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Resource-Constrained Project Scheduling
Problem with Flexible Work Pro�les:

A Genetic Algorithm Approach

M. Ranjbar1;� and F. Kianfar2

Abstract. This paper deals with the resource-constrained project scheduling problem with 
exible
work pro�les. In this problem, a project contains activities interrelated by �nish-start-type precedence
constraints with a time lag of zero. In many real-life projects, however, it often occurs that only one
renewable bottleneck resource is available and that activities do not have a �xed prespeci�ed duration and
associated resource requirement, but a total work content, which essentially indicates how much work has
to be performed on them. Based on this work content, all feasible work pro�les have to be speci�ed for
the activities, each characterized by a �xed duration and a resource requirement pro�le. The task of the
problem is to �nd the optimum work pro�le and start time of each activity in order to minimize the project
makespan. We propose a procedure to �nd all feasible work pro�les of each activity and we use a genetic
algorithm with a new crossover operator to schedule the activities. Computational results on a randomly
generated problem set are presented.
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INTRODUCTION

This research considers the Resource Constrained
Project Scheduling Problem with Flexible Work Pro-
�les (RCPSP FWP). This problem was proposed by
Kolisch [1] in the �eld of pharmaceutical R&D projects
and deals with the lead optimization phase of pharma-
ceutical research where a number of leads (molecules as
a basis for potential drugs) are processed by di�erent
departments in order to optimize their biochemical
characteristics. The RCPSP FWP can be stated as
follows. A single project consists of a set of activities
that are interrelated by �nish-start-type precedence
relations with a time lag of zero. There is a single
constrained renewable resource (laboratory) in which
all activities have to be processed. For each activity,
instead of a �xed duration and resource requirement,
the total work content is given, which essentially
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indicates how much work has to be performed. In
other words, activity duration and resource usage at
each time period of their execution are unknown. The
way each activity is processed, i.e. its work pro�le,
is not predetermined but limited by the following �ve
constraints:

a) No preemption is allowed.
b) The resource usage of each activity in a process-

ing period has to be within a resource-dependent
interval.

c) The summation over used resource units for all
periods of execution of each activity should be
equal to the work content of the activity.

d) During processing, the resource usage of each
activity has to be constant for a resource-dependent
period.

Each work pro�le for an activity is considered as
an activity mode and all feasible work pro�les for an
activity constitute its set of modes.

The constraints (a)-(d) assure that the processing
of activities is done in an e�cient way by reducing
the number of setups due to constraints (a) and (d)
and by forbidding the case of too few or to many
resources assigned to an activity within one period



26 M. Ranjbar and F. Kianfar

by constraint (b). Since the number of feasible work
pro�les of each activity in the general form and on the
basis of conditions (a)-(d) may be very large, we limit
ourselves to only smooth (SM), Non-Increasing (NI),
Non-Decreasing (ND) or triangular (TR) types of �gure
for work pro�les. Figures 1 to 4 illustrate some possible
work pro�les of an activity with work content of 15.

The RCPSP FWP is a di�erent version of the
well-known Resource Constrained Project Scheduling
Problem (RCPSP) in which a single renewable resource
is available and activity duration and resource usage to
a single renewable resource are known constants. Also,
the RCPSP FWP is a generalization of the discrete
time/resource trade-o�s (DTRTP), introduced by De
Reyck et al. [2]. In the DTRTP, only smooth work

Figure 1. Smooth work pro�le.

Figure 2. Non-decreasing work pro�le.

Figure 3. Non-increasing work pro�le.

Figure 4. Triangular work pro�le.

pro�les are considered for each activity, and constraints
(b), (c) and (d) are ignored.

