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Phase II Monitoring of Autocorrelated
Polynomial Pro�les in AR(1) Processes

R.B. Kazemzadeh1;�, R. Noorossana2 and A. Amiri3

Abstract. In many practical situations, the quality of a process or product can be characterized by
a function or pro�le. Here, we consider a polynomial pro�le and investigate the e�ect of the violation
of a common independence assumption, implicitly considered in most control charting applications, on
the performance of the existing monitoring techniques. We speci�cally consider a case when there is
autocorrelation between pro�les over time. An autoregressive model of order one is used to model the
autocorrelation structure between error terms in successive pro�les. In addition, two remedial methods,
based on time series approaches, are presented for monitoring autocorrelated polynomial pro�les in phase
II. Their performances are compared using a numerical simulation runs in terms of an Average Run
Length (ARL) criterion. The e�ects of assignable cause and autocorrelation coe�cient on the shape of
pro�les are also investigated.

Keywords: Statistical process control; Polynomial pro�les; Autocorrelation; Average run length;
Assignable cause; Phase II.

INTRODUCTION

In some statistical process control applications, the
quality of a process or product is characterized by
a relationship between a response variable and one
or more explanatory variables, which is referred to
as a pro�le. A number of authors, including Stover
and Brill [1], Kang and Albin [2], Mahmoud and
Woodall [3], Woodall et al. [4] and Wang and Tsung [5],
have discussed the practical applications of pro�les.
Many authors, including Mestek et al. [6], Stover
and Brill [1], Kang and Albin [2], Kim et al. [7],
Mahmoud and Woodall [3] and Mahmoud et al. [8]
have studied the phase I monitoring of simple linear
pro�les. The purpose of the phase I analysis is to
evaluate the stability of a process and to estimate
process parameters. Authors including Kang and
Albin [2], Kim et al. [7], Noorossana et al. [9], Gupta
et al. [10], Zou et al. [11] and Niaki et al. [12] have
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investigated the phase II monitoring of simple linear
pro�les. In the phase II analysis, we are interested
in detecting shifts in the process parameters as soon
as possible. Sometimes, more complicated models are
needed to represent pro�les. Kazemzadeh et al. [13]
extended three phase I methods for monitoring poly-
nomial pro�les. Zou et al. [14] proposed a multivariate
EWMA control chart for monitoring general linear
pro�les in phase II. Kazemzadeh et al. [15] transformed
polynomial regression to an orthogonal polynomial re-
gression model and proposed a method based on using
EWMA control charts to monitor the parameters of an
orthogonal polynomial regression model in phase II. In
all the mentioned research, it is assumed that the error
terms of models are independent and identically dis-
tributed normal random variables. However, in some
cases, these assumptions can be violated. Noorossana
et al. [16] studied the e�ect of the non-normality of
error terms on the performances of the EWMA/R
method by Kang and Albin [2]. Jensen et al. [17]
proposed a linear mixed model to account for the
autocorrelation within a linear pro�le. Noorossana et
al. [18] considered a case in which there is a �rst order
autoregressive autocorrelation between linear pro�les
over time. They proposed three methods based on a
time series approach and evaluated the performance of
their methods. Nonlinear pro�le monitoring has also
been discussed by several authors, including Jin and



Phase II Monitoring of Autocorrelated Polynomial Pro�les 13

Shi [19], Walker and Wright [20], Ding et al. [21] and
Williams et al. [22]. Jensen and Birch [23,24] used
nonlinear mixed models to monitor the nonlinear pro-
�les in phase I to account for the correlation structure
within nonlinear pro�les. They showed that the use of
mixed models could have signi�cant advantages when
nonlinear regression models are used. Woodall [25]
reviewed current research on pro�le monitoring and
encouraged further research in this area.

In this paper, we consider a kth order polynomial
pro�le between a response variable and one explanatory
variable. In some practical applications, such as paint
shops in the auto industry, where di�erent locations on
a body are painted by di�erent nozzles and the time
lapse between two successive painted bodies is short,
the error terms or observations in successive pro�les, re-
lating paint thickness (Y ) to body location (X), can be
correlated. Since the nozzles operate independently, it
is reasonable to assume that the pro�le autocorrelation
is negligible. Hence, in this paper, it is assumed that
the error terms in successive pro�les are autocorrelated.
We consider an autoregressive model of order one to
model the autocorrelation structure that exists between
error terms in successive pro�les and show its impact
on the ARL performance of the T 2 control chart
extended by Kazemzadeh et al. [14]. Two methods
are provided to eliminate the e�ect of autocorrelation
between pro�les and their performances are evaluated
using ARL criterion.

The problem model is given in the following sec-
tion. Then the two monitoring methods are presented
and the e�ect of autocorrelation on the T 2 control chart
and comparison of the performance of the two remedial
methods are investigated. Following that the e�ects
of assignable cause and correlation coe�cient on the
shape of pro�les are investigated, respectively, and an
illustrative example is also presented. Our concluding
remarks are presented in the �nal section.

