
Transaction E: Industrial Engineering
Vol. 17, No. 1, pp. 48{57
c
 Sharif University of Technology, June 2010

An Analytic Variable Limit np Control Chart

M.H. Abooie1 and M. Aminnayeri1;�

Abstract. The Shewhart np control chart is often used to monitor the quantity of nonconforming, but
it is slow in detecting small deviations. This paper proposes an e�cient approach to monitor the quantity
of nonconforming. The novelty of the paper is utilization of an initial belief to construct an analytic
variable limit np control chart. The proposed method uses all gathered data, sequentially. This approach
is signi�cantly faster than some existent e�ective approaches in detecting small deviations. These charts
are mainly used for evaluation of the initial setup in the process. The simulated results for the average run
length pro�les demonstrate the superiority of the new approach against the standard np chart, binomial
CUSUM, binomial EWMA and moving average approach.
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INTRODUCTION

The main purpose of statistical process control is to im-
prove quality and productivity. One of the instruments
that form a quality tool set is a control chart. Control
charts are e�cient instruments for checking changes or
variations in processes [1].

The power or e�ectiveness of a control chart
is usually measured by Average Run Length (ARL),
which is the average number of inspected samples
required to signal an out-of-control condition after it
has occurred. The users of control charts desire the
signal for an out-of-control condition to be as fast as
possible, when a process is out-of-control, i.e. the out-
of-control Average Run Length (ARL1) to be as small
as possible. Conversely, when the process is in control,
the users are happy to see false alarms as little as
possible, i.e. to have a large in-control Average Run
Length (ARL0) [2].

The traditional attribute control charts or the
Shewhart np charts have been widely used in industries
to control the quantity of nonconforming of the process.
A nonconforming unit is a product or service that fails
to meet at least one speci�ed speci�cation. Although
the simplicity of using the Shewhart np charts is an
advantage, its disadvantage merely lies in the informa-

1. Department of Industrial Engineering, Amirkabir University
of Technology, Tehran, Iran.

*. Corresponding author. E-mail: mjnayeri@aut.ac.ir

Received 21 January 2009; received in revised form 15 June
2009; accepted 14 December 2009

tion enclosed about the process in the last plotted point
and the information of the whole sequence of all sample
points is ignored. Hence, Shewhart np control charts
are insensitive to small changes in the process, for a 1.5
standard deviation or less [1].

Control charting methods, based on attribute (or
count) data, were �rst proposed by Shewhart [3]. One
of the major weaknesses of Shewhart np charts is the
ignorance of information given by the sequence of all
points. To remedy this problem, Shewhart control
charts are e�ciently complemented by cumulative sum
(CUSUM) and Exponentially Weighted Moving Aver-
age (EWMA) control charts, when there is interest in
detecting small changes in the process [1].

\The CUSUM control chart was initially proposed
in England by Page and has been studied by many
authors" [1]. Montgomery [4] mentioned that it is
possible to project CUSUM procedures for Binomial
and Poisson variables for modeling nonconformities and
continuous processes. Reynolds and Stoumbos [5] dealt
with a Bernoulli CUSUM chart, which is based on
Bernoulli individual observations. Gan [6] proposed
a CUSUM chart for binomial counts, based on the
CUSUM statistics. This CUSUM chart intends to
detect upward shifts in p. It is noticeable that the
CUSUM control charts are more e�ective than the
Shewhart np charts in detecting small and moderate
p shifts, but they are di�cult to understand and be
used by the operators [5].

The EWMA control chart has been introduced by
Roberts [7]. From the viewpoint of statistical process
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control, the EWMA control chart is comparable to
a CUSUM control chart in its capacity to monitor a
process and detect the presence of assignable causes,
which result in changes [4]. Hunter [8] claimed that the
di�erences between Shewhart, CUSUM and EWMA
control charts, depend on the way each charting
technique uses the data generated by the production
process. Some authors, such as Crowder [9,10], Lucas
and Saccucci [11], claimed that the EWMA control
chart is a good tool for detecting small and moderate
changes in the process average.

Bernoulli EWMA has been introduced to monitor
the outlying process by Somerville et al. [12]. The
EWMA control chart for the fraction of nonconforming
can also be constructed as the binomial EWMA. The
ARL performance of the binomial EWMA is superior
to the standard p chart [13]. Vargas et al. [1] showed
that, in practice, the CUSUM control chart cannot
help to �nd the points out-of-control for the levels of
variation between � 1.0 standard deviation. Hence, for
these variation levels, the EWMA control chart is more
e�cient than CUSUM.

A moving average control chart is a type of
memory-based control chart. Khoo [13] presents a
way to extend the moving average chart to the case
of binomial data for the fraction of nonconforming.
He stated that due to its simplicity and superiority
in detecting shifts, the moving average control chart
for the fraction of nonconforming should be given a
high priority by quality control practitioners; and since
it is more likely for a process to start in-control �rst,
following a warm-up period before the process shifts to
an out-of-control state and in cases when a shift occurs,
the binomial EWMA may perform poorly.

