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Economic Production Quantity Model with
Scrapped Items and Limited Production Capacity

A. Taleizadeh!, A.A. Najafi’ and S.T. Akhavan Niaki**

Abstract.  In this paper, an Economic Production Quantity (EPQ) model is studied, in which the
production defective-rate follows either a uniform or a normal probability distribution. Shortages are
allowed and take a backorder state, and the existence of only one machine causes a limited production
capacity for the common cycle length of all products. The aim of this research is to determine the
optimal production quantity of each product, such that the expected total cost including holding, shortage,
production, setup and defective items cost 1s minimized. The mathematical model of the problem is derived,
for which the objective function is proved to be conver. Then, a derivative approach is utilized to obtain
the optimal solution. At the end, two numerical examples are provided to illustrate the practical usage of

the proposed method.
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INTRODUCTION

The primary operation strategy and goal of most
manufacturing firms is to seek a high satisfaction to
customer’s demands and to become a low-cost pro-
ducer. To achieve these goals, the company must be
able to effectively utilize resources and minimize costs.

In manufacturing companies, when items are
internally produced instead of being obtained from an
outside supplier, the Economic Production Quantity
(EPQ) model is often employed to determine the
optimal production lot size that minimizes overall
production /inventory costs.

The classic EPQ model assumes that during a
production run, a manufacturing facility functions
perfectly. However, due to process deterioration or
some other factors, the generation of imperfect qual-
ity items is inevitable. A considerable amount of
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research has been carried out by Cheng [1], Chiu
et al. [2], Chung [3], Lee and Rosenblatt [4], Ben-
Daya [5] and Chiu and Chiu [6] to address the im-
perfect quality EPQ problem. Furthermore, Chung
[3] investigated bounds for production lot sizing with
machine breakdown conditions. Rosenblatt and Lee [7]
proposed an EPQ model that deals with imperfect
quality. They assumed that at some random point
in time, the process might shift from an in-control
to an out-of-control state. Hayek and Salameh [§]
derived an optimal operating policy for the finite
production EPQ model, under the effect of reworking
imperfect quality items. They assumed that all defec-
tive items were repairable and that backorders were
allowed.

Numerous studies have been carried out to ad-
dress the problems of an imperfect quality EPQ
model with rework (see for example [8-12]). Chiu
and Chiu [6] studied an optimal replenishment policy
for an imperfect quality EPQ model with backlog-
ging and failure in repair using a conventional ap-
proach.

In this paper, a multiproduct EPQ problem, in
which the production defective-rates of all items are
random variables and all defective items are assumed
to be scrapped (rework is not allowed), is considered.
Besides, the productions of all items are performed on
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a single machine, such that there is a limited capacity,
also that shortages are allowed and are considered to
be backorders.

The rest of the paper is organized as follows.
the problem is first defined, and the mathematical
model of the problem is developed. Then, the solution
approach is proposed, and in order to illustrate the
proposed method and its applications, two numerical
examples are given. Following that, a sensitivity
analysis on the model parameters is performed, and
finally, the conclusion and some recommendations on
future research are found.

PROBLEM DEFINITION AND MODELING

Imperfect production processes due to process deteri-
oration or some other factors may randomly generate
X percent of defective items at rate #. The inspection
cost per item is involved when all items are screened.
All defective items are assumed to be scrapped, i.e. no
rework is allowed. The annual constant production rate
(P) is much larger than the annual constant demand
rate (D) as the basic assumption of the finite produc-
tion model. In other words, the expected production
rate of the scrapped items, 8, can be expressed as
# = PE[X]. Also, we assume that there is a real
constant production capacity limitation on a single
machine on which all products are produced, and that
the setup cost is nonzero.