THE PROBLEM MODEL

We assume that for the jth sample collected over
time, we have observations (xi; x2

i ; � � � ; xki ; yij) i =
1; 2; : : : ; n. In other words, the subscript i shows the ith
observations within each pro�le, and subscript j shows
the jth pro�le collected over time. Each pro�le includes
n observations as (xi; x2

i ; � � � ; xki ; yij). In this paper, it
is assumed that a kth order polynomial regression in
one variable is well �tted to the observations of each
pro�le and relates the response variable, Y , to the ex-
planatory variable, X. The range of x-values and their
scales are case-based and di�erent from one application
to the other one. As explained in the introduction of
the paper, sometimes the error terms or observations
in successive pro�les can be correlated. However, due
to the nature of the process, there is no autocorrelation

between observations within each pro�le. In other
words, the error terms or equivalent observations at
di�erent values of x within each pro�le are assumed to
be independent of each other. Assuming a �rst order
autoregressive model for the error terms, the explained
problem can be formulated as follows:

yij = A0 +A1xi +A2x2
i + � � �+Akxki + "ij ;

"ij = �"i(j�1) + aij ; (1)

where "ij 's are the correlated error terms and aij 's
are independent and identically distributed normal
random variables with mean zero and variance �2. It
is assumed that the x-values are �xed and constant
from pro�le to pro�le. In this paper, we consider
the phase II case in which the in-control values of
parameters A0; A1; � � � ; Ak and �2 are assumed to be
known.

It can be easily shown that the existing autore-
gressive structure between errors, de�ned in Equa-
tion 1, leads to autocorrelation between observations
at di�erent values of x in successive pro�les. In other
words, the observations in successive pro�les can be
expressed as:

yij = A0 +A1xi +A2x2
i + � � �+Akxki + "ij ;

and:

yi(j�1) = A0 +A1xi +A2x2
i + � � �+Akxki + "i(j�1);

leading to:

yij�(A0 +A1xi +A2x2
i + � � �+Akxki )

=�[yi(j�1) � (A0 +A1xi +A2x2
i + � � �+Akxki )]

+aij : (2)

The data framework is depicted schematically in Fig-
ure 1 as follows:

THE PROPOSED METHODS

The forecasting observation vectors are calculated us-
ing Equation 3 and the residual vectors corresponding
to each pro�le are determined by using Equation 4.

Figure 1. Data framework.
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Although there is an AR(1) relationship between ob-
servations corresponding to each x in di�erent pro�les,
the residuals are independent and can be monitored by
traditional control charts.

The estimated values of yij are calculated using
the following equation:

ŷij =� yi(j�1)

+(1� �)(A0 +A1xi +A2x2
i + � � �+Akxki ): (3)

And the residual values are as follows:

eij =yij � ŷij = yij � �yi(j�1) � (1� �)(A0+

A1xi +A2x2
i + � � �+Akxki ): (4)

The expected value and variance of the residuals are
equal to 0 and �2, respectively (they are proven in
Appendix A).

As a �rst method, we use an EWMA control
chart to monitor the average value of the residuals,
in combination with a R-chart, to detect shifts in the
process variance. The proposed control charts are
the same as the control charts proposed by Kang and
Albin [2] for monitoring linear pro�les in which the
errors in di�erent pro�les are independent. The only
di�erence is the way we calculate the residuals. First,
the residuals are calculated using Equation 4, then the
average value of the residuals for the jth pro�le can be
calculated using �ej =

Pn
i=1 eij=n.

The EWMA control chart statistic, denoted by zj ,
for j = 1; 2; � � � , is given by:

zj = ��ej + (1� �)zj�1: (5)

�(0 < � � 1) is a smoothing constant and z0 = 0. The
lower and upper control limits for the EWMA chart
are:

LCL = �L�
s

�
(2� �)n;

and:

UCL = L�

s
�

(2� �)n; (6)

respectively, where L(> 0) is a constant selected to give
a speci�ed in-control ARL.

The R control chart statistic denoted by Rj is
calculated by Rj = max(eij) � min(eij). The lower
and upper control limits for the R chart are:

LCL = �(d2 � Ld3);

and:

UCL = �(d2 + Ld3); (7)

respectively, where L(> 0) is a constant chosen to give
a speci�ed in-control ARL. The values of d2 and d3 are
constants that depend on the sample size, n.

As a second method, we propose a modi�ed T 2

control chart by Kang and Albin [2]. It should be
noted that the proposed T 2 statistics are di�erent from
the ones used by Kang and Albin [2]. They used
the estimates of the regression parameters to construct
their T 2 statistics. Our simulation studies in section 4
showed that the autocorrelation structure leads to poor
performance of the T 2 control charts by Kang and
Albin [2]. It is shown in Appendices B and C that the
AR(1) model between error terms in successive pro�les
transfers to vector of regression parameter estimators
and the T 2 statistics, respectively. This is why the T 2

control chart by Kang and Albin [2] is not applicable
here. Hence, we used the residuals in Equation 4 to
construct the T 2 statistic. The modi�ed T 2 statistic
and the upper control limit are given, respectively, as
follows:

T 2
j = (ej � 0)

�1X
ej

(ej � 0)T ;

UCL = �2
n;�; (8)

where ej = (e1j ; e2j ; � � � ; enj)T ,
P
ej = �2I (I is

identity matrix and 0 is zero vector). In the vector
of ej , n de�nes the number of x values. �2

n;� is the
100(1-�) percentile of the chi-square distribution with
n degrees of freedom.

