 and the corresponding signal in this
interval can be estimated as follows:

Tk = t[(1 + (k � 1)WN ) : kWN + 1]� t0k; (17)

�k = [Tk; (Tk)�2; � � � ; (Tk)�p](WN+1)�p; (18)

ŷ(t) = �k�k + y0k: (19)

Applying this method, the end e�ect 2 (end point B)
is arisen out of the interval. However, only samples
from the beginning to the end of segment (WN ) are
considered as the estimated signal. Therefore, the end
e�ects are eliminated.

It should be noted that the signal in this interval is
estimated using a rather high-order polynomial, which
has low generalization power for the estimation in
endpoints. Choosing some samples from interval k + 1
to proceed the last sample of interval k results in more
accurate estimation for the endpoint and, consequently,
a smoother estimation is obtained for the original signal
in interval k. The last point of interval k and the
corresponding time will be used as the initial conditions
for the next interval, k + 1, i.e.,(

y0(k+1) = Ŷk(end)
t0(k+1) = Tk(end)

(20)

Finally, in order to conduct estimation in interval k+1,
the linear regression matrix and the observation vector
should be obtained from Equation 19 and the �rst
elements in the vectors tobs;(k+1) and yobs;(k+1) should
be replaced by y0(k+1) and t0(k+1), respectively.

Generally, it should be noted that window length
WN depends upon the sampling frequency, frequency
contents of the original signal, the order of the poly-
nomial, and noise power. After ful�llment of numer-
ous simulations, it is empirically concluded that this
performance would be highly improved if the following
criterion was used:

WN = �min
�

1
4
FS ; 3fdom; 15p

�
; (21)

where, FS represents the sampling frequency, fdom is
the largest frequency existing in the signal, and p is
the order of the polynomial. Also, � is a proportion
coe�cient that varies between 1 and 1.5 (1 � � � 1:5),
and depends on the approximate standard deviation of
the noise. In this study, for the values of noise standard
deviation less than 4 (�N < 4), � is set to 1 (� = 1), and
for the values of noise standard deviation more than
4(�N > 4), it was considered equal to 1.5 (� = 1:5).
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Classi�cation of Data and Feature Space
Dimension Reduction

Radial Basis Function (RBF) Based Support
Vector Machine (SVM) Classi�er
In this work, RBF-SVM is implemented as the arrhyth-
mias classi�cation method. According to the Vapnik
formulation [28], if couple (xi; �(xi)) (in which �(xi) is
class function, i = 1; � � � ; N) describing data elements
and their corresponding categories that are linearly
separable in the feature space, then the margin of
classes can be obtained as follows:

f(x) = wT'(x) + b; (22)

where w is weight vector, b is bias term and the
condition f(xi)�(xi) > 0 holds. On the other hand, if
train data is not linearly separable in the feature space
to �nd a suitable separating hyper plane, the following
constrained optimization problem should be solved:

CoF(w; �) =
1
2
kwk2 + C

NX
j=1

�j ;

s.t.

�(xi)(wT'(xi) + b) � 1� �i;
i = 1; � � � ; N; (23)

where CoF is the cost function. Solving this equation
yields the separating hyper plane. In this equation, C
is called the regularization parameter that generates a
trade-o� between the hyper plane margin and classi�-
cation error, and �i is stack parameter corresponding
to xi. By introducing Lagrange multipliers as:

CoF(�)=
NX
j=1

�j� 1
2

NX
i=1

NX
j=1

�i�j�(xi)�(xj)K(xi;xj);

s.t.

NX
j=1

�j�(xj) = 0;

0 � �j � C; (24)

where K(xi;xj) is the kernel function obtained from
the following equation:

K(xi;xj) = 'T (xi)'(xj): (25)

For example, K(xi;xj) = (xTi xj + 1)� is polynomial
kernel of degree � and K(xi;xj) = exp(�
kxi � xjk2)
is the RBF kernel. In Equation 20, if �i > 0, xis are
called support vectors. In speci�c cases, if �i = C,
xis are bounded support vectors and if 0 < �i < C,

xis will be called unbounded support vectors. To solve
the constrained Equation 20, several approaches can be
found in the literature [28]. After solving Equation 20,
the decision function f(x) is obtained as follows:

f(x) =
X
i

�i�(xi)K(xi;x) + b;

w =
X
j

�(xj)�j'(xj); (26)

and margin � is obtained as:

� =
1
kwk

1rP
i

P
j
�(xi)�(xj)�i�jK(xi;xj)

: (27)

More details about fundamental concepts of SVM can
be found in [28].

Feature Space Dimension Reduction via
Principal Component Analysis (PCA)
Suppose that FArr = [f1; � � � ; fN ] is a matrix consisting
of feature vectors (fj)12�1, j = 1; � � � ; N , and it is
aimed to reduce the dimension of FArr and reconstruct
a matrix GArr = [g1; � � � ;gN ], in which (gj)p�1, j =
1; � � � ; N and p � 12. Using the following linear
orthonormal projection:

g = 
T f + u; (28)

where 
12�p is the weight matrix and up�1 is the o�set
vector, and by application of linear back projection, the
estimation of vector f , i.e. f̂ , is obtained as follows:

f̂ = 
(g � u): (29)

This equation is obtained based on the orthonormal
characteristics of the weight matrix, 
. To calculate
optimal weight matrix 
 and o�set vector u, a square
error structure is de�ned as:

"(
;u) =
1
N

NX
k=1

fTk f̂k; (30)

and (
;u) is the optimal solution of the following
constrained optimization equation:

(
;u) = Arg min
(
0;u0)

["(
0;u0)];

s.t.


T
 = I; (31)

where condition 
T
 = I imposes an orthonormality
constraint to the optimization problem. To solve
Equation 17, several methods, such as Cholesky decom-
position and linear algebra methods, have already been
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developed [28]. The main role of PCA application is to
reduce the feature space dimension, so that training
time and computational burden decreases signi�cantly.
However, for low dimension feature vectors, such as
those in this study, implementation of PCA makes
no considerable improvement in training accuracy and
computational burden.