To the best of our knowledge, literature on the
RCPSP FWP, as de�ned in this paper, is virtually
void. Research e�orts have been concentrated on two
related problems, RCPSP and DTRTP. Salewski et
al. [3], Brucker et al. [4], Kolisch and Padman [5]
and Kis [6] include some noteworthy literature survey
research for the RCPSP. Also, numerous exact and
heuristic procedures are presented in the literature
for the RCPSP. Chapter 6 of the project scheduling
research handbook of Demeulemeester and Herroe-
len [7] gives an extensive literature overview of the
RCPSP and, hence it is not repeated here. In addi-
tion, Kolisch and Hartmann [8] present a classi�cation
and performance evaluation of di�erent heuristic and
metaheuristic algorithms for the RCPSP. De Reyck
et al. [2] present several heuristic procedures for the
DTRTP based on the Tabu Search (TS) and some
local searches. These heuristic procedures are based
on the decomposition of the problem into a mode
assignment phase and a resource-constrained project
scheduling phase with �xed mode assignments. De-
meulemeester et al. [9] have developed a Branch-
and-Bound algorithm (B&B) for the DTRTP based
on the concept of activity-mode combinations, i.e.
subsets of activities executed in a speci�c mode. Also,
Ranjbar et al. [10] present an e�cient hybrid meta-
heuristic, based on the scatter search for the DTRTP
and RCPSP.

The NP -hardness of the RCPSP was shown by
Blazewicz et al. [11] as a generalization of the job shop
scheduling problem. Furthermore, Demeulemeester et
al. [9] show that the DTRTP, as a generalization of
the parallel machine problem, is strongly NP -hard.
Therefore, the RCPSP-FWP as a generalization of the
DTRTP is strongly NP -hard.

Since the RCPSP FWP is a very complex prob-
lem, we use a Genetic Algorithm (GA) as our solu-
tion approach. Two famous GAs applied to project
scheduling problems are Mori and Tseng [12] and
Hartmann [13].

The contribution of this paper is twofold. First,
we present a linear model for the RCPSP FWP and
also an enumeration scheme to generate feasible work
pro�les. Second, we propose a metaheuristic solution
procedure based on GA to solve RCPSP FWP.

The outline of the paper is as follows. First, the
problem formulation and notation are described and
generation of feasible work pro�les of a single activity
is discussed. After that, schedule representation and
the generation scheme are explained and the general
structure of the genetic algorithms and its operators are
described. In the section following these computational
results are reported. Finally, overall conclusions and
suggestions for future research are drawn.
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PROBLEM FORMULATION AND
NOTATION

The objective of the RCPSP FWP is to schedule each
activity of a project in one of its de�ned modes subject
to precedence and resource constraints, in order to
minimize the project makespan. The parameters used
are de�ned in Table 1.

The dummy activities, 0 and n+ 1, represent the
start and completion of the project, respectively, with
wo = wn+1 = 0. The RCPSP FWP can be formulated
by introducing the following decision variables:

sit =

(
1; if activity i is started at time instant t
0; otherwise

fit =

(
1; if activity i is �nished at time instant t
0; otherwise

hit =

(
1; if ri(t�1) 6= ri(t)
0; otherwise

In the following, we represent an MIP formulation for
the RCPSP FWP.

minZ =
lfn+1X
t=efn+1

tf(n+1)t; (1)

subject to:

lsiX
t=esi

sit = 1; i 2 N; (2)

lfiX
t=efi

fit = 1; i 2 N; (3)

Table 1. Notation.

N = f0; � � � ; n; n+ 1g Set of activities with index i

E = f(i; j); i; j 2 Ng Set of precedence relations

Pi Set of all predecessors of activity i; i 2 N
Si Set of all successors of activity i; i 2 N
a Constant availability of the single renewable resource

wi Work content of activity i; i 2 N
ri; �ri Lower and upper bounds of resource usage of activity i in each

time period; i 2 N
t Minimum number of consecutive periods where all activities

should have a constant resource usage

di Duration of activity i; i 2 N
di =

l
wi
�ri

m
Lower bound for duration of activity i; i 2 N

�di =
j
wi
ri

k
Upper bound for duration of activity i; i 2 N

dmin
i Minimum possible duration for a feasible work pro�le of

activity i; i 2 N
d0min
i Minimum possible duration for an infeasible work pro�le of

activity i with minimum violation; i 2 N
T =

nP
i=1

di An upper bound on the project makespan

esi = max

( P
j2Pi

wj

a

!
;
�
maxj2Pi

�
esj + dmin

j
	�)

Earliest start time of activity i; i 2 N
efi = esi + di Earliest �nish time of activity i; i 2 N
lfi = min

( 
T �

P
j2Si

wj

a

!
; (T �minj2Siflsjg)