SIMULATION STUDIES

In this section, we �rst study the e�ect of autocor-
relation between pro�les on the performance of the
T 2 control chart used by Kazemzadeh et al. [15] for
monitoring polynomial pro�les, based on the proposed
control chart by Kang and Albin [2]. Then, we compare
the performance of the proposed methods.

The following example is used to evaluate the
performance of the T 2 control chart in the presence
of autocorrelation between errors in the successive
pro�les:

yij = 3 + 2xi + x2
i + "ij ;

"ij = �"i(j�1) + aij ;

where aij � N(0; 1) and x =1, 2, 3, 4, 5, 6, 7, 8, 9,
10. The sample size used by Kang and Albin [2] in
a simple linear case is equal to 4. It should be noted
that a sample size greater than 4 is needed to �t a
polynomial regression model to the observations more
adequately. Hence, 10 observations similar to those in
the paper by Kazemzadeh et al. [13] are applied here.
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Table 1. The e�ect of autocorrelation coe�cient on ARL performance for T 2 control chart under di�erent shifts in
intercept, second parameter, third parameter and error standard deviation.

� (Shift in the Intercept)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 200 165.6 103.9 57.7 31.6 17.6 10.3 6.4 4.2 2.9 2.2

� 0.1 189.9 157.8 99.5 56.2 30.9 17.7 10.5 6.6 4.3 3.1 2.3
Autocorrelation 0.3 119.9 102.3 70.6 43.1 26.0 15.7 10.1 6.7 4.6 3.3 2.5

Coe�cients 0.5 51.9 47.3 37.2 26.6 18.6 13.0 9.1 6.5 4.7 3.5 2.7
0.7 18.9 18.2 16.5 14.4 11.9 9.7 7.7 6.1 4.8 3.7 2.9
0.9 8.1 8.1 7.8 7.5 7.1 6.5 5.8 5.2 4.4 3.7 3.1

� (Shift in the Second Parameter)

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
0 200 180.7 138.2 95.3 62.8 40.2 26.3 17.3 11.8 8.2 5.9

� 0.1 189.9 170.3 131.9 92.1 60.6 39.5 26.2 17.6 11.9 8.4 6.0
Autocorrelation 0.3 119.9 111.1 89.4 65.6 46.0 32.1 22.2 15.7 11.4 8.3 6.2

Coe�cients 0.5 51.9 49.3 43.1 35.4 27.7 21.6 16.7 12.8 9.9 7.8 6.1
0.7 18.9 18.6 17.6 16.2 14.5 12.9 11.2 9.6 8.2 6.9 5.8
0.9 8.1 8.1 8.0 7.8 7.6 7.2 6.8 6.4 6.0 5.5 5.1

� (Shift in the Third Parameter)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0 200 160.4 93.4 48.7 24.9 13.4 7.6 4.7 3.1 2.2 1.7

� 0.1 189.9 151.8 89.2 47.1 24.6 13.5 7.9 4.9 3.3 2.4 1.8
Autocorrelation 0.3 119.9 100.1 64.3 36.9 21.1 12.6 7.9 5.1 3.5 2.5 1.9

Coe�cients 0.5 51.9 46.1 34.9 23.8 16.1 10.8 7.4 5.2 3.7 2.7 2.1
0.7 18.9 18.1 16.1 13.5 11.0 8.6 6.8 5.2 3.9 3.0 2.3
0.9 8.1 8.0 7.8 7.4 6.8 6.2 5.4 4.7 3.9 3.1 2.5

 (Shift in the Standard Deviation)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0 200 70.9 32.9 18.1 11.5 7.8 5.8 4.6 3.7 3.1 2.7

� 0.1 189.9 67.9 31.6 17.7 11.1 7.8 5.8 4.5 3.7 3.2 2.8
Autocorrelation 0.3 119.9 48.1 24.0 14.3 9.5 6.9 5.3 4.2 3.5 3.1 2.7

Coe�cients 0.5 51.9 25.3 15.1 10.0 7.2 5.6 4.5 3.8 3.2 2.8 2.5
0.7 18.9 12.1 8.6 6.6 5.3 4.4 3.7 3.2 2.9 2.6 2.4
0.9 8.1 6.5 5.4 4.6 4.0 3.5 3.1 2.8 2.6 2.4 2.2

We used 50,000 simulation runs and showed the
e�ect of di�erent autocorrelation coe�cients under
di�erent shifts in the intercept, the second parameter,
the third parameter and error standard deviation,
using an average run length criterion. The results are
summarized in Table 1. In this table, �; �; � and 
are shifts in the intercept, the second parameter, the
third parameter and standard deviation, respectively,
and are measured in units of �. The results show that
in-control ARLs of T 2 control chart decrease in the
presence of autocorrelation between pro�les and lead
to its poor performance. When the autocorrelation
coe�cient gets larger, this e�ect is more considerable.
In addition, decreasing the in-control ARL values for

the T 2 control chart leads to lower out-of-control ARL
values.