Since the problem at hand is of a multiproduct
type, for products j = 1,2,---,n, the following
notations are used in this research:

Pj: The annual constant production rate of the jth
product,

X;: The production percent of the jth products that
are defective (a random variable),

fx,(x;): The probability density function of X},

#;: The expected annual production scrapped rate of
the jth product,

Dj: The annual constant demand of the jth product,

Qf: The production lot size per cycle of the jth
product in which shortages are allowed as backorders
(a decision variable),

Bj: The allowable backorder level of the jth product
(a decision variable),

I}: The maximum units of a on-hand inventory level

when the regular production process stops,

N: The number of cycles per year,

T: The cycle length, T' = - (a decision variable),
t': The production uptime of the jth product,

t2: The production downtime of the jth product,
t3: The permitted shortage time of the jth product,

t;‘-: The time needed to satisfy all backorders in the
next production of the jth product,

S;: The setup time of the machine to produce the
jth product,

A: The constant setup cost for all products ($/setup),

CJ: The production cost per unit of the jth product
(§/item),

C]h: The holding cost per unit of the jth product per
unit time ($/item/unit time),

C]l?: The backordering cost per unit of the jth product
per unit time ($/item/unit time),

C5: The disposal cost per scrapped item of the jth
product ($/scrapped item),

C 4: The annual expected total setup cost,

Cp: The annual expected total production cost,
Cg: The annual expected total holding cost,

Cp: The annual expected total shortage cost,

Cs: The annual expected total scrapped items cost,
E(.): Denotes the expected value,

Z: The annual expected total costs.

The production rate, P;, is always assumed to
be greater than, or equal to, the demand rate, D;.
Furthermore, the production rate of the perfect quality
items is assumed to be greater than, or equal to, the
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sum of the demand rate and the production rate of
defective items; mathematically speaking: P; — 6; —
D; >0, or1—E[X,] - % > 0. Figure 1 depicts
the on-hand inventory level and allowable backorder
level of the EPQ model with backlogging permitted. To
model the problem, a part of the modeling procedure is
adopted from [8]. Since all products are manufactured
on a single machine with a limited capacity, the cycle
length is equal for all (T3 =T =--- =T, =T). Then,
based on Figure 1, for j =1,2,--- ,n, we will have:
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The Objective Function

The objective function of the model is the summation
of the expected annual production, holding, shortage,
disposal and setup costs as:

Z=Cp+Cyg+Cp+Cs+Cyu. (8)
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Figure 1. A production-inventory cycle.
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In the following subsections, different parts of the
objective function are described.

Production Cost

The production cost per unit and the production
quantity per period of the jth product are C’JP andQ?
respectively. Hence, the production cost of the jth
product per period is CT'QF. While the total annual
production cost of the jth product in a disjoint pro-
duction policy (each product is ordered separately) is

N x CJPQf, this cost for the joint policy (all products
PAB
have a unique ordering cycle) is % Furthermore,
based on Equation 1 we have:
TxD; TxD;
Qf:E(l—)é)Zl—E()é)’ )
J J

Hence, the expected annual production cost will be:

" OF [1—T;&)] “ CP'D;
Cr=2 T :21—35()(]-)' (10)

Jj=1 Jj=

Holding Cost

The holding cost per unit of the jth product per
unit time for both healthy and scrapped items is CJ}-‘.
According to Figure 1, the total holding cost of healthy
items per cycle and per year are shown in Equations 11
and 12, respectively:

Zch (11)

] 1 42
—t t;
2 5

1
53 (t +13) (12)

NZCh

However, Equation 12 for the joint production policy
becomes:

7ZCh

Finally, the expected total annual holding cost of
healthy items is (see Appendix A):

> CIp;
j=1

5] (t; +13)| . (13)

[(Pj —D; —0;)T x D;
2(P;)%(1 - B(X;))?

B;
 Pi(1- B(X;))

(B;)*
2D, T(P; — D, — 6;)

+ . (14)
Since the scrap for each product is assumed to be
held until the end of its production time, based on
Figure 1, the total holding costs of the scrapped items
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per cycle and per year are shown in Equations 15
and 16, respectively:

- 0,(th + %)
pe ”#j(t}—kt?) 7 (15)
Jj=1
(t; +1t]
NZCh 7)(t}+t;*> (16)

Again, for the joint production policy, Equation 16
becomes:

AR

Hence, the expected total annual holding cost of
scrapped items is (see Appendix B):
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Finally, the expected total annual holding cost of
healthy and scrapped items is:
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Shortage Cost

The shortage cost per unit of the jth product is
C]’-’. Based on Figure 1, the total shortage costs per
cycle and per year are shown in Equations 20 and 21,
respectively.