)
Latest �nish time of activity i; i 2 N

lsi = lfi � di Latest start time of activity i; i 2 N
(t) = (t� 1; t] Time period (t); t = 1; 2; � � � ; T
ri(t) Resource usage of activity i at time period t; i 2 N ,

t = esi + 1; � � � ; lfi
wpi = (ri(t)); t = esi + 1; � � � ; lfi Work pro�le of activity i; i 2 N
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lfiX
t=esi+1

ri(t) = wi; i 2 N; (4)

lfiX
t=efi

tfit �
lsjX
t=esj

tsjt; 8(i; j) 2 E; (5)

nX
i=1

ri(t) � a; t = 1; � � � ; T; (6)

ri(0) = 0; i 2 N; (7)

t+t�1X
�=t

hi� � 1; i 2 N; t = esi + 1; � � � ; lfi; (8)

ri(t+1) � �ri(ri(t) + sit); i 2 N; t = 1; � � � ; T; (9)

ri(t) � �ri(ri(t+1) + fit); i 2 N; t = 1; � � � ; T; (10)

ri(t+1) � ri(t) � �ri:hi;t+1; i 2 N; t = 1; � � � ; T; (11)

ri(t) � ri(t+1) � �ri:hi;t+1; i 2 N; t = 1; � � � ; T; (12)

sit; fit; hit 2 f0; 1g; i 2 N; t = 1; � � � ; T; (13)

ri(t) 2 f0g [ fri; ri + 1; � � � ; �rig;
i 2 N; t = 1; � � � ; T: (14)

Objective Function 1 minimizes the project makespan.
Constraints 2 and 3 ensure that exactly one start and
�nish time are assigned to each activity, respectively.
Constraint 4 assures that used resource units by each
activity are equal to the activity work content. Con-
straints 5 and 6 indicate the precedence and resource
constraints, respectively. Constraint 7 indicates that
the resource is available after time instant zero. Con-
straint 8 corresponds to the constraints (d) of the work
pro�le constraints. Also, Constraints 9-12 ensure that
every change in the level of resource usage for each
activity is less than its resource usage upper bound.
Finally, Constraints 13 and 14 show the value domains
of the decision variables.

ASSIGNMENT OF FLEXIBLE WORK
PROFILES

In this section, we consider the problem of generating
feasible work pro�les of a single activity within the
RCPSP FWP. We �rst propose a model that generates
the work pro�le with minimum durations. Next, we
present an enumeration procedure for generating the
NI, ND and SM work pro�les. We further discuss the
generation of TR work pro�les based on NI and ND
work pro�les.

Generation of Work Pro�les with Minimum
Duration

Based on the de�ned notations in Table 1 and the
de�nition of the two following decision variables, we
present a model for �nding a feasible work pro�le with
minimum duration for each single activity, i 2 N .

xri = number of periods with a resource usage of
r units during execution of activity
i 2 N(r = ri; ri + 1; � � � ; �ri);

yri =

8>>><>>>:
1; if there is at least one period with

resource usage of r units during
execution of activity i

0; otherwise

dmin
i = min

�riX
r=ri

xri; (15)

subject to:

�riX
r=ri

rxri = wi; (16)

tyri � xri � �diyri; (17)

xri 2 f0; 1; � � � g; r 2 [ri; �ri]; (18)

yri 2 f0; 1g; r 2 [ri; �ri]: (19)

Objective Function 15 minimizes the number of periods
where the activity has a positive resource usage and,
thus the duration of the activity. Constraint 16
takes care that the total used resource units equals
the activity work content. Constraint 17 couple xri-
variable with the yri-variable; if yri = 0, then xri is set
to zero, otherwise, if yri = 1, t � xri � �di. Finally,
Constraints 18 and 19 show the value domains of the
decision variables. We call Constraints 16 to 19 the
Feasible Work Pro�le Space (FWPSi) for activity i. If
FWPSi = ;, there is not any feasible work pro�le for
activity i. In this case, we consider the work pro�les
with minimum violation.