Now we compare the ARL performance of our
proposed methods using the same example we intro-
duced in our initial simulation studies. In our study,
we considered two autocorrelation coe�cients � = 0:1
and � = 0:9 (both weak and strong autocorrelations),
and designed the proposed methods to have the overall
in-control ARL of 200. The smoothing constant � in
the EWMA chart is set equal to 0.2. In the EWMA
and R control charts under both � = 0:1 and � = 0:9
autocorrelation coe�cients, the value of L is set equal
to 3.08, in order to obtain an overall in-control ARL
of 200. In the T 2 control chart, UCL is set equal
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Table 2. ARL (top) and SDRL (bottom) comparisons under intercept shifts from A0 to A0 +�� with � = 0:1 and � = 0:9.

� = 0:1 �
Proposed
Methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T 2 198.5
(200.9)

183.8
(184.7)

152.3
(152.3)

111.5
(111.8)

77.4
(76.5)

50.5
(49.5)

32.3
(31.6)

20.7
(20.2)

13.7
(13.1)

9.1
(8.6)

6.3
(5.7)

EWMA/R 197.3
193.8

103.6
(97.4)

33.7
(28.6)

14.8
(10.3)

9.0
(5.1)

6.2
(2.9)

4.8
(1.9)

3.9
(1.4)

3.3
(1.1)

2.9
(0.9)

2.6
(0.7)

� = 0:9 �
Proposed
Methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T 2 199.2
(199.2)

201
(202)

200
(204)

195
(193)

196
(193)

195
(195)

193
(189)

191
(189)

188
(189)

188
(188)

184
(188)

EWMA/R 200.8
(201.9)

198
(191)

190
(186)

182
(181)

170
(165)

158
(155)

141
(138)

129
(127)

114
(109)

100
(94)

90
(85)

Table 3. ARL (top) and SDRL (bottom) comparisons under shifts form A1 to A1 + �� with � = 0:1 and � = 0:9.

� = 0:1 �
Proposed
Methods

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

T 2 198.5
(200.9)

170.8
(172.9)

108.9
(109.2)

57.6
(57.1)

29.1
(28.3)

14.9
(14.2)

8.1
(7.5)

4.7
(4.2)

2.9
(2.4)

2.1
(1.5)

1.6
(0.9)

EWMA/R 197.3
(193.8)

66.7
(60.8)

17.5
(12.5)

8.3
(4.5)

5.4
(2.4)

4.0
(1.5)

3.2
(1.0)

2.7
(0.8)

2.3
(0.6)

2.1
(0.5)

1.9
(0.4)

� = 0:9 �
Proposed
Methods

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

T 2 199.2
(199.2)

199
(199)

202
(203)

192
(193)

195
(195)

192
(189)

187
(189)

182
(184)

172
(172)

168
(167)

165
(166)

EWMA/R 200.8
(201.9)

200
(197)

184
(185)

168
(165)

151
(151)

132
(129)

110
(109)

93
(90)

77
(74)

64
(59)

55
(50)

to 25.1882, to give an in-control ARL of 200. We
used 10,000 simulation runs to achieve out-of-control
ARL under di�erent shifts in the intercept, the second
parameter, the third parameter and the error standard
deviation. The standard deviations of run length
values are also reported in parentheses to estimate the
standard error of simulations, as well as con�rming the
validity of our simulation studies. Since run length
values follow a geometric distribution in cases where
the parameters are known, the standard deviation of
RL will be close to the mean whenever type one error
is small [26]. The results are summarized in Tables 2
through 5.

In both weak and strong autocorrelation situa-
tions (� = 0:1 and � = 0:9) under the intercept
shift from A0 to A0 + ��, the EWMA/R method
uniformly performs better than the T 2 control chart
in the entire range of the intercept shift. In the case

of strong autocorrelation, the out-of-control ARLs are
larger than the weak autocorrelation situation because
the shifts in the expected value of the residuals for
� = 0:9 are highly small. When a shift of �� in the
intercept of a reference pro�le occurs, a shift of �� in
that period and a shift of ��(1��) at following periods
in the expected value of the residuals will also occur
(see Appendix D).

Under shifts in the second parameter from A1 to
A1 + ��, under the strong autocorrelation coe�cient,
the EWMA/R method is uniformly better than the T 2

control chart. Except in very large shifts, the same
result under the weak autocorrelation coe�cient is
obtained. From Table 3, we can conclude that the out-
of-control ARLs for the strong autocorrelation case are
larger than the weak autocorrelation situation. Similar
justi�cation as that discussed for the intercept case is
applicable here (see Appendix D).