FEATURE EXTRACTION USING A RISK
SCORING MODEL DEVELOPED FOR
PREDICTION OF CARDIOGENIC SHOCK
INCIDENCE

Cardiogenic Shock and Risk Scoring Model

Cardiogenic shock is a certain state in which slight
systemic cardiac output leads to tissue hypoxia. For
values of cardiac index less than or equal to 2.2
liter/min/m2 (or 1.8 liter/min/m2 according to physi-
ologists) cardiogenic shock will occur. From the blood
pressure perspective, a systolic blood pressure less than
80 or 90 mmHg can be a symptom of shock syndrome.
However, it is proven that hypotension is not the only
cause of shock occurrence. The hemodynamic param-
eters which contribute signi�cantly to the detection
or prediction of shock are namely heart rate, right
atrial pressure, right ventricle systolic/diastolic pres-
sure, pulmonary artery pressure, left atrial pressure,
left ventricle systolic/diastolic pressure, aortic pres-
sure, cardiac output, cardiac index, stroke volume, left
ventricle diastolic volume, ejection fraction, systemic
resistance, total pulmonary resistance, stroke work
index of the left ventricle and baseline cardiac power
out. Generally, a considerable decrease will occur in
the systemic tissue perfusion during cardiogenic shock.
The main consequences of cardiogenic shock include
renal failure, changes in pulmonary function, changes
in skeletal muscle, dysfunction in the gastrointestinal
system, decrease in blood pressure and blood volume,
and damage to the brain. The schematic diagram of
cardiogenic shock is illustrated in Figure 5 in which
successive MI cause the cardiac pumping level to
descend to below the rest baseline. In this way,
cardiogenic shock occurs that can rapidly lead to
death [29].

In this section, a shock predictor model [6] is
introduced in which factors such as age, heart rate,
SBP, DBP, weight, and some other clinical features
namely miscellaneous factors are incorporated. At the
�rst step, based on clinical data and the signi�cance
of the factor under study, a score is allocated to
each feature. For instance, age is a variable strongly
increasing the probability of cardiogenic shock or Mean
Arterial Pressure (MAP), which is derived from SBP
and DBP, and which is considerably associated with
the occurrence of cardiogenic shock. Therefore, a high

Figure 5. The diagram of cardiogenic shock occurrence
after cumulative MIs showing deterioration of cardiac
pumping capability [25].

score should be allotted to these factors. Afterwards,
a total score is calculated as the sum of the scores
assigned to each factor. Finally, it would be possible
to predict the probability of cardiogenic shock for
the patient under consideration. As a case in view,
consider a 71-year-old 60-kg female with a history
of hypertension who presents with a systolic blood
pressure of 126 mmHg, a diastolic blood pressure of
64 mmHg and a heart rate of 123 beats/min. According
to the model of Hasdai et al., this patient would
have a total score of 37 + 17 + 39 + 5 + 10 + 5 +
8 + 17 + 3 + 2 + 5 = 148. This score corresponds
to a predicted probability of 30% for cardiogenic
shock [6].

Feature Selection for Detection and Prediction
of Cardiogenic Shock Using Hasdai et al. Risk
Model

For Computer Implementation of the Hasdai et al.
model, a RBF-SVM network is trained using infor-
mation obtained from their original work [6]. The
purpose of using the RBF-SVM was to consider the
mutual in
uence of parameters in the evaluation of
shock probability for which a RBF-SVM network is
implemented. Using this network, it will be possible
to incorporate the possible mutual in
uences between
risk parameters to the calculation of shock occurrence
probability.

According to Figure 6, inputs such as HR, SBP,
DBP, age, gender and weight are included in the
input layer and are incorporated in exponential kernel
functions. The structure of this network is illustrated in
Figure 6. For each of the parameters, HR, SBP, DBP,
age, gender and weight, an exponential kernel function
is supposed. The range of exponential kernel functions
parameters are illustrated in the next section.

The resulted RBF-SVM classi�er is erected in a
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Figure 6. The RBF-SVM structure used for cardiogenic shock predictor based on HR, SBP, DBP, age, gender and weight.

C++ environment, according to Figure 6, to calculate
the risk of cardiogenic shock occurrence and classify
the present spontaneous status. As already stated, the
variable describing shock in the Hasdai et al. model can
be obtained using an equation similar to the following:

XTOT = XAGE + XHR + XSBP + XDBP + XWGT

+ XMIL + XTRT + XKLP + XMSC: (32)

More details about the Hasdai et al. risk score
model can be found in [6]. As understood from
Equation 22, the total sum of scores will yield the
shock overall index and, using a �nal mapping, the
percentage of the probability of shock occurrence can
be calculated [6].

In Figure 7, a generic example of the risk factor
and its classi�cation bounds obtained applying the
Hasdai et al. model is shown. As seen in this �gure,
the spontaneous value of risk factor is used as a
metric to allocate the probability of cardiogenic shock
occurrence.

Technical Descriptions of Employed Databases

The MIT-BIH Arrhythmia Database
The MIT-BIH Arrhythmia Database contains 48 half-
hour excerpts of two-channel ambulatory ECG record-
ings, obtained from 47 subjects studied by the BIH
Arrhythmia Laboratory. Twenty-three recordings were
chosen at random from a set of 4000 24-hour ambula-
tory ECG recordings collected from a mixed population
of inpatients (about 60%) and outpatients (about 40%)
at Boston Hospital. The remaining 25 recordings were
selected from the same set to include less common
but clinically signi�cant arrhythmias that would not
be well-represented in a small random sample. The
recordings were digitized at 360 samples per second
per channel with 11-bit resolution over a 10 mV range.
Two or more cardiologists independently annotated
each record. Disagreements were resolved to obtain the
computer-readable reference annotations for each beat
(approximately 110,000 annotations in all) included
with the database [30].

Figure 7. A generic trend of risk factor calculated using
smoothed SBP, DBP, HR and some other miscellaneous
factors. Corresponding survival, critical and AHE classes
are also illustrated.

The TWA Database

This database has been assembled for the Phys-
ioNet/Computers in Cardiology Challenge 2008. It
contains 100 multichannel ECG records sampled at 500
Hz with 16 bit resolution over a � 32 mV range. The
subjects include patients with myocardial infarctions,
transient ischemia, ventricular tachyarrhythmias, and
other risk factors for sudden cardiac death, as well as
healthy controls and synthetic cases with calibrated
amounts of T -wave Alternans [30].

The QT Database
The QT Database includes ECGs which were chosen
to represent a wide variety of QRS and ST-T mor-
phologies in order to challenge QT detection algorithms
with real-world variability. The records were chosen
primarily from among existing ECG databases includ-
ing the MIT-BIH Arrhythmia Database, the European
Society of Cardiology ST-T Database, and several
other ECG databases collected at Boston's Medical
Center. All records were sampled at 250 Hz [30]. Those
which were not originally sampled at that rate were
converted using the MIT Waveform Database Software
Package [30].
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High Resolution DAY Hospital Database
The high-resolution Holter Database of DAY hospital
contains 24-hour 3-lead records of about 150 patients,
including diverse ECG arrhythmias, such as BBB,
PVC, PAC, myocardial infarction, heart failure, is-
chemia and T -wave alternans. The sampling frequency
of this database is 1000 Hz with 32-bits of resolu-
tion [31]. The electrodes of each holter are attached
to the subjects' chest skin surface at positions 1, 3, 5
via suitable vacuum cups.