The main idea in this research is to develop an
e�ective analytic variable limit np control chart to be
more sensitive to small deviations. To achieve this
goal, a new variable limit np control chart is developed
and an initial belief about the process's treatment,
based on previous information, is quanti�ed. Then, by
using the Bayesian concept and a recursive function,
an np control chart with variable control limits is
introduced. Also, for veri�cation of the method, the
proposed method is compared with binomial EWMA,
binomial CUSUM, moving average and Shewhart np
control charts.

It is noticeable that the proposed method e�ec-
tively improves the performance of the attribute control
chart in detecting small deviations, compared to other
mentioned methods.

DESCRIPTION OF OUR METHODOLOGY

In this section, a methodology for improvement in
the performance of attribute control charts will be
suggested in two phases. Phase I is dedicated to the

establishment of the control chart and in Phase II, this
control chart will be implemented.

To simplify, it is assumed that sample size n is
constant. At iteration k, k � 1, of the data gathering
process, we de�ne:

Ok = (x1; x2; � � � ; xk);

as an observations vector where xi is the number of
defective products in iteration i, for i = 1; 2; � � � ; k.
After observing the number of defects at iteration k,
namely xk, we quantify the belief of being in an out-
of-control state by B(xk; Ok�1) as follows:

B (xk; Ok�1) = Pr fOOF jxk; Ok�1 g ; (1)

where OOF stands for out-of-control.
At iteration k, we want to improve the belief of

being in an out-of-control state, based on observations
vector, Ok�1 and a new observation, xk. We de�ne:

B(k � 1) = B(xk�1; Ok�2);

as the prior belief and B(k) = B(xk; Ok�1) as the
posterior belief of the out-of-control state for k � 1.
It is clear from the prior belief that for k = 1 we need
to estimate an initial value, B(0), based on our initial
information about the process. If there is no initial
information about the process, B(0) is set equal to 0.5.
Furthermore, we set 0 < B(0) < 1.

We assume that the observations in iterations are
taken independently, then we have:

Pr fxk jOOF;Ok�1g = Pr fxkjOOFg : (2)

With this feature, by using the Bayesian rule, the
posterior belief, B(k), is:

B(k) = B(xk; Ok�1) = PrfOOF jxk; Ok�1g

=
Pr fOOF; xk jOk�1 g

Pr fxk jOk�1 g

=
Pr fOOF jOk�1 gPr fxk jOOF;Ok�1 g

Pr fxk jOk�1 g : (3)

Consequently, we can rewrite Equation 3 as:

B (xk; Ok�1)

=
Pr fOOF jOk�1gPr fxkjOOFg

Pr fOOF jOk�1gPr fxkjOOFg+ Pr fICjOk�1gPr fxkjICg

=
B (Ok�1) Pr fxkjOOFg

B (Ok�1) Pr fxkjOOFg+ (1� B (Ok�1)) Pr fxkjICg ; (4)

where IC stands for in-control. If we assume that
the quality characteristic of the process has a binomial
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distribution with parameter p, the probabilities of
being in an out-of-control or an in-control state are:

Pr fxkjOOFg =
�
n
xk

�
pxk1 (1� p1)n�xk ; (5)

and:

Pr fxkjICg =
�
n
xk

�
pxk0 (1� p0)n�xk ; (6)

where p0 is an in-control quality level and we are going
to detect step shift, p1 , in a fraction of nonconforming
and p0 6= p1. By substituting Equations 5 and 6 in
Equation 4, we have:

B(xk; Ok�1) =

B(Ok�1)
�
n
xk

�
pxk1 (1�p1)n�xk

B(Ok�1)
�
n
xk

�
pxk1 (1�p1)n�xk+(1�B(Ok�1))

�
n
xk

�
pxk0 (1�p0)n�xk

;

(7)

and:

1� B(xk; Ok�1) =

(1� B(Ok�1))
�
n
xk

�
pxk0 (1� p0)n�xk

B(Ok�1)
�
n
xk

�
pxk1 (1�p1)n�xk+(1�B(Ok�1))

�
n
xk

�
pxk0 (1�p0)n�xk

:

(8)

To derive the required recursive functions, assuming
zk = B(xk;Ok�1)

1�b(xk;Ok�1) we have:

zk =
B(xk; Ok�1)

1�B(xk; Ok�1)

=
B(Ok�1)

1�B(Ok�1)

�
p1

p0

�xk �1� p1

1� p0

�n�xk
= zk�1

�
p1

p0

�xk �1� p1

1� p0

�n�xk
: (9)

Hence:

zk =
�
p1

p0

�xk �1� p1

1� p0

�n�xk
zk�1 = � � �

=
�
p1

p0

� kP
i=1

xi �1� p1

1� p0

�nk� kP
i=1

xi
z0; (10)

where:

z0 =
B(0)