Phase II Monitoring of Autocorrelated Polynomial Pro�les 17

Table 4. ARL (top) and SDRL (bottom) comparisons under shifts from A2 to A2 + �� with � = 0:1 and � = 0:9.

� = 0:1 �
Proposed
Methods

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T 2 198.5
(200.9)

49.7
(49.8)

6.2
(5.6)

1.7
(1.0)

1.1
(0.3)

1.0
(0.0)

1.0
(0.0)

1.0
(0.0)

1.0
(0.0)

1.0
(0.0)

1.0
(0.0)

EWMA/R 197.3
(193.8)

9.3
(5.4)

3.4
(1.2)

2.1
(0.6)

1.6
(0.5)

1.2
(0.4)

1.0
(0.1)

1.0
(0.0)

1.0
(0.0)

1.0
(0.0)

1.0
(0.0)

� = 0:9 �
Proposed
Methods

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T 2 199.2
(199.2)

196.0
(193.4)

182.1
(182.2)

164.8
(164.2)

140.5
(140.0)

120.5
(120.1)

100.1
(99.2)

78.3
(77.1)

64.3
(63.9)

48.8
(48.0)

38.5
(38.1)

EWMA/R 200.8
(201.9)

173.8
(170.1)

117.3
(113.4)

70.7
(67.8)

44.4
(39.3)

28.7
(23.8)

19.6
(14.8)

14.8
(10.3)

11.5
(7.3)

9.3
(5.5)

7.8
(4.2)

Table 5. ARL (top) and SDRL (bottom) comparisons under standard deviation shifts from � to � with � = 0:1 and
� = 0:9.

� = 0:1 
Proposed
Methods

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

T 2 198.5
(200.9)

45.3
(44.2)

15.5
(14.8)

7.2
(6.6)

4.3
(3.7)

2.9
(2.4)

2.2
(1.6)

1.8
(1.2)

1.5
(0.9)

1.4
(0.7)

1.3
(0.6)

EWMA/R 197.3
(193.8)

59.3
(57.5)

23.4
(22.3)

11.8
(11.0)

6.8
(6.0)

4.5
(3.9)

3.2
(2.6)

2.5
(1.9)

2.1
(1.5)

1.8
(1.1)

1.6
(0.9)

� = 0:9 
Proposed
Methods

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

T 2 199.2
(199.2)

45.4
(45.1)

15.7
(15.2)

7.4
(7.0)

4.2
(3.6)

3.0
(2.4)

2.2
(1.6)

1.8
(1.2)

1.5
(0.9)

1.4
(0.7)

1.3
(0.6)

EWMA/R 200.8
(201.9)

58.8
(57.7)

23.8
(23.2)

11.5
(10.9)

6.8
(6.0)

4.4
(3.8)

3.2
(2.6)

2.5
(1.9)

2.1
(1.4)

1.8
(1.2)

1.6
(0.9)

For the third parameter, under the strong auto-
correlation coe�cient, the results are similar to the in-
tercept and the second parameter, and are summarized
in Table 4. Under the weak autocorrelation coe�cient,
the EWMA/R method performs better than the T 2

method in a very small shift. However, the T 2 method
is better than the EWMA/R method in medium shifts.
As the magnitude of shift increases, the performance
of the two methods would be the same. It should be
mentioned that the out-of-control ARLs under shifts
in A2 are smaller than the out-of-control ARLs under
shifts in A0 and A1 despite the fact that the shifts
considered in the third parameter of the reference
pro�le are smaller than shifts in the intercept and
second parameter. The reason is that when a shift
of size �� in the Kth (K = 0; 1; � � � ; k) regression
parameter of the reference pro�le occurs, then a shift of

size ��xKi in that period and a shift of (1��)��xKi in
the following periods, in the expected value of residuals,
will occur (see Appendix D). This implies that the
size of shifts in the expected values of residuals is
a�ected by the values of xi and the location of the
parameters in the polynomial model, in addition to the
autocorrelation coe�cient.

In both weak and strong autocorrelation situa-
tions, under the standard deviation shift from � to �,
the T 2 control chart performs uniformly better than
EWMA/R. In addition, the results are the same for
both weak and strong autocorrelations. This means
that the autocorrelation coe�cient does not a�ect the
out-of-control ARL under the standard deviation shift.
Also, under a strong autocorrelation situation, the out-
of-control ARLs are not as large as the results obtained
in the regression parameters. The reason is that when
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a shift of � in the standard deviation of the reference
pro�le occurs, a shift of �

p
(2 � �2)=(1� �2) in that

period and a shift of � at following periods in the
standard deviation of residuals will occur. Hence, shifts
in the standard deviation of the residuals are the same
as shifts in the standard deviation of the reference
pro�le. The proof is the same as in a linear pro�le
case which is given by Noorossana et al. [18].