Computers in Cardiology Challenge 2009
(Files Chosen from MIMIC II) Database
The MIMIC II project has collected data from about
30000 ICU patients to date. MIMIC II patient records
contain most of the information that would appear in
a medical record (such as results of laboratory tests,
medications, and hourly vital signs). About 5000 of the
records also include physiologic waveforms (typically
including ECG, blood pressure and respiration, and
often other signals as well) and time series that can be
observed by the ICU sta�. The intent is that a MIMIC
II record should be su�ciently detailed to allow its use
in studies that would otherwise require access to an
ICU, e.g. for basic research in intensive care medicine,
or for development and evaluation of diagnostic and
predictive algorithms for medical decision support.
The challenge dataset consists of selected patient
records from the MIMIC II Database. In the training
set, the records include all available data before and
after T0. In the test sets, the records are truncated
at T0; the data recorded after T0 in each case will be
made available for study only after the conclusion of the
challenge. Not all MIMIC II records include all data
elements needed for this challenge. Records chosen for
the challenge dataset include, at a minimum, at least
10 hours of data before T0, and at least one hour of
data after T0. (As noted, data collected after T0 for
the test set records will be withheld until after the
conclusion of the challenge in September, 2009.) Most
MIMIC II records are signi�cantly longer, and many
include a week or more of data. ECG and Arterial
Blood Pressure (ABP) signals are sampled at 125 Hz.
Records in the training set may include one or two
additional signals, and those in the test set may include
as many as six additional signals. (Note, however,
that two records in the training set do not include
these signals.) Time series of vital signs are sampled
once per minute (in the training set) and once per
second (in the test sets). These include heart rate and
mean, systolic, and diastolic ABP. Most records include
a variety of additional vital-signs time series, most
often including respiration rate and SpO2. Clinical
data are entered into the ICU medical information
systems (records of observations, measurements and
interventions performed in the ICU). These include

intravenous medications and 
uids as well as other
medications administered. Note, however, that some of
this information is manually entered by the ICU sta� at
times when it is possible to do so without compromising
patient care, so the associated timestamps may be
imprecise. Results of laboratory tests, records of
medications ordered, and other data gathered in the
hospital but outside the ICU are recorded. MIMIC
II records meeting the criteria above are assigned to
a group (H or C) and a subgroup (H1, H2, C1 or
C2). Records in group H contain an episode of acute
hypotension beginning during the forecast window (the
one-hour period following T0). Records in subgroup H1
come from patients who received pressor medication.
Records in subgroup H2 come from patients who did
not receive pressor medication (i.e. those in group H
but not in subgroup H1). Records in group C contain
no episodes of acute hypotension within the forecast
window. Records in subgroup C1 come from patients
with no documented acute hypotensive episodes at any
time during their hospital stay. Records in subgroup
C2 come from patients who had AHE before or after
the forecast window (i.e. those in group C but not in
subgroup C1). The training set consists of 60 records
(including data after T0): 15 from subgroup H1 (AHE
treated with pressors), 15 from subgroup H2 (AHE not
treated with pressors), 15 from subgroup C1 (no AHE)
and 15 from subgroup C2 (AHE outside the forecast
window) [30].

Estimation of MAP and Its Dropping Regimes

Because the MIT-BIH Database includes long time
signals (more than 30 hours), the outputs of BPMHT
and ECGMHT algorithms are averaged in one-minute
intervals. If so, the size of data to be processed will
be 1/125 the size of the original data (the sampling
frequency of MIMIC II Database is 125 Hz). Finally,
MAPDR calculations are conducted using the average
data.

In order to �nd MAPDRs, a window with length
WDR is the �rst slide sample to sample the smoothed
averaged waveform Ybp;sm obtained from the PPF
algorithm, i.e. Ybp;sm = PPF(Ybp;orig). The MAP
waveform, Ybp;orig, is calculated using SBP and DBP
pulses as follows [1]:

Ybp;orig � YSBP + 2YDBP

3
(mmHg); (33)

where YSBP and YDBP are SBP and DBP vectors.
The window length, WDR, is equal to the number of
samples as long as 30 minutes. Each time, the Drop
Index (DI), MAPDR, is calculated as follows. First,
the signal segment in the kth window is obtained as:

Yseg;k = Ybp;sm(k : k +WDR): (34)
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In the next step, the derivative of vector Yseg;k is
calculated with respect to time as follows:

_Yseg;k = di�(Yseg;k); (35)

where operator di�(.) represents the di�erence between
the present sample and the previous one. The aim of
this study is to detect intervals with MAP at or below
60 mmHg descending continuously. To this end, all
samples of vector _Yseg;k in a window are summed up.
If this total sum is always negative when sliding the
window forward, it would be a marker of MAPDR. On
the other hand, an increase in the total sum indicates
an ascending trend for MAP. Therefore:

DI(k) =
WDRX
n=1

_Yseg;k(n); MAP � 60 mmHg:
(36)

From the resulted signal, DI, negative parts with high
duration should be highly considered. Thus:

MAPDR = 0:5[1� sign(DI)]; (37)

where index MAPDR represents a signal with a value
of 1 for MAPDR and zero for the ascending trend in the
MAP signal. If the drop index descends continuously
for 90% of the window length when moving forward, a
dropping regime will be assigned to that speci�c period
of time.

Normalization of Data
Suppose that the vector X has sample mean � and
sample variance �2, then the normalized vector, XNorm,
processing zero mean and unit variance, is obtained
from the following simple transformation:

XNorm =
X� �
�

: (38)

Normalization of the shock probability diagram helps
us obtain a comprehensive comparative criterion for all
subjects.

Simulation of QRS and Pulse Pressure
Detectors

Validation of MHT Algorithm for the
Detection of QRS Complexes (ECGMHT)
Numerous databases with di�erent sampling frequen-
cies and signal to noise ratios are used in this
study to validate the performance of the proposed
detection algorithm. To validate the QRS detection
and delineation algorithm, MITDB (Fs = 360 Hz),
TWADB (Fs = 500 Hz), EDB (Fs = 250 Hz),
QTDB (Fs = 250 Hz) and also high resolution
Holter data (MEDSET r
-1000 Hz, 3-Channel, 32-bits)
that contain annotation �les are used (CHECK#0).

It should be noticed that in confusing situations,
results were delivered to the cardiologist and, ac-
cordingly, the detection algorithm was revalidated
(CHECK#1). In cases of QRS with very abnormal
morphologies, the results were also checked by some
residents (CHECK#2).