Generation of Work Pro�les with Minimum
Violation

In the case there is no feasible work pro�le for an
activity, we consider only one work pro�le for the
activity which has a minimum violation from work
pro�le constraints. To this purpose, we alter the
previous model in order to �nd an infeasible work
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pro�le that minimizes the number of periods that are
short of the minimum number of periods with constant
duration t. We de�ne decision variable vri � 0 as the
number of periods with resource usage r short of the
minimum number of periods regarding to activity i.
Note that vri is formally de�ned as vri = max(0; t�xri)
and the new model is as follows:

d0min
i = min

�riX
r=ri

vri; (20)

subject to:

�riX
r=ri

rxri = wi; (21)

tyri � vri � xri � �diyri; r 2 [ri; �ri]; (22)

xri 2 f0; 1; � � � g; r 2 [ri; �ri]; (23)

yri 2 f0; 1g; r 2 [ri; �ri]; (24)

vri � 0; r 2 [ri; �ri]: (25)

Objective Function 20 minimizes the number of periods
that are short of the minimum number of periods with
a constant resource usage. Altered Constraint 22 sets
the variable, vri. Other constraints are taken from the
previous model.

An Enumeration Procedure for the ND Work
Pro�les

In order to enumerate all ND work pro�les of an
activity, i, we use an enumeration tree in which level
l(l = 1; � � � ; �ri�ri+1) corresponds to all possible values
of xri, de�ned as the number of periods with a resource
usage of r = l� 1 + ri units. In each node of level l, ŵi
indicates the remaining work content of activity i, i.e.
the work content of activity i minus the total assigned
resource units in nodes located on the path from the
start node (l = 0) to the current node. At each level,
l > 0, there are �t � t + 1 possible descendants for a
parent node, located at level l � 1 where �t = bŵi=rc.
These descendants are generated by assigning di�erent
values to xri from set f0; t; t+1; � � � ; �tg. The remaining
work content is updated as ŵi := ŵi � rxri after
assignment. We de�ne a block in a work pro�le as
a number of consecutive periods with equal levels of
resource usage and xi = (xri ; xri+1; � � � ; x�ri) as the
block representation of the work pro�le of activity i
in which xr represents the length of the block with a
resource usage of r units where r 2 [ri; �ri]. In each
node of the enumeration tree wherein we face one of
the following conditions, we fathom the node.

1. Finding a feasible work pro�le, i.e. ŵi = 0. In
this case, the feasible work pro�le is obtained by
following the path between the start node and the
current node.

2. Finding a positive remaining work content that is
not enough for the extension of more blocks, i.e. in
a level, l = r + 1� ri, 0 < ŵi < t(r + 1).

3. Reaching an infeasible work pro�le. If in each node
of level l = r + 1 � ri we replace ŵi with wi and
ri with r in the model for FWPSi, and we �nd
FWPSi = ;, then all descendants of this node will
be infeasible.

4. Reaching the last level of the enumeration tree, i.e.
l = �ri � ri + 1.

To generate all NI work pro�les, we correspond
each NI work pro�le xi = (xri ; xri+1; � � � ; x�ri) to the
ND work pro�le x = (x�ri ; x�ri�1; xri).

Generation and Enumeration of the TR Work
Pro�les

All feasible TR work pro�les of each activity can be
generated from its ND or NI work pro�les. It should
be noted that ND and NI work pro�les are two special
types of TR work pro�le. Also, SM work pro�les
are an especial type of ND and NI work pro�les.
Thus, we can conclude SM�NI�TR and SM�ND�TR.
Each ND work pro�le has a unique corresponding
NI work pro�le and possibly some other TR work
pro�les constituting a set called a neighborhood. To
generate all feasible TR neighbors of a feasible ND work
pro�le, we do as follows. Assume the feasible ND work
pro�le includes �b di�erent resource usage levels, as x =
(xr1 ; xr2 ; � � � ; xr�b), where r � r1 < r2 < � � � < r�b � �r
and block r�b is the vertex of each generated TR work
pro�le. We may use block rb for 1 � b < �b in both left
and right legs of each generated TR work pro�le with
durations xlrb and xrrb , respectively. If the duration of
a single block, rb, is xrb � 2t, we can distribute xrb
between xlrb and xrrb . The number of di�erent ways of
this work is equal to the number of common solutions
of the following equations:

xlrb + xrrb = xrb ; (26)

xlrb ; x
r
rb 2 f0; t; � � � ; xrbg: (27)

If xrb � 2t, the number of solutions of Equations 26
and 27 is equal to xrb � 2t+ 3, including:

f(xlrb = 0; xrrb = xrb); (x
l
rb = t; xrrb = xrb � t);