In real world applications, there are some factors
which a�ect the parameters of polynomial pro�les.
Any changes in these factors will cause changes in
the parameters of polynomial pro�les. Sometimes a
factor will a�ect both linear and quadratic coe�cients
and sometimes one of them. In the latter case, it
would be possible to expect a shift in the linear
coe�cient with no change in the quadratic coe�cient
or vice versa. This case is investigated in Tables 3
and 4. However, simultaneous shifts in the linear and
quadratic parameters can occur in the former case.
Hence, this case is also investigated and the results are
illustrated in Figures 2 and 3.

As shown in Figure 2, the EWMA/R is uni-
formly better than the T 2 method under the strong
autocorrelation coe�cient. However, under the weak
autocorrelation coe�cient in Figure 3, the performance
of the two methods is roughly the same.

To investigate the e�ect of a quadratic model
on the values of ARL, di�erent quadratic models are
tested under the same x-values used in the previous
section and the same results are obtained. Hence, it
can be concluded that the results do not depend on
the speci�c quadratic model used in the simulation
studies. However, changing the number of set points,
n, and the x-values a�ect the ARl1 values of both
methods, as Kang and Albin [2] discuss for simple linear
pro�les. The T 2 statistic follows a non-central chi-
square distribution under shifts in process parameters

Figure 2. ARL comparison under simultaneous shift in
the second and third parameters with � = 0:9.

Figure 3. ARL comparison under simultaneous shift in
the second and third parameters with � = 0:1.

(see [27]). Kang and Albin [2] state that the non-central
parameter for the distribution is � = �T

P�1 � where
� is equal to (��; ��)T for a simple linear pro�le,

P
is the covariance matrix of parameter estimators and
�� and �� are shifts in the intercept and the slope,
respectively. For a quadratic model, substituting � by
(��; ��; ��) and

P
by the following equation:

�1X
= [�2(XTX)�1]�1

=
1
�2

2666664
n

nP
i=1

xi
nP
i=1

x2
i

nP
i=1

xi
nP
i=1

x2
i

nP
i=1

x3
i

nP
i=1

x2
i

nP
i=1

x3
i

nP
i=1

x4
i

3777775 ; (9)

it can be easily shown that:

� =n�2 + 2��
nX
i=1

xi + (2�� + �2)
nX
i=1

x2
i

+2��
nX
i=1

x3
i + �2

nX
i=1

x4
i ; (10)

where �� and �� and �� are shifts in the intercept
and the second and third parameters, respectively.
Equation 10 implies that n;

Pn
i=1 x

2
i and

Pn
i=1 x

4
i a�ect

the non-central parameter under a separate shift in
the intercept, second parameter and third parameter,
respectively. Also, Wierda [28] shows that the power
of the T 2 control chart increases as the non-central
parameter � increases. Therefore, if one increases
x-values without changing the number of set points,
the ARL1 values do not change under a shift in the
intercept. However, due to an increase in x-values,
the ARL1 values decrease under a shift in the second
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and third parameters. If one increases the number of
set points, the ARL1 under a shift in the intercept,
second and third parameters decrease. Our simulation
studies (not reported here) con�rm these results for the
EWMA/R method as well. In addition, our simulation
studies show that increasing x-values has no e�ect on
the ARL1 of both methods under a shift in standard
deviation. However, increasing n leads to a decrease in
out-of-control ARL in both methods.

EFFECT OF ASSIGNABLE CAUSE ON THE
SHAPE OF PROFILES

To investigate the e�ect of assignable cause on the
shape of pro�les, the example in the fourth section is
used and the e�ect of parameter changes, including
the intercept, linear and quadratic coe�cients and
standard deviation, are taken into consideration. Two
models for each parameter, one in-control and the other
out-of-control, are used and the �gures are plotted in
Figures 4 to 7. To illustrate the e�ect of shifts in
the intercept and the second parameter more clearly,
changing the scale of Figures 4 and 5, a part of the

Figure 4. Step shift in intercept from 3 to 4.

Figure 5. Step shift in second parameter from 2 to 2.25.

Figure 6. Step shift in third parameter from 1 to 1.1.

Figure 7. Step shift in standard deviation from 1 to 2.

pro�les is plotted. For all parameters, the in-control
model is as follows:

yij =3 + 2xi + x2
i + "ij ;

"ij =�"i(j�1) + aij ;

where aij � N(0; 1) and x =1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
In this section, the strong autocorrelation coe�cient
equal to 0.9 is used.

EFFECT OF AUTOCORRELATION
COEFFICIENT ON THE SHAPE OF
PROFILES

To illustrate the e�ect of the autocorrelation coe�cient
on the shape of pro�les over time, �rst we generated
100 in-control pro�les under both weak (� = 0:1) and
strong � = 0:9 autocorrelation coe�cients. Since the
shape of pro�les depends on the estimated parameters
over time, in Figure 8 time series plots for the esti-
mated intercept are depicted for both weak and strong
autocorrelation coe�cients.