Z c? [ (3 + t4)} (20)

(D;)°T
=l ,)2] . (19)

N x ZO” [ (t? +t4)] (21)

Because of the joint production policy, Equation 21
becomes:

Zcb [ (] + t4)] (22)

Finally, the expected total annual shortage cost is (see
Appendix C):

1 ¢ (P; —0;)(B;)?
T;C’b |:2Dj(Pj - D; —ej)] ' 29

Disposal Cost

The disposal cost per unit of the scrapped item of the
Jth product is C7 and the quantity of scrapped items
is E(X]-)Qf. Hence, the expected total disposal cost

per cycleis 327 | CSE(
becomes:

X;)Q¥. This quantity per year

N x iCjE(Xj)Qf. (24)

Because of the joint production policy, Equation 24
becomes:

I
7 X > CrB(X;)QF. (25)
j=1
Since QF = Eﬁxf))(jj) = 13;([))-(’]_), the annual expected

total scrapped items cost is:
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Setup Cost

The cost of a setup is A, which occurs N times per
year. So, the annual setup cost will be:

A

As a result, the objective function of the model be-
comes:
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| (CE+CH(P - 65) | (B;)?
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n
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To make sure that all of the n products will be pro-
duced by a single machine, we need to have a capacity
limitation that is explained in the next subsection.

(CF + OSE(X ))D,
E(X;)

A
= (28)

The Constraint

Since t} +7 and S are the production time and setup
time of the jth product, respectively, the summation of
the total production and setup time (for all products)
will be 37 (t5 + 1) + >.7_, S; in which it should be
smaller than or equal to, the period length (T'). So,
the constraint of the model will be:

n

S+t + Z S; <T. (29)

j=1 j=1

Then, based on the derivation in Appendix D, we will
have:
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=

The Final Model

According to Equations 28 and 30, the final model
becomes:

n
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In the next section, a solution method to the model
Equation 31 is proposed.

A SOLUTION METHOD

In order to find the optimal solution of model (Re-
lation 31), we first provide proof of the convexity of
the objective function. Then, we use the derivative
approach to find the optimal point of the objective
function. For a feasibility requirement, the production
rate of perfect quality items is assumed to be greater
than, or equal to, the sum of the demand rate and
the production rate of defective items. Mathematically
speaking, in a single product model, P; —8; — D; > 0,
orl— E[X]] —
need:

2 B <

To handle the constraint, we will check the optimal
solution in Equation 30. If the constraint is not
satisfied, then T,;,, as the minimum value of T', will
be considered as the optimal point.

To prove the convexity of the objective function,
let us rewrite the objective function as:

% > 0. In a multi-products model, we
J

Z= Z B, +Z%T+ZA +
32)
in which:
[(Ch+Cl) (P —6,)
e | 2D;(P; = D; —93')] " (33)
[ ckpi -9y
by .
C}D;[(Pj—8;)(P;—D;—8;)+Dj]
= 2P, P (1-E(X,)) >0 (53
CP + C:E(X;))D,
A= S ;F_JE(;J_;)) ]] > 0. (36)
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Theorem 1

The objective function Z in Equation 32 is convex.

Proof

To prove the convexity of Z, one can utilize the Hessian
matrix equation as:

r o’z 9z 2’z 9’z 7
T? dTdB, dTdB; dTdB,
9%z %z 9%z 9%z
aBlaT OB% OBlaBg OBlaB”
9%z 9%z 9%z 9%z
H=|3p07r B0 982 9B50B, | -
(37)
2’z 2%z 2z 2’z
L9B,dT 9B,0B1 0B,0B; oBZ |

Then, according to Appendix E, the objective function
is strictly convex.