The results of the application of the MHT method
are shown in Tables 1 to 5 with the average values
of 99.80% and 99.85% for sensitivity and positive pre-
diction, respectively. The False Negative (FN) occurs
when the algorithm fails to detect a true beat (actual
QRS) conducted in the corresponding annotation �le
of the MIT-BIH record, and a False Positive (FP)
indicates a false beat detection. Sensitivity (Se) and
positive prediction (P+) [13] are calculated straight-
forwardly as follows:

Sensitivity (%) =
TP

TP + FN
%; (39)

Positive predictivity(%) =
TP

TP + FP
%: (40)

Two graphs will be representing the output of the MHT
algorithm. The �rst graph depicts the output of the ap-
plied transforms as well as adaptive thresholds in each
window (see Figure 2 (sections e and g)). Observing
these �gures, one can assess the accuracy of the results
and the corresponding parameter values. For appro-
priate values of thresholds, acceptable results would
be expected from the method; however, for very low
values of thresholds, some waves other than the actual
R-waves will be improperly detected. Furthermore, for
high values of thresholds, some QRS complexes will not
be detected correctly. In these two cases, the parameter
values should be re-adjusted and the algorithm should
be re-applied to the original signal so that acceptable
results are obtained. It should also be noticed that the
window length can be adjusted as another parameter,
so that more accurate results are gained from the
algorithm. This window length will generally be equal
to 550 � 700 milliseconds (this value obtained from
practical application of the MHT algorithm) for cases
of PVC not observed in the original signal. However, if
PVCs exist in the original ECG, the parameter value
of 500 � 550 milliseconds will lead to better results.
Finally, in the second �gure, the corresponding R-wave
in the original signal is represented. The annotation
�les of the MIT-BIH Arrhythmia Database include
information about normal beats (N), PVCs (V ) and
changes in the signal quality (�). The results of the
MHT algorithm are compared to this information for
the purposes of validation and the outcomes, including
True Positive (TP), False Negative (FN) and False
Positive (FP) values, are calculated and presented in
Tables 1 to 5. The resulted values for sensitivity and
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Table 1a. Evaluation of the ECGMHT algorithm performance on some records of the MIT-BIH Arrhythmia database.

MIT-BIH
Record

Total #
of Beats

FP FN FP+FN FP+FN (%) Se (%) P+ (%)

100 2273 0 0 0 0 100 100

108 1765 8 13 21 1.19 99.3 99.5

207 1862 13 22 35 1.88 98.8 99.3

213 3251 0 11 11 0.34 99.7 100

217 2209 0 0 0 0 100 100

Table 1b. Performance evaluation of several QRS detection algorithms: Application to MITDB.

Detection
Algorithm

# of
Annotations

TP FP FN Error (%) Se (%) P+ (%)

This Study 109428 109215 160 213 0.34 99.80 99.85

Gha�ari et al. [31] 109428 109327 129 101 0.21 99.91 99.88

Martinez et al. [32] 109428 109208 153 220 0.34 99.80 99.86

Li et al. [33] 104182 104070 65 112 0.17 99.89 99.94

Hamilton et al. [34] 109267 108927 248 340 0.54 99.69 99.77

Pan et al. [35] 109809 109532 507 277 0.71 99.75 99.54

Moody et al. [36]� 109428 107567 94 1861 1.79 98.30 99.91

*: Also called ARISTOTLE software

Table 2. Performance evaluation of QRS detection algorithms: Application to QTDB.

Detection
Algorithm

# of
Annotations

TP FP FN Error (%) Se (%) P+ (%)

This Study 86892 86819 94 73 0.19 99.92 99.89

Gha�ari et al. [31] 86892 86845 79 47 0.15 99.94 99.91

Martinez et al. [32] 86892 86824 107 68 0.20 99.92 99.88

Moody et al. [36] 86892 84458 459 2434 3.33 97.2 99.46

Table 3. Performance evaluation of QRS detection algorithms: Application to EDB.

Detection
Algorithm

# of
Annotations

TP FP FN Error (%) Se (%) P+ (%)

This Study 787103 783992 4134 3111 0.92 99.60 99.47

Gha�ari et al. [31] 78103 784168 4016 2980 0.72 99.69 99.68

Martinez et al. [32] 787103 784059 4077 3044 0.90 99.61 99.48

Moody et al. [36] 787103 748468 10405 38635 6.23 95.09 98.63

Table 4. Performance evaluation of QRS detection algorithms: Application to TWADB.

Detection
Algorithm

# of
Annotations

TP FP FN Error (%) Se (%) P+ (%)

This Study 11789 11760 24 29 0.45 99.75 99.80

Gha�ari et al. [31] 11789 11776 18 13 0.26 99.89 99.84
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Table 5. Performance evaluation of MHT algorithm on high-resolution 24-hour Holter database including a vast spectra
of heart rates (CHECK#0,CHECK#1).

Holter
Record

# of
Beats

# of
PVC�

# of
PAC��

TP FP FN Error (%) Se (%) P+ (%)

PVCDAT 1-5 188531 53 0 52 0 1 1.89 98.11 100

PVCDAT 6-10 174515 148 0 147 1 1 1.35 99.32 99.32

PVCDAT 11-15 179428 312 0 310 2 2 1.28 99.36 99.36

PVCDAT 16-20 189749 1253 0 1247 9 6 1.20 99.52 99.28

PACDAT 1-4 163934 0 323 322 1 1 0.62 99.69 99.69

PACDAT 5-8 157635 0 611 610 1 1 0.33 99.83 99.83

PACDAT 9-12 107891 0 5513 5505 12 8 0.36 99.85 99.78

PAVDAT 1-4 114204 164 22 185 2 1 1.61 99.46 98.93

PAVDAT 5-8 171315 237 52 287 2 2 1.38 99.31 99.31

PAVDAT 9-12 197591 1153 219 1367 9 5 1.02 99.66 99.35

PAVDAT 13-15 108344 1636 788 2419 14 5 0.78 99.79 99.42

Total 1,753,137 4956 7528 12451 53 33 0.69 99.73 99.58
*: Premature Ventricular Contraction.
**: Premature Atrial Contraction.

positive prediction are acceptable results in the context
of QRS detection [25].

Characterization of End-Systolic and
End-Diastolic Pulses of the Arterial Blood
Pressure (ABP) Waveform Using the MHT
Algorithm (BPMHT)

In this section, in order to generalize the application of
the MHT algorithm, it is applied to ABP waveforms
of all 18 subjects of the MIT-BIH Polysomnographic
Database [30], and the corresponding end-systolic and
end-diastolic pulses of the ABP waveform are ex-
tracted.

The results of the algorithm applied to blood pres-

sure waveforms are shown in Table 6. The mean values
of 99.80% and 99.86% are obtained for sensitivity and
positive prediction, respectively.

Cardiogenic Shock Detection and Occurrence
Prediction Using the Trained SVM Classi�er

In this section, a signal with a chirp frequency is
embedded into a colored noise. Then, the variance
of the sequence of white noise is increased with a
speci�c increment and the estimated signal is ex-
tracted. The standard deviation of the di�erence
between the estimated signal and the original signal
is represented in Figure 8. As seen in Figure 8b, the

Figure 8. (a) Graphical representation of the performance of PPF algorithm: Solid lines are noisy observation as well as
signal estimation and dashed line represents the reference signal. (b) Standard deviation of estimation error versus
standard deviation of the i.i.d. noise sequence.