Autocorrelation between pro�les intuitively
means that pro�les close in time are more similar in
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Figure 8. Intercept estimators under � = 0:1 and � = 0:9.

shape than those further apart. As the autocorrelation
coe�cient gets larger, the similarity between pro�les
close in time increases. For example, the pro�les
close in time under � = 0:9 are more similar than the
pro�les close in time under � = 0:1.

On the other hand, as the autocorrelation coef-
�cient gets larger, the variation also increases. For
instance, as depicted in Figure 8, variation of the
intercept estimators under a strong autocorrelation
coe�cient is larger than their variation under a weak
autocorrelation coe�cient. This can be concluded from
the following equation as well:

Var(Âj) = �2
"(XTX)�1

=
�2

1� �2 (XTX)�1: (11)

Due to this variation, the intercept estimators under
� = 0:9 di�er signi�cantly at some times, as illustrated
in Figure 8 by circles. Similar results are obtained for
linear and curvature coe�cients (not reported here).
Hence, the pro�les under � = 0:1 generally, over time,
are more similar to each other than the pro�les under
� = 0:9.

The above conclusions are also shown by Figures 9
and 10. In these �gures, �ve pro�les under � = 0:1 and
� = 0:9 are generated, respectively. We changed the
scale of the plots and showed part of the pro�les to be
able to show the di�erences clearer. If one compares
the �ve pro�les, generally, the pro�les under � = 0:1
are more similar than the pro�les under � = 0:9. This
result is due to variations we explained formerly. On
the other hand, with comparing the pro�les in series
4 and 5, which are the fourth and �fth pro�les out
of �ve generated pro�les, under both weak and strong
autocorrelation coe�cients, it is speci�ed that these
two pro�les under � = 0:9 are more similar than � =
0:1. This is the issue we mentioned for pro�les close in
time.

Figure 9. Five generated pro�les under � = 0:1.

Figure 10. Five generated pro�les under � = 0:9.

ILLUSTRATIVE EXAMPLE

The example in the previous section is considered again
to help clarify the approach. Assume the following in-
control model:

yij =3 + 2xi + x2
i + "ij ;

"ij =0:3"i(j�1) + aij ;

where aijs are normally distributed with mean zero
and variance 1. The �xed x-values of 1, 2, � � � , 10 are
used. It is clear that the above model is a numerical
example we used to explain our methods step by step.
However, in practice, this model is unknown in most
situations and one should use historical pro�les and
estimate the model using phase I studies. The type of
autocorrelation and the coe�cient of autocorrelation
should be determined by using time series analyses.
Use of an autocorrelation and partial autocorrelation
function for determining the type of autocorrelation is
recommended.

Since the scope of the paper is in phase II, we
assume that the parameters of the model are known.
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Avoiding elaboration about phase I studies, we go for-
ward through the phase II monitoring of autocorrelated
pro�les.

Our proposed approach consists of the following
steps:

Step 1: Choose the desired in-control ARL value and
smoothing constant, �. Determine parameters
for the control limits, i.e. L in EWMA and
R control charts. The upper control limit
in the T 2 control chart is �2

n;�. The values
of ARL0=200 and � = 0:2 leads to L =
3.08. The values of L can be determined
by using simulation studies. For n = 10, d2
and d3 are 3.078 and 0.797, respectively. The
upper control limit in the T 2 control chart,
considering 10 observations and a type I error
of 0.005, is 25.1882. The control limits are
summarized in Table 6.

Step 2: Start monitoring the process and obtain ob-
servations, yij at �xed values of xi for i=1, 2,
� � � , 10 by getting one individual sample from
the process. Then, compute the statistics and
compare them with the corresponding control
limits. Follow this step until an out-of-control
signal is detected. At this time, a corrective
action is required. To illustrate the second
step of the approach more clearly, we applied
a shift of 0.02� in the curvature coe�cient
of the model. Hence, the parameter changed
from 1 to 1.02. To calculate the statistics,
�rst, we should calculate the residuals using
the following equation:

eij = yij � 0:3 yi(j�1) � 0:7(3 + 2xi + x2
i );

i = 1; 2; � � � ; 10:

It is clear that the observations correspondent to two
successive pro�les are used to calculate the residuals
that are needed to construct the statistics in each time.
The statistics of the EWMA and T 2 control charts
are computed using Equations 5 and 8, respectively.
The statistics of R control chart is computed using
the equation Rj = max(eij) � min(eij). Control
charts for the explained example are plotted in Fig-
ure 11 up to the time the �rst control chart has
signaled.

Table 6. Control limits for the proposed control charts.

Control Chart LCL UCL

T 2 - 25.1882

EWMA -0.3247 0.3247

R 0.6232 5.5328

Figure 11. EWMA control chart (a), R control chart (b),
and T 2 control chart (c).