(xlrb = t+ 1; xrrb = xrb � t� 1); � � � ;
(xlrb = xrb � t; xrrb = t); (xlrb = xrb ; x

r
rb = 0)g;



30 M. Ranjbar and F. Kianfar

and, if xrb < 2t; we will have only two possible values
for xlrb and xrrb , i.e.:

f(xlrb = xrb ; x
l
rb = 0); (xlrb = 0; xlrb = xrb)g:

If we de�ne function f for integer numbers as:

f(a) =

(
a; a � 0
�1; a < 0

we generally have f(xrb � 2t) + 3 di�erent solutions
for Equations 26 and 27. Thus, the number of total
di�erent feasible TR work pro�les that can be obtained
from a feasible ND work pro�le, x = (xr1 ; xr2 ; � � � ; xrb),
is equal to

Q�b�1
b=1(f(xrb � 2t) + 3).

It can be seen that the FWPS for each activity is
constituted of di�erent neighborhoods. At the core of
each neighborhood, there are two feasible work pro�les,
NI and ND, and other neighbors are possibly other
feasible TR work pro�les. Each feasible TR work
pro�le can be obtained from only one core and, hence,
is located in only one neighborhood. Therefore, FWPS
is partitioned by this neighborhood de�nition. Figure 5
shows one ND, one NI and two TR work pro�les that
constitute a neighborhood.

Upper and Lower Bounds of the Project
Makespan

Regarding Equations 15 to 19, we obtain the up-
per bound UB for the project makespan as UB=Pn
i=1 d

min
i . The project makespan lower bound LB is

the maximization of a critical path-based lower bound
LB0 and a resource-based lower bound LBr. The
lower bound LB0 is obtained by calculating the critical
path in the activity network, where each activity, i, is
assigned its shortest feasible work pro�le with duration
dmin
i , taking into account the resource availability, a.

The resource-based lower bound LBr is computed as:

LBr = b
nX
i=1

wi=ac;

Figure 5. An example of four neighbor work pro�les.

where bxcdenotes the largest integer equal to, or less
than, x.

SCHEDULE REPRESENTATION AND
GENERATION SCHEME

Our constructive heuristic algorithm uses a schedule
representation to encode a project schedule and a
Schedule Generation Scheme (SGS) to translate the
schedule representation to a real schedule. The SGS
determines how a feasible schedule is constructed by
assigning starting times to the activities whereby the
relative priority and activity work pro�les are deter-
mined by the schedule representation in our algorithm.
There are various approaches for both the representa-
tion and generation of a schedule.

We represent a schedule, S, of the RCPSP FWP
by a double list (�;wp). The �rst list is a vector, � =
(�1; � � � ; �n), such that positive real number �i 2 R+

represents the priority value of activity i. This list was
introduced by Kolisch and Hartmann [14] as Random
Key (RK) representation for the RCPSP. The second
list is a work pro�le list wp = (wp1; � � � ; wpn) where
wpi represents the work pro�le chosen for activity i.
We utilize a modi�ed version of the RK representation
developed by Debels et al. [4] in which the Topological
Order (TO) concept is used in the construction of
the RK, which we denote as TORK. Each TORK is
constructed by scheduling the activities using a SGS,
obtaining schedule S and considering priority values as
�i = si(S);8i 2 N where si(S) indicates the start time
of activity i in schedule S. For a detailed discussion of
the advantages of the topological order representation,
we refer to [15].

Besides di�erent schedule representations, there
also exist three di�erent types of SGSs in the literature:
the Serial SGS (SSGS), the parallel SGS and the
bidirectional SGS [16]. As it is sometimes impossible
to reach an optimal solution with parallel and bidirec-
tional SGSs, we opt for serial SGS. At each iteration
of the SSGS, the activity with the highest priority is
chosen and assigned the �rst possible starting time such
that no precedence or resource constraint is violated.
Although any generated schedule of the RCPSP by the
SSGS belongs to the set of active schedules [17], it does
not necessarily hold for the RCPSP FWP.

Figure 6 illustrates an example project with �ve
non-dummy activities and one renewable resource with
a = 6 and t = 2. The schedule of Figure 7 is obtained,
based on the random priority list, � = (1; 2; 3; 4; 5), and
SSGS. The corresponding TORK is � = (0; 0; 8; 8; 15).