The expected cost function Z is strictly convex
for all nonzero T and B;. Hence, it follows that to find
the optimal production period length and the optimal
level of backorder Bj;, one can partially differentiate
Z with respect to T and B;, and solve the resulted
system of equations obtained by equating the partial
derivatives with zero. According to what we derived in
Appendix F, the system of equations becomes:

Z A
Z—T:OHT: - TR (38a)
B;
Z Vi Z |: 4oy ]
Jj=1 J=1
92 =BT _ B (38h)
0B; J 205 205

Then, we will have:
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To handle the constraint, we will check the optimal
solution in Equation 30. If the constraint is not
satisfied, then T,,;,, as the minimum value of 7', will be
considered as the optimal point. Based on Appendix D:

T'min = = . (40)

1= 3 pasxD
j=1

To ensure the possibility and acceptability of produc-
tion of all products by a machine, the steps involved in
the algorithm of finding the optimal and possible values
of T*, By and Qf”* must be performed as follows:

Step 0: If 377, m < 1, then go to Step 1.
Otherwise, the problem will be infeasible.

Step 1: Calculate T" by Equation 38a.

Step 2: Calculate Ty,;, by Equation 40.

Step 3: If T > Tinin, then T =T, else T = Tiyin.

Step 4: Calculate B; by Equation 38b.

Step 5: Calculate Q" by Equation 39.

In the next section, two numerical examples are given
to illustrate the applications of the proposed method
in cases of uniform and normal distribution functions

for fx,(z;).

NUMERICAL EXAMPLES

Consider a multiproduct inventory control problem
with five products, the general and specific data of
which are given in Tables 1 and 2, respectively.
We consider two numerical examples with uniform and
normal probability distributions for X;. The set up
cost is considered A = $450, and Tables 3 and 4 show
the best results for the two numerical examples.

SENSITIVITY ANALYSIS

To study the effects of parameter changes on the
optimal result derived by the proposed method, a sen-
sitivity analysis is performed by changing (increasing
or decreasing) the parameters by 20% and 50%, taking
one parameter at a time and keeping the remaining
parameters at their original values. This analysis is
performed on the two numerical examples given in
the previous section. The results of the sensitivity
analysis for the uniform and normal distribution cases
are shown in Tables 5 and 6, respectively.
A careful study of Table 5 reveals the following:

e T and T are moderately sensitive, T,,;, is insensi-
tive, and Z is slightly sensitive to the changes in the
values of parameter A,

Table 1. General data for examples.

Product | D; | P, | S; |CcP|c}r|cCy|Cs
1 200 | 1800 [ 0.001 | 15 | 5 |10 | 1
2 300 | 2500 | 0.002 | 12 | 4 | 8 | 0.8
3 400 | 3000 | 0.003 | 10 | 3 | 6 | 0.6
4 500 | 3500 | 0.004 | 8 | 2 | 4 |04
5 600 | 4500 | 0.005 1|2 02
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Table 2. Specific data for examples.

Product X; ~ Ulaj,b;] X; ~ Npj, o]
a; b; E[X;] 0; n; = B[X;] o3 0;
1 0 0.1 0.05 90 0. 25 0.01 450
2 0 0.15 0.075 187.5 0.28 0.02 700
3 0 0.2 0.1 300 0.33 0.03 990
4 0 0.25 0.125 437.5 0.38 0.04 1330
5 0 0.3 0.15 675 0.42 0.05 1890

Table 3. The best results for Example 1 (uniform distribution).

Product Uniform
Timin T T B; Q7 zZ
1 33.02 118.06
2 48.80 181.88
3 0.0526 0.5608 0.5608 63.70 249.24 21614
4 78.21 320.46
5 94.57 395.86

Table 4. The best results for Example 2 (normal distribution).

Product Normal
Timin T T B; Q7 Z
1 32.91 154.56
2 48.30 241.50
3 0.5796 0.5777 0.5796 61.90 346.02 29286
4 74.34 467.41
5 89.27 599.57

Table 5. Effects of parameter changes for the uniform distribution case.

% Changes in Parameters % Changes in
and Their Values Tnin T T Z
+50 0 +22.48 +22.48 +1.34
A +20 0 +9.54 +9.54 +0.57
-20 0 -10.54 -10.54 -0.63
-50 0 -29.28 -29.28 -1.75
+50 +18.82 -3.93 -3.93 +6.4
E[X;] 420 +6.46 15 1.5 +2.45
-20 -5.3 +1.52 +1.52 -2.33
-50 -12.17 3.72 3.72 -5.61
+50 +50 0 0 0
S; +20 +20.15 0 0 0
-20 -19.96 0 0 0
-50 -50 0 0 0
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Table 6. Effects of parameter changes for the normal distribution case.