278 A. Gha�ari et al.

Table 6. Application of the MHT algorithm to the MIT-BIH Polysomnographic database and obtained results. A total of
650000 samples are chosen for each record.

MIT-BIH
Record

Total #
of Beats

FP FN FP+FN FP+FN (%) Se (%) P+ (%)

slp01a 2797 0 5 5 0.18 99.82 100

slp01b 2834 2 3 5 0.18 99.89 99.93

slp02a 4028 0 15 15 0.37 99.63 100

slp02b 3408 0 7 7 0.21 99.79 100

slp03 3158 0 0 0 0 100 100

slp04 3593 0 0 0 0 100 100

slp14 2857 0 0 0 0 100 100

slp16 3768 0 0 0 0 100 100

slp32 3041 0 1 1 0.03 99.97 100

slp37 3620 0 0 0 0 100 100

slp41 2831 50 30 80 1.06 99.4 99.54

slp45 3370 7 7 14 0.42 99.79 99.79

slp48 2981 11 2 13 0.44 99.93 99.63

slp59 3319 0 5 5 0.15 99.85 100

slp60 3271 7 0 7 0.21 100 99.79

slp61 3177 25 7 32 1.01 99.78 99.22

slp66 3093 50 60 110 0.82 99.67 99.51

slp67x 3095 0 36 36 1.16 98.84 100

Total # of subjects 18 Sensitivity % 99.80

Total # of complexes 58241 Positive predictivity % 99.86

standard deviation of estimation will increase linearly
with an increase in the noise standard deviation.
Therefore, it can be inferred that the performance
of the PPF algorithm changes in a uniform fashion
with an increase in noise standard deviation. In other
words, for a considerable increase in noise standard
deviation, a uniform performance is resulted from
the PPF algorithm. In Figure 9, the parameterized
exponential kernel functions are illustrated. According
to this �gure, each an exponential kernel function is
speci�ed by two parameters (�, �). After regulating
the RBF-SVM network with the structure shown in
Figure 6, the parameters of each kernel function of the
SVM structure are obtained, shown in Table 7 (using
MIMICII database according to Table 8 speci�cations).

In Figures 10 to 12, HR, SBP, DBP and MAP sig-
nals averaged for three typical subjects of the MIMIC
II Database are illustrated. Fast 
uctuations can be
observed in these �gures, which are signi�cantly due
to regulating mechanisms rather than measurement
noises. To obtain more accurate results, these 
uctua-

Figure 9. Parameterization of a generic exponential
kernel function.
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Table 7. Kernel function parameters of the RBF-SVM structure obtained after regulating.

Variable/
Parameter
(Range)

Kernel#1
Parameters

Kernel#2
Parameters

Kernel#3
Parameters

HR
[40-260] beats/min

(48.1514,21.2317) (104.0193,23.8715) (219.8417,45.2966)

SBP
[80-280] mmHg

(74.9817,19.1744) (101.3261,21.2519) (227.0328,45.6217)

DBP
[40-200] mmHg

(44.2567,14.6494) (97.1583,21.4567) (154.4349,19.6438)

Age
[20-90] years

(233.5789,24.6312) (251.2841,18.5647) (279.8637,18.2849)

Gender
male, female

(251.7119,23.3216) | |

Weight
[40-220] kg

(37.5121,61.2353) (94.5847,147.4595) (171.0561,198.5255)

Figure 10. (a) HR, SBP, DBP and MAP trends averaged
in one-minute intervals of s22466 of MIMIC II database
obtained as outputs of BPMHT and ECGMHT
algorithms. (b) Normalized shock probability obtained
from SVM classi�er and MAPDR signal.

tions should be decreased, while the signal mean value
should not be destroyed by the reduction algorithm.
Due to the di�culties in the recognition of the fre-
quency contents of these 
uctuations, common digital
�lters cannot be implemented for this purpose [37]. On
the other hand, the reference signal should be known,
so that adaptive �lters can be used [27]. Therefore, an
appropriate mean estimator is needed to weaken the

uctuations not similar to white noise. An averaged
MAP signal with the corresponding PPF resulted
smoothed signal for a typical subject is depicted in

Figure 11. (a) HR, SBP, DBP and MAP trends averaged
in one-minute intervals of s24799 of MIMIC II database
obtained as outputs of BPMHT and ECGMHT
algorithms. (b) Normalized shock probability obtained
from RBF-SVM classi�er and MAPDR signal.

Figure 13. The magni�ed part of Figure 13 illustrates
the operation of the PPF algorithm in the elimination
of MAP 
uctuations. Generally speaking, elimination
of the MAP and HR 
uctuations will lead to the higher
stability and accuracy of the detection algorithms.

Names of records extracted from the Physionet
database are presented in Table 8. From the param-
eters needed in the Hasdai et al. model, HR, SBP,
DBP, age and gender are available. However, other
parameters, such as treatment, MI location, Killip
class, weight, and other miscellaneous factors are not
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Table 8. Speci�cations of the under-study subjects obtained from MIMIC II Database. Due to the lack of su�cient
clinical data, the parameter treatment, MI location and Killip Class are chosen as the zero risk scores equivalence.

Parameter Assignment for CinC Challenge 2009 Database Performance of the
SVM-Based Classi�er

Record # # of Mean Treatment MI Killip Miscella-
neous

Detection Prediction Error

(Gender, Age) Sample Location Class Grade True Eval. True Eval.
S21775 (M-75) 22143 TPA Other I 10 AHE AHE AHE AHE NO
S20658 (M-72) 24704 TPA Other I 10 AHE AHE AHE AHE NO
S22466 (F-76) 8287 TPA Other I 13 AHE AHE AHE AHE NO
S05336 (M-40) 4294 TPA Other I 10 AHE AHE AHE AHE NO
S06349 (F-89) 17506 TPA Other I 13 AHE AHE AHE AHE NO

AHE in S08718 (M-88) 10025 TPA Other I 10 AHE AHE AHE AHE NO
Forecast S20794 (M-85) 5880 TPA Other I 10 AHE CRT AHE CRT YES
Window, S24799 (M-66) 4411 TPA Other I 10 AHE AHE AHE AHE NO
Treated S26318 (M-65) 7410 TPA Other I 10 AHE N AHE N YES

with S14204 (F-89) 14412 TPA Other I 13 AHE CRT AHE AHE NO
Pressors S25699 (M-35) 15717 TPA Other I 10 AHE AHE AHE AHE NO