GENETIC ALGORITHM

We propose a genetic algorithm to schedule activities
in a RCPSP FWP. The general structure of our GA
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Figure 6. Example project.

Figure 7. A schedule and its TORK.

Figure 8. General structure of GA.

is shown in Figure 8. The procedure starts with
the random generation of an initial population, P ,
with size of psize of schedules. In order to generate
each element, e = (�;wp), of initial population,
P , we generate a random priority list, �, randomly
select a work pro�le for each activity from its set
of feasible work pro�les and decode element, e, to
a real schedule using SSGS. Then, the procedure is
followed by an iterative process that continues until the
termination criterion is satis�ed. The iterative process
consecutively applies crossover, mutation and local
search operators in order to generate new solutions
with higher quality. In the second step, the NewP ,
representing a new population, is initialized as an

empty set and will include the generated schedules in
each iteration. In order to construct the new elements,
each element, e = 1; � � � ; psize of P , considered as the
father schedule (Sf ), is mated randomly with element
c (c 6= e and 1 � c � psize) of P , considered as the
mother schedule (Sm), to constitute a couple. Each
couple generates two children schedules considered as
the son schedule (Ss) and the daughter schedule (Sd).
The children generation process is performed using two
operators, i.e. crossover and mutation where mutation
is applied with probability pmut. The child with the
better makespan obtained using SSGS is chosen as the
selected child schedule (Sc). To improve Sc, a local
search procedure is applied to it with probability pls.
Then, P is updated by transferring all elements of
NewP to it.

Crossover

After the selection of parents, a crossover operation
combines the Sf and Sm to generate Ss and Sd. We
use a two-point crossover operator, based on the idea
of replacement of weak sub-schedules with better sub-
schedules, in which the crossover points are determined,
based on the resource pro�le for the given schedule.
The crossover point, cp1, is de�ned as an activity's start
time and the crossover point, cp2, is de�ned as an activ-
ity's �nish time. All activities executed totally between
these two crossover points are called a sub-schedule.
We de�ne the Resource Utilization Ratio (RUR) as
follows. Let A[t1; t2] = fijsi � t1 and fi � t2g as the
set of activities that are executed totally in interval
[t1; t2]. The RUR for schedule S in interval [t1; t2] is
de�ned as RURS [t1; t2] =

Pt2
t=t1+1

P
i2A[t1;t2](rit=a).

In order to determine crossover points, we look for sub-
schedules including at least bn=3c and, at most, d2n=3e
activities giving the maximum RUR. Assume cp1 = si
and cp2 = fj , where i; j 2 f1; � � � ; ng and subject to
the two following conditions:

I) sj � si,
II) fj > fi or fj = fi where j 6= i.

For all real activities i and j, we consider all possible
intervals bt1 = si; t2 = fjc regarding Conditions I and
II as the candidates for the cross points. The two
points, t�1 and t�2, are considered as the crossover points,
cp1 and cp2, respectively, for which the maximum
resource utilization ratio is obtained. In other words,
the cross points are determined based on the following
condition:

RURS [t�1; t�2] � RURS [t1; t2];

8t1 = si;

and:
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t2 = fj ; i; j = 1; � � � ; n;
and holding Conditions I and II.

Each activity, i, for which si � cp1 and fi � cp2,
constitutes the subset Nsub. In the following, we
describe how the son schedule, Ss, is built from Sf and
Sm. First, we determine cp1(Sf ) and cp2(Sf ) using
the above mentioned two-point crossover operator. To
generate the vectors, �s and Xs, of the Ss, for every
activity, i 2 N , we de�ne the following combination
rule. If in schedule Sf activity i 2 Nsub, let �si = �fi
and wpsi = wpfi. Otherwise, if �fi < cp1(Sf ), let
�si = �mi � b and wpsi = wpmi and if �fi > cp1(Sf ),
let �si = �mi + b and wpsi = wpmi where b is a very
big constant.