% Changes in Parameters % Changes in
and Their Values Tnin T T* Z
+50 0 +22.47 +22.07 +0.9
A +20 0 +9.53 +9.18 +0.39
-20 0 -10.56 -0.53
-50 0 -21.25 -1.32
+50 Infeasible - - -
E[X;] +20 Infeasible - - -
-20 -78.3 -1.07 -1.4 -9.41
-50 -88.68 -2.28 -2.61 -20.46
+50 +50 0 +50 -0.22
S; +20 +20 0 +20 -0.17
-20 -20 0 -0.33
-50 -50 0 -0.33

e While T, Z and T are slightly sensitive, T, is
moderately sensitive to the changes in the values of
parameter E[X;].

o While T,,;, is highly sensitive, T, Z and T* are
insensitive to changes in the value of parameter S;.

Furthermore, a careful study of Table 6 reveals the
following:

e T and T* are moderately sensitive, Ty, iS insensi-
tive, and Z is slightly sensitive to the changes in the
values of parameter A.

T and T* are slightly sensitive to the decreasing
changes in the values of parameter E[X;].
Moreover, Tinn and Z are highly and moder-
ately sensitive to the decreasing values of param-
eter E[X;], respectively. However, when E[X}]
increases, the problem becomes infeasible.

While T}y, is highly sensitive, T is insensitive to the
changes in the value of parameter S;. T is highly
sensitive to the changes in the values of parameter
S; when it increases and 7™ is slightly sensitive to
the changes in the values of S; when it decreases.
Z is insensitive when S; decreases and is slightly
sensitive when .S; increases.

CONCLUSION AND RECOMMENDATIONS
FOR FUTURE RESEARCH

In this paper, an EPQ model with a production
capacity limitation and a random defective production
rate was developed. The aim of this paper was
to determine an optimal solution for period lengths,
backordered quantities and order quantities of several
products, based on minimizing the expected total
annual cost including holding, shortage, production,

setup and waste item costs. We proved the objective
function of the proposed mathematical model to be
convex and employed the derivative approach to find
the solution. At the end, two numerical examples based
on uniform and normal distribution functions for X;
were solved, in order to demonstrate the applicability
of the proposed methodology and a sensitivity analysis
was performed on the parameter changes.
Some recommendations for future research are:

Some uncertain variables may be considered for
other factors.

Defective items can be reworked.

Shortage can occur in a combination of backorders
and lost-sales.

Multiproduct multi-constraint problems can be de-
veloped and solved.
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APPENDIX A

Expected Total Holding Cost of the Healthy
Items

According to Equation 14:
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APPENDIX B

Expected Total Holding Cost of the Scrapped

Items

According to Equation 18:
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BI-X;) = T-B(X;)’

72 [ t+t4)(t}+t?)]

we have:
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APPENDIX C
Expected Total Shortage Cost

According to Equation 23:

ZC”[ t3+t4)]

B; B;
i b 773 - =y
ZC {2 D; P—D-—ej)

B; and Q;’- =

J

Il [ (P = 65)(By)
TZCJ' [QD]-(P - D; —6,)
Jj=1

APPENDIX D
Possibility and Acceptability of T

The summation of the total production and setup time
(for all products) should be smaller than, or equal to,
the period length (7). So:

n n
E 1 4 §
%‘+‘%‘+‘ 53 S Tt
j=1 j=1

Moreover, based on Equation 7, we have:

j=1 "7
T—E(X, )
P * ZSJ =T
7=1 7=1
= zn: S, <T— zn: D, T
! — P;(1 - E(X}))
7j=1 Jj=1
=T2> nji = ﬂ1lin~
D
L= 2 ma—ewy
APPENDIX E
The Convexity Proof of Z
Let aT = [T, By, By, -+, B,] be an arbitrary vector

and H the hessian. Then, in order to prove that 7 is
convex, we need to show the quadratic form aTHa > 0.
Or:

[ 9%z 22z 22z 2%z
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2?z 2*z 2%z 2%z
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X | 9B20T 9B10B1 92 B, 9B,0B,,
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APPENDIX F

Finding Roots of Derivative of Z, with Respect
to Bj and T

n B, 9 n n n
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