S07125 (M-53) 6487 TPA Other I 10 AHE AHE AHE AHE NO
S19208 (F-78) 18804 TPA Other I 13 AHE CRT AHE CRT YES
S12821 (F-77) 16042 TPA Other I 13 AHE AHE AHE AHE NO
S06637 (M-78) 2898 TPA Other I 10 AHE AHE AHE AHE NO
S02395 (F-80) 5355 TPA Other I 13 AHE CRT AHE CRT YES
S08779 (M-58) 6750 TPA Other I 10 AHE AHE AHE AHE NO
S23641 (M-90) 8639 TPA Other I 10 AHE AHE AHE AHE NO
S24924 (F-79) 5453 TPA Other I 13 AHE AHE AHE AHE YES
S00439 (F-82) 11616 TPA Other I 13 AHE CRT AHE N NO

AHE in S23015 (M-68) 4267 TPA Other I 10 AHE AHE AHE AHE NO
Forecast S19603 (F-75) 2853 TPA Other I 13 AHE AHE AHE AHE NO
Window, S02172 (M-32) 4471 TPA Other I 10 AHE AHE AHE AHE NO

not Treated S26105 (M-47) 17078 TPA Other I 13 AHE AHE AHE AHE NO
with S23599 (F-66) 11756 TPA Other I 13 AHE AHE AHE AHE NO

Pressors S21817 (F-73) 8280 TPA Other I 13 AHE AHE AHE AHE NO
S24984 (M-56) 35896 TPA Other I 10 AHE AHE AHE AHE NO
S25602 (F-77) 4090 TPA Other I 13 AHE N AHE N YES
S23591 (M-85) 6586 TPA Other I 10 AHE AHE AHE AHE NO
S15687 (F-90) 8340 TPA Other I 13 AHE AHE AHE AHE NO
S17765 (M-51) 2370 TPA Other I 10 N N N N NO
S04860 (F-57) 5394 TPA Other I 13 N N N N NO
S26097 (F-42) 11755 TPA Other I 13 N N N N NO
S00318 (M-58) 2953 TPA Other I 10 N N N N NO
S14495 (M-59) 1746 TPA Other I 10 N N N N NO
S22888 (M-48) 1093 TPA Other I 10 N N N N NO

Records S26296 (M-47) 3699 TPA Other I 10 N N N N NO
not S06180 (F-45) 3252 TPA Other I 13 N N N N NO

Containing S07468 (F-71) 6837 TPA Other I 13 N N N N NO
AHEs S24004 (M-66) 2581 TPA Other I 10 N N N N NO

S03133 (M-46) 1706 TPA Other I 10 N N N N NO
S02280 (M-58) 2127 TPA Other I 10 N N N N NO
S09672 (F-46) 2503 TPA Other I 13 N N N CRT NO
S19418 (F-39) 3037 TPA Other I 13 N N N N NO
S15465 (M-67) 1590 TPA Other I 13 N N N N NO
S05786 (M-54) 8795 TPA Other I 13 CRT CRT CRT CRT NO
S25222 (F-60) 1749 TPA Other I 13 CRT CRT CRT CRT NO
S02561 (F-81) 18645 TPA Other I 13 CRT CRT CRT CRT NO
S24923 (F-82) 23625 TPA Other I 13 CRT CRT CRT CRT NO
S16019 (F-90) 2861 TPA Other I 13 CRT CRT CRT CRT NO
S04286 (M-61) 13979 TPA Other I 10 CRT CRT CRT CRT NO

AHE, S17069 (F-61) 7047 TPA Other I 13 CRT AHE CRT AHE NO
but S07860 (F-36) 7047 TPA Other I 13 CRT AHE CRT AHE NO

not in S23020 (F-84) 15878 TPA Other I 13 CRT CRT CRT CRT NO
Forecast S24431 (M-22) 11982 TPA Other I 10 CRT N CRT N YES
window S22657 (M-88) 33007 TPA Other I 10 CRT N CRT N YES

S09341 (F-62) 33132 TPA Other I 13 CRT CRT CRT CRT NO
S05126 (F-69) 13055 TPA Other I 13 CRT CRT CRT CRT NO
S10611 (M-78) 5652 TPA Other I 10 CRT CRT CRT CRT NO
S05289 (M-76) 11483 TPA Other I 10 CRT CRT CRT CRT NO

Total Number 581; 030 Se = 92% P+ = 93%
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Figure 12. (a) HR, SBP, DBP and MAP trends averaged
in one-minute intervals of s25699 of MIMIC II database
obtained as outputs of BPMHT and ECGMHT
algorithms. (b) Normalized shock probability obtained
from SVM classi�er and MAPDR signal.

Figure 13. Averaged MAP trend and the corresponding
PPF smoothed version for a typical subject. The
magni�ed part shows the capability of the algorithm in
the elimination of fast 
uctuations.

known and, therefore, are set equal to average values
according to Table 8.

The probability of cardiogenic shock occurrence
and scaled MAPDR graphs are represented in Fig-
ure 14. The red graphs in this �gure have a baseline,
which is a sign of no MAPDR; however, abrupt increase
to the maximum value is an indicator of MAPDR. As
can be seen in Figure 14, a high peak between 29
hrs and 30 hrs in the probability of shock occurrence

Figure 14. Magni�cations in the MAPDR occurrence
and cardiogenic shock probability trends in 3 generic AHE
records of MIMICII database. In these graphs, fast

uctuations occur with no high duration. However, fast

uctuations with high endurance as well as a peak in the
probability occurrence trend are observed after T0

(beginning of shock) time.
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graph is preceded by continuous 
uctuations in the
corresponding red graph. The results of this study
show that all high peaks with 3 to 4 minutes duration in
the probability of shock occurrence graph are preceded
by peaks in the MAPDR signal with a duration of 20
minutes or more (see Figures 10 to 12). Therefore, as
a result of this study, MAPDRs can be used as speci�c
markers for the prediction of cardiogenic shock. It
should be noted that there may exist some continuous

uctuations in MAPDR with no corresponding high
peaks in the probability of shock occurrence graph.
This can be due to the short duration of such 
uc-
tuations. In summary, these 
uctuations should have
duration of 20 minutes or more, so that high peaks with
duration of 3 or more minutes occur in the probability
of shock occurrence diagram.

CONCLUSION

In this study, in order to consider the mutual in
uence
of parameters on the evaluation of shock probability,
a RBF based support vector machine classi�er was
tuned using features extracted from the Hasdai et
al. risk scoring model as input, with appropriate
exponential kernel functions for each parameter. Using
this network, it would be possible to incorporate the
possible mutual in
uences between risk parameters,
such as Heart Rate (HR), Systolic Blood Pressure
(SBP), Diastolic Blood Pressure (DBP), age, gender,
weight and some miscellaneous factors, to the calcula-
tion of shock occurrence probability.