CONCLUSIONS

In this paper, the e�ect of autocorrelation between
pro�les on the performance of the T 2 control chart
proposed by Kang and Albin [2] was investigated and
showed that autocorrelation leads to poor performance
of this method. Two remedial methods, namely the T 2

control chart and EWMA/R, were used to eliminate
the e�ect of autocorrelation. The performances of
the methods were compared in terms of the average
run length criterion. Simulation results showed that
EWMA/R almost performs better than the T 2 method
under the step shifts in the regression parameters.
However, the T 2 method has better performance in
comparison with the EWMA/R method under a shift in
the standard deviation. This means that the R chart is
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not a competitive control chart for monitoring standard
deviation. Hence, one can use the T 2 control chart,
along with the EWMA control chart, for monitoring
autocorrelated polynomial pro�les. Also, it was shown
that x-values and the number of set points a�ect the
performance of both methods. In addition, the e�ects
of assignable cause and autocorrelation coe�cient on
the shape of pro�les were also investigated.
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APPENDIX A

Expected Value and Variance of Residuals in
Equation 4

E(eij) = E[yij � � yi(j�1) � (1� �)

(A0 +A1xi +A2x2
i + � � �+Akxki )]

= E(yij)� �E(yi(j�1))� (1� �)

(A0 +A1xi +A2x2
i + � � �+Akxki ) = 0;

Var(eij) = Var[yij � � yi(j�1) � (1� �)

(A0 +A1xi +A2x2
i + � � �+Akxki )]

= Var(yij) + �2 Var(yi(j�1))

� 2�[Cov(yij ; yi(j�1))]

=
�2

1� �2 + �2 �2

1� �2 � 2�[Cov(�yi(j�1)

+ (1� �)(A0 +A1xi +A2x2
i + � � �+Akxki );

yi(j�1))] =
�2

1� �2 + �2 �2

1� �2 � 2�2 �2

1� �2 = �2:

APPENDIX B

Relationship Between Regression Parameters
Estimators in Successive Pro�les

Consider the regression parameters estimators in suc-
cessive pro�les, j and j � 1:

Âj = (XTX)�1XTYj ;

and:
Âj�1 = (XTX)�1XTYj�1:

Then, by multiplying the vector of parameters estima-
tors in the j � 1th pro�le by � and subtracting the
result from the vector of parameters estimators in the
jth pro�le, we get:

Âj � �Âj�1 = (XTX)�1XT (Yj � �Yj�1): (B1)

By substituting Equation 2 into Equation B1, we
obtain:
Âj � �Âj�1 = (XTX)�1XT [(1� �)AX + aj ]: (B2)

Hence:
Âj �A = �(Âj�1 �A) + a0j ; (B3)

where a0j = (XTX)�1XTaj which follows a multivari-
ate normal distribution with a mean vector of 0 and
covariance matrix of �2(XTX)�1.

APPENDIX C

Relationship Between Successive T 2 Statistics
by Kang and Albin [2]

Our simulation studies show that the AR(1) struc-
ture between the error terms also transfers to the
T 2 statistics proposed by Kang and Albin [2]. To
illustrate this result, we generated 100 pro�les under
an autocorrelation coe�cient equal to 0.9, based on
the following model:
yij =3 + 2xi + x2

i + "ij ;

"ij =�"i(j�1) + aij ;

where aij 's are normally distributed with mean zero
and variance 1. The �xed x-values of 1, 2, � � � , 10
are used. ACF, PACF and time series plots for the
T 2 statistics are illustrated in the following �gures.
As shown in Figure C1, the ACF plot dies down
exponentially and the PACF plot cuts o� in lag 1.
Hence, it is justi�ed that there is an AR(1) model
between successive T 2 statistics. The same conclusion
is obtained by a time series plot in Figure C2.

Figure C1. ACF and PACF plots of T 2 statistics by Kang and Albin [2] in 100 simulated pro�les.



24 R.B. Kazemzadeh, R. Noorossana and A. Amiri

Figure C2. Time series plot of T 2 statistics by Kang and
Albin [2] in 100 simulated pro�les.

APPENDIX D

Relationship Between Shift in Parameters of
Reference Pro�le and Shift in Expected Value
of Residuals

As shown in Equation 4, the residuals can be calculated
using the following equation:

eij =yij � ŷij = yij � �yi(j�1)

�(1� �)(A0 +A1xi +A2x2
i + � � �+Akxki ):

The expected value for the above equation is equal to:

E(eij) =E(yij)� �E(yi(j�1))

�(1� �)(A0 +A1xi +A2x2
i + � � �+Akxki ):

When a shift with magnitude of �� in the Kth
regression parameter (K = 0; 1; � � � ; k) of the reference
pro�le occurs in period m, then:

E(eij) = 0; j < m;

E(eij) = ��xKi ; j = m;

E(eij) = (1� �)��xKi ; j > m: (D1)

Equation D1 implies that when a shift of size �� in the
Kth regression parameter of reference pro�le occurs,
then, a shift of size ��xKi in that period and a shift of
(1 � �)��xKi in the following periods, in the expected
value of residuals, will occur.
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