This combination rule allows the crossover op-
erator to place the good sub-schedules with the high
resource utilization of the Sf in Ss and replace the
weaker sub-schedules of the Sf with the lower resource
utilization by corresponding sub-schedules of the Sm.
The big constant b is used in order to prevent the
relative priority structure between the activities of a
case being mixed with the priority values of activities
of another case in the combination rule. By applying a
SSGS on the obtained �s and wps, Ss is obtained.
If we assume Sc = Ss, by obtaining the TORK
corresponding to Sc and applying the SSGS to it, the
generation of Sc is �nished. By exchanging the role of
Sf and Sm in generation of the child schedule, Sd can
be easily obtained. Based on the lower makespan, Ss
or Sd is selected as the child schedule, Sc. Schedules
represented in Figures 9 to 11 are related to the ex-
ample network of Figure 6 and illustrate the crossover
operator in which son schedule Ss is considered as the
selected child schedule Sc.

Figure 9. Father schedule (Sf ).

Figure 10. Mother schedule (Sm).

Figure 11. Child schedule (Sc).

Mutation

After applying the crossover operator, each generated
schedule is muted with a probability of pmut using
a mutation operator that works as follows. First, it
selects, randomly, nrm out of n non-dummy activities
as the chosen activities for mutation. Then, for each
selected activity i, it chooses, randomly, a feasible
work pro�le from the non-neighbors work pro�les of
its current work pro�le, wpi. Finally, for the selected
activity i, it changes the priority value as �i = �i + ri,
where ri 2 [1=3f; 2=3f ] is a random integer.

Local Search

A local search procedure is applied over each generated
schedule with probability Pls, described by a Pseudo-
code in Figure 12. In this procedure, given a schedule
S, f(S) denote the makespan of schedule S, Improve-
ment is a Boolean variable and SA indicates the set
of selected activities for a change in the work pro�le.
This procedure tries to decrease f(S) by alternating
the work pro�le of each activity in the neighborhood of
the activity work pro�le.

This procedure includes a While loop, in which all
activities are selected based on their priority values, re-

Figure 12. Local search procedure.
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spectively. In the main step (Step 6) of this procedure,
for each selected activity j, all neighbors of its current
work pro�le are replaced one by one as the work pro�le
of activity j, while the other activities' work pro�les
and priority values are not changed. Each generated
schedule in Step 6 is evaluated using its makespan and,
�nally, the best work pro�le is selected for activity j,
resulting in schedule S0. If f(S0) < f(S), schedule S0 is
replaced with schedule S and Improvement is changed
to true. In the last step, the procedure is stopped if no
improvement is obtained; otherwise, it goes to the �rst
step and updates the priority values based on the best
found schedule of the loop.

COMPUTATIONAL RESULTS

Benchmark Problem Set

We have coded the procedure in Visual C++ 6.0 and
performed all computational experiments on a PC
Pentium IV 3GHz processor with 1024 MB of internal
memory. We have validated the procedure on two
sets of instances developed by Kolisch [1]; one with
30 non-dummy activities and one with 60 non-dummy
activities (additionally, each instance has a dummy
start and a dummy end activity, each with a duration of
zero and a work content of zero). These instances have
been generated by transforming a subset of instances
from the 30- and 60-activity sets of the instances as
available in the PSPLIB library (http://www.bwl.uni-
kiel.de/bwlinstitute/Prod/psplib/datasm.htm. Only
one renewable resource is considered in the generation
of these instances.

Each instance is characterized by the following
four parameters: rurf, tmin, rsf and NC, which are
detailed below.

a) rurf stands for the resource usage range factor. It
determines for each activity i the range of [ri; �ri]
for the per period resource usage of this activity.
rurf 2 [0; 1] where 0 de�nes a range with ri = �ri
and 1 de�nes a large range. In these two sets of
instances, rurf is set to 0.1 and 0.3, respectively.
Based on the rurf value, for each activity i, ri and
�ri are calculated as ri = bwi(1 � rurf)c and �ri =
dwi(1 + rurf)e.

b) tmin stands for the minimum number of consecu-
tive periods where activity i has to have a constant
resource usage. tmin has been set to 1 and 3 for all
activities, respectively.

c) rsf stands for the resource strength factor. rsf
determines the scarcity of the resources. For rsf =
0, the resources will be as scarce as possible to allow
a feasible solution. For rsf = 1, the amount of
capacity is such that the resource constraints are

not binding any more. In our problem instance, rsf
has been set to 0.2 and 0.5, respectively.

d) NC stands for the network complexity. It measures
the average number of non-redundant arcs per
activity in the network. NC has been set to 1.5,
1.8 and 2.1, respectively.