The MHT algorithm was introduced for the detec-
tion of QRS complexes and blood pressure pulses on the
basis of some mathematical operations on the Hilbert
transform of the ECGMHT and ABP signals. It was
then customized with two versions of ECGMHT and
BPMHT to be applied to ECG signals and ABP wave-
forms, respectively. After applying this algorithm to
the MIT-BIH Database, values of 99.80% and 99.85%
were obtained for sensitivity and positive prediction,
which are remarkably acceptable in the �eld of wave
detection. In the next step, the PPF algorithm was
developed for the elimination of fast 
uctuations with
unknown statistical speci�cations. The ECGMHT and
BPMHT algorithms were then applied to 15 subjects
of the MIMIC II Database and the resulted averaged
MAP, SBP, DBP and HR trends were next smoothed
using the FFT algorithm. Afterwards, a new measure
entitled MAPDR was proposed as an indicator of
descending behavior in the MAP trend when AHE
occurs, and was calculated using the resulted PPF
signals.

In the next step, a RBF-SVM classi�er was tuned
using features obtained from the cardiogenic shock risk
scoring model developed by Hasdai et al. (2000), which
classi�es MAP regimes into three categories: survival,

critical and Acute Hypotensive Episode (AHE). Then,
the regulated RBF-SVM classi�er was applied to 60
records of the CinC Challenge 2009 and the values
of Se = 92% and P+ = 93% were obtained for
sensitivity and positive predictivity, respectively. As
some results of this study, the proposed classi�cation
method recognized truly 15 subjects out of 15 normal
(without shock episodes) subjects of the MIMICII
database as belonging to the \survival class", while
the algorithm could classify 24 subjects as \AHE",
3 subjects as \critical class" and 3 subjects as in a
\survival" situation out of 30 shock containing records
of the MIMICII database.

LIST OF ACRONYMS

ICU Intensive Care Unit
AHE Acute Hypotensive Episode
MHT Modi�ed Hilbert Transform
ABP Arterial Blood Pressure
SBP Systolic Blood Pressure
DBP Diastolic Blood Pressure
MAP Mean Arterial Pressure
PPF Piecewise Polynomial Fitting
BLUE the Best Linear Unbiased Estimation
MAPDR Mean Arterial Pressure Dropping Regime
HR Heart Rate
MIMIC name of physionet database
PCA Principal Component Analysis
RBF Radial Basis Function
SVM Support Vector Machine
BP Blood Pressure
BPMHT name of the blood pressure pulse detector
ECGMHT name of the QRS detector
NSP Normalized Shock Probability
MI Myocardial Infarction
PVC Premature Ventricular Contraction
PAC Premature Atrial Contraction
FP False Positive
FN False Negative
TP True Positive
Se sensitivity
P+ positive predictivity
DI Dropping Index

REFERENCES

1. Guyton, A.C., Text Book of Physiology, I, Philadel-
phia, W.B. Saunders, Ed. (1996).

2. Harrison's Principles of Internal Medicine, 17th Ed.,
the McGraw-Hill Companies (2007).

3. Irwin, R.S. and Rippe, J.M., Irwin and Rippe's Inten-
sive Care Medicine, Lippincott Williams & Wilkins,
5th Ed. (2003).

4. Marino, P., The ICU Book, Lippincott Williams &
Wilkins, 2nd Ed. (1978).



Classi�cation of Mean Arterial Pressure Regimes 283

5. Cowley, A.W., Liard, J.F. and Guyton, A.C. \Role of
the baroreceptor re
ex in daily control of arterial blood
pressure and other variables in dogs", Circ. Res., 32,
pp. 564-576 (1973).

6. Hasdai, D., Cali�, R.M., Thompson, T.D., Hochman,
J.S., Ohman, E.M., P�sterer, M., Bates, E.R., Va-
hanian, A., Armstrong, P.W., Criger, D.A., Topol,
E.J. and Holmes, D.R. \Predictors of cardiogenic
shock after thrombolytic therapy for acute myocardial
infarction", J. Am. Coll. Cardiol., 35, pp. 136-143
(2000).

7. Picard, M.H., Davido�, R., Sleeper, L.A., Mendes,
L.A., Thompson, C.R., Dzavik, V., Steingart, R.,
Gin, K., White, H.D. and Hochman, J.S. \Echocar-
diographic predictors of survival and response to early
revascularization in cardiogenic shock and for the
SHOCK trial", Circulation, 107, pp. 279-284 (2003).

8. Morris, R.W., Watterson, L.M., Westhorpe, R.N. and
Webb, R.K. \Crisis management during anesthesia:
Hypotension", Qual. Saf. Health Care, 14, e11 (2005).

9. Solem, K., Nilsson, A. and Sornmo, L. \Detection
of hypotension during hemodialysis using the ECG",
Computers in Cardiology, 31, pp. 717-720 (2004).

10. Halkin, A., Singh, M., Nikolsky, E., Grines, C.L.,
Tcheng, J.E., Garcia, E., Cox, D.A., Turco, M.,
Stuckey, T.D., Na, Y., Lansky, A.J., Gersh, B.J.,
O'Neill, W.W., Mehran, R. and Stone, G.W. \Pre-
diction of mortality after primary percutaneous coro-
nary intervention for acute myocardial infarction, the
CADILLAC risk score", J. Am. Coll. Cardiol., 45, pp.
1397-1405 (2005).

11. Zhang, M., Li, J., Cai, Y.M., Ma, H., Xiao, J.M., Liu,
J., Zhao, L., Guo, T. and Han, M.H. \A risk-predictive
score for cardiogenic shock after acute myocardial
infarction in Chinese patients", Clin. Cardiol., 30, pp.
171-176 (2007).

12. Moody, G.B. and Lehman, L.H. \Predicting acute
hypotensive episodes: The 10th annual phys-
ioNet/computers in cardiology challenge", The Pro-
ceedings of Computers in Cardiology Challenge 2009,
Lake-city, Utah (2009).

13. Chen, X., Xu, D., Zhang, G. and Mukkamala, R.
\Forecasting acute hypotensive episodes in intensive
care patients based on a peripheral arterial blood
pressure waveform", The Proceedings of Computers in
Cardiology Challenge 2009, Lake-city, Utah (2009).

14. Henriques, J.H. and Rocha, T.R. \Prediction of acute
hypotensive episodes using neural network multi-
models", The Proceedings of Computers in Cardiology
Challenge 2009, Lake-city, Utah (2009).

15. Langley, P., King, S.T., Zheng, D., Bowers, E.J.,
Wang, K., Allen, J. and Murray, A. \Predicting acute
hypotensive episodes from mean arterial pressure",
The Proceedings of Computers in Cardiology Challenge
2009, Lake-city, Utah (2009).

16. Mneimneh, M.A. and Povinelli, R.J. \A rule-based
approach for the prediction of acute hypotensive

episodes", The Proceedings of Computers in Cardiology
Challenge 2009, Lake-city, Utah (2009).

17. Chiarugi, F., Karatzanis, I., Sakkalis, V., Tsamardi-
nos, I., Dermitzaki, T.H., Foukarakis, M. and Vrou-
chos, G. \Predicting the occurrence of acute hypoten-
sive episodes: The physioNet challenge", The Proceed-
ings of Computers in Cardiology Challenge 2009, Lake-
city, Utah (2009).

18. Fournier, P.A. and Roy, J.F. \Acute hypotension
episode prediction using information divergence for
feature selection, and non-parametric methods for
classi�cation", The Proceedings of Computers in Car-
diology Challenge 2009, Lake-city, Utah (2009).

19. Hayn, D., Jammerbund, B., Kollmann, A. and
Schreier, G. \A biosignal analysis system applied for
developing an algorithm predicting critical situations
of high risk cardiac patients by hemodynamic moni-
toring", The Proceedings of Computers in Cardiology
Challenge 2009, Lake-city, Utah (2009).

20. Jin, K. and Stockbridge, N., Smoothing and Discrim-
inating MAP Data. The Proceedings of Computers in
Cardiology Challenge 2009, Lake-city, Utah (2009).

21. Jousset, F., Lemay, M. and Vesin, J.M. \Computers in
cardiology/physioNet challenge 2009: Predicting acute
hypotensive episodes", The Proceedings of Computers
in Cardiology Challenge 2009, Lake-city, Utah (2009).

22. Ho, T.C.T. and Chen, X. \Utilizing histogram to
identify patients using pressors for acute hypotension",
The Proceedings of Computers in Cardiology Challenge
2009, Lake-city, Utah (2009).

23. Gha�ari, A. and Homaeinezhad, M.R. \Fading param-
eters of sodium, potassium and leakage ionic chan-
nels the Best Linear Unbiased sequentially Estimation
(BLUE) via voltage clamp technique noisy measure-
ment", 16th Annual (International) Conference on
Mechanical Engineering-ISME, Shahid Bahonar Uni-
versity of Kerman, Iran (14-16 May 2008).

24. Benitez, D., Gaydecki, P.A., Zaidi, A. and Fitzpatrick,
A.P. \The use of the Hilbert transform in ECG signal
analysis", Computers in Biology and Medicine, 31, pp.
399-406 (2001).

25. Arzeno, N.M., Deng, Z. and Poon, C.S. \Analysis
of �rst-derivative based QRS detection algorithms",
IEEE Transactions on Biomedical Engineering, 55(2),
pp. 478-484 (2008).

26. S�oderstr�om, T. and Stoica, P., System Identi�cation,
Hemel Hempstead, UK, Prentice-Hall International
(1989).

27. Kay, S.M., Fundamentals of Statistical Signal Process-
ing: Estimation Theory, Prentice-Hall Inc. (1979).

28. Bishop, C.M., Pattern Recognition and Machine
Learning, Springer Publishing (2006).

29. Hasdai, D., Berger, P.B., Battler, A. and Holmes,
D.R., Cardiogenic Shock, Diagnosis and Treatment,
Hummana Press (2008).



284 A. Gha�ari et al.

30. Physionet Signal Archieves, http://www. phys-
ionet.org/physiobank/database/mitdb/ and http: //
www. physionet. org/physiobank/database/slpdb/.

31. Gha�ari, A., Homaeinezhad, M.R., Akraminia, M.,
Atarod, M. and Davaeeha, M. \A robust wavelet-based
multi-lead electrocardiogram delineation algorithm",
Medical Engineering & Physics, in press (2009).

32. Martinez, J.P., Almeida, R., Olmos, S., Rocha, A.P.
and Laguna, P. \A wavelet-based ECG delineator:
Evaluation on standard databases", IEEE Transac-
tions on Biomedical Engineering, 51(4), pp. 570-581
(2004).

33. Li, C., Zheng, C. and Tai, C. \Detection of ECG
characteristic points using wavelet transforms", IEEE
Transactions on Biomedical Engineering, 42, pp. 21-28
(1995).

34. Hamilton, P.S. and Tompkins, W. \Quantitative in-
vestigation of QRS detection rules using the MIT/BIH
arrhythmia database", IEEE Transactions on Biomed-
ical Engineering, 33, pp. 1157-1165 (1986).

35. Pan, J. and Tompkins, W.J. \A real-time QRS de-
tection algorithm", IEEE Transactions on Biomedical
Engineering, 32, pp. 230-236 (1985).

36. Moody, G.B. and Mark, R.G. \Development and eval-
uation of a 2-lead ECG analysis program", Proceeding
of Computers in Cardiology, pp. 39-44 (1982).

37. Rangayyan, R.M., Biomedical Signal Analysis, IEEE
Press, John Wiley and Sons (2002).

BIOGRAPHIES

Ali Gha�ari was born in Neyshabour in 1945. He
received BS, MS and PhD degrees all in Mechanical En-
gineering from Sharif University of Technology, Georgia
Institute of Technology and University of California
at Berkeley in 1969, 1973 and 1976, respectively.
Since, 1979, he has been with the Department of
Mechanical Engineering of K. N. Toosi University of
Technology. Professor Gha�ari's research is mainly
focused on Dynamic Systems and Control, including:
Analysis of Stochastic Phenomena, Dynamics and Con-
trol of Nonlinear Systems, Application of Fuzzy Set

Theory and Arti�cial Neural Networks to Mechanical
Systems, and Biomedical Signal Processing, speci�cally
ECG.

Mohammad Reza Homaeinezhad was born in Shi-
raz, Iran, in 1980. He received his BS and MS degrees
(with best honors) both in Mechanical Engineering
and Dynamic Systems and Control from K. N. Toosi
University of Technology, Tehran, Iran, where he is
currently a PhD candidate of Mechanical Engineering.
His research interests include: Nonlinear Dynamics
and Control, Statistical Signal Analysis and Parameter
Estimation, Automatic Decision Making (detection &
modulation) Theory and Biomedical Waveforms (BP,
ECG & PCG) Processing.

Mahdi Akraminia was born in Tehran, Iran, in 1985.
He received his BS degree in Mechanical Engineering,
Dynamic Systems and Control from K. N. Toosi Uni-
versity of Technology, Tehran, Iran, in 2007 where he
is now pursuing his MS degree.

Mohammad Atarod Pilambaraei was born in
Talesh, Guilan, Iran, in 1984. He graduated from
K. N. Toosi University of Technology in 2009 with
an MS degree in Mechanical Engineering. He is
currently doing his PhD in Biomedical Engineering
at the University of Calgary, Alberta, Canada. His
research is mainly focused on: Biomechanics, including
Biomechanics of the Cardiovascular System and Knee
Joints.

Reza Rahmani was born in Tehran in 1963. He
received his Medical Doctoral degree, board certi�ca-
tion and higher board professional certi�cation all in
cardiology from Tehran University of Medical Sciences
(TUMS) in 1994, 2002 and 2005, respectively. Since
2007, he has been with the School of Medicine of the
TUMS as a Cardiology Assistant Professor. Also, he
is currently a member of the Catheter and Angiogra-
phy Laboratory of Imam Khomeini Hospital, Tehran,
Iran.