Using a full factorial design, 2�2�2�3 = 24 instances
have been generated with 30 and with 60 activities,
respectively. Also, for each activity i, the work content,
wi, is a random integer from interval [1; 100].

Parameter Settings

To test our procedure, we prede�ne the settings of the
parameters of the genetic algorithm. The number of
children, nrc, is �xed at 2, the number of mutated
activities in the mutation step is set equal to n=10.
Using �ne tuning, we obtained the values of pmut and
pls parameters as pmut = 0:04, pls = 0:1. Also, the
�ned tuned values of psize related to the stop condition
are considered as three CPU-time-limits 1, 10 and
50 seconds, and the size of the problem-instances are
shown in Table 2.

Number of Feasible Work Pro�les

Table 3 indicates the average number of feasible NI,
ND and TR work pro�les for each activity based on
the di�erent values of parameters t and rurf. It can
be seen that the number of feasible work pro�les is an
increasing function of 1=t and rurf.

Detailed Computational Results

The performance of the GA for the RCPSP FWP on
the 24 instances is summarized in Table 4. We report
the total sum of the makespan of each obtained solution

Table 2. Tuned values of psize.

Instances CPU-Time-Limit (s)
Set 1 10 50

J30 50 110 425

J60 30 75 400

Table 3. Average number of feasible work pro�les.

Type of Work Pro�le

Values of Parameter SM ND (NI) TR

t = 1, rurf = 0:1 4.83 36.04 294.08

t = 1, rurf = 0:3 6.15 50.12 381.42

t = 3, rurf = 0:1 1.56 6.33 9.58

t = 3, rurf = 0:3 2.62 10.16 15.72
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Table 4. Detailed computational results.

Problem Set CPU-Time Limit (s) Data Set

J30 J60

5 1410 2310

Sum of the makespans 10 1319 2221

50 1027 1783

5 35.03% 38.61%

Average deviation from the LB 10 32.74% 37.11%

50 25.49% 29.75%

and the average deviation from the lower bound LB,
described previously.

Table 5 shows the e�ect of the work pro�le types.
The results are presented as the average deviation from
the LB for 1, 10 and 50 seconds CPU-time-limit and
for four types of work pro�le: SM, ND, NI and TR.
The results related to TR and SM work pro�le are
the best and the worst, respectively. This result is in
line with our expectations because SM�NI�TR and
SM�ND�TR.

Impact of the Mutation and the Local Search

Figures 13 and 14 indicate the impact of the mutation
and the local search on the RCPSP FWP results by
changing pmut and pls, respectively. The results are
obtained based on the average percent deviation from

Table 5. E�ect of the work pro�le types.

CPU-Time Limit (s)

Work Pro�le 5 10 50

SM 44.16% 42.87% 41.59%

ND 37.64% 36.28% 29.47%

NI 37.69% 36.27% 29.45%

TR 35.22% 35.06% 26.48%

Figure 13. Impact of the mutation operator.

Figure 14. Impact of the local search operator.

the lower bound LB when the allowed CPU-time limit
is 10 seconds. The results reveal that the best values for
the probability of applying these two operators on each
generated schedule are as pmut = 0:04 and pls = 0:1.

CONCLUSION

In this paper, we introduced the Resource-Constrained
Project Scheduling Problem with a Flexible Work Pro-
�le (RCPSP FWP). We developed a linear model for
the problem, an enumeration procedure for generation
of feasible work pro�les and a metaheuristic, based on
the Genetic Algorithm (GA), for solving the problem.
As the crossover operator, the GA uses a two-point
crossover based on the idea of the replacement of weak
sub-schedules with better ones. To that purpose, we
used the resource utilization ratio to evaluate di�erent
sub-schedules. We also developed a local search in-
corporated with GA to improve the solutions' quality.
We performed detailed computational results on two
problem sets, J30 and J60, each including 24 problem
instances.

Our future research e�orts will focus on two
extensions. First, we focus on developing an exact
solution approach for the RCPSP FWP and also better
metaheuristics. Second, we focus on considering work
pro�les in general forms and developing a procedure to
generate them.
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