1�B(0)
: (11)

As mentioned before, B(0) is the probability of an out-
of-control state of the process and is estimated based

on our initial information. If we take Ln from both
sides of Equation 10, we have:

Ln(zk) =
�
Ln

p1

p0

� kX
i=1

xi

+
�
Ln

1� p1

1� p0

� 
nk �

kX
i=1

xi

!
+ Ln(z0):

(12)

Or:

Ln(zk) =
��
Ln

p1

p0
� Ln1� p1

1� p0

�� kX
i=1

xi

+
�
Ln

1� p1

1� p0

�
(nk) + Ln(z0): (13)

It is obvious that:Xk

i=1
xi � Binomial (nk; p0): (14)

Applying a normal approximation to binomial distri-
butions, we get:

nkp0 � cpnkp0(1� p0) �
kX
i=1

xi � nkp0

+ c
p
nkp0(1� p0); (15)

where parameter c is equal to z�=2 in which z is a
statistic with standard normal distribution and � is
the value of type I error. From the above equation, we
determine UCL and LCL for Ln(zk) as follows:

UCLk =�
Ln

p1

p0
� Ln1� p1

1� p0

��
nkp0 + c

p
nkp0(1� p0)

�
+ (nk)

�
Ln

1� p1

1� p0

�
+ Ln(z0);

(16)

where UCLk and LCLk indicate upper and lower limits
for statistics, Ln(zk), respectively, when p0 < p1. If
p0 > p1, Equation 16 is LCLk and Equation 17 is
UCLk. As observed from Equations 13, 16 and 17,
Ln(z0) is a value that is added to statistics Ln(zk)
and also its lower and upper bounds. To construct our
control limits, we suppose B(0) = 0.5 and then, Ln(z0)
= 0.

In summary, if Ln(zk) is less than UCLk and
more than LCLk, then, the process is in-control, and
otherwise, the process is in an out-of-control state.
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EXPERIMENTAL RESULTS

Visual basic 7 is used to compare our method with
the standard np chart, Binomial EWMA, Binomial
CUSUM and moving average chart. Through simula-
tion, after establishing the control chart, the obtained
control limits from Equations 16 and 17 are divergent
and very close to each other at the beginning. It means
that our interval is very tight at �rst. When the process
is in-control, this causes some initial data to fall to
out-of-control zones immediately, and some of them to
fall to out-of-control zones later. Consequently, we are
faced by a very large variation of run length (VRL0).
To overcome this problem, a constant value, l, will be
added to the parameter, k, as follows:

UCLk+l =
�
Ln

p1

p0
� Ln1� p1

1� p0

�
(n(k + l)p0

+c
p
n(k + l)p0(1� p0)

�
+ (n(k + l))

�
Ln

1� p1

1� p0

�
; (17)

and:

LCLk+l =
�
Ln

p1

p0
� Ln1� p1

1� p0

�
(n(k + l)p0

� c
p
n(k + l)p0(1� p0)

�
+ (n(k + l))

�
Ln

1� p1

1� p0

�
: (18)

By this modi�cation, the values of VRL0 become
smaller and the appropriate ARL0 will be reached. In
other words, by using this parameter, we start at point
l of the control limits instead of point zero. In the
next stage, we should estimate a value for statistics,
Ln(zk+l), when k = 0, the initial value of the statistics,
or the value of Ln(zl). As mentioned before, if we do
not have any information about the process, we put the
initial value of B(l) equal to 0.5; l is a new value instead
of zero. Furthermore, under this condition, we assume
Ln(zl) at the middle of the interval (LCLl; UCLl). It
means that Ln(zl) is equal to:

0:5� (LCLl + UCLl):

Therefore, we have:

Ln(zl) = B(l)� (LCLl + UCLl):

It is noticeable that if we guess that the fraction of
nonconforming is greater than (less than) p0, then we
set a value B(l) � 0:5 (B(l) � 0:5). Parameter l
is one of the parameters of the discussed model, and

it is de�ned in such a way that in combination with
the de�ned value of c, the desired ARL0 and ARL1
is reached. Afterwards, we compare the presented
method with some other methods developed in the
literature.

The selected methods for comparison are binomial
EWMA for � = 0.02, 0.05 and 0.08 and various values
of parameter A, binomial CUSUM, moving average
for w = 2, 3 and 4, and the standard np control
chart. Comparison of the values for parameters of the
binomial EWMA and the moving average, are selected
as those in Khoo [13]. The values of l and c are selected,
based on the acquisition of good results for ARL0 and
standard deviation of RL0 (SDRL0).

To check the validity of our method, we generate
two independent binomial distributions with parame-
ters p0 = 0.1, p0 = 0.2 and n = 200. In the next
step, using Equation 10, we update belief zk. When
zk is greater than UCLk+l in Equation 18, or less than
LCLk+l in Equation 19, then, an out-of-control signal
is observed.

For the comparison study, we calculate the stock-
ticker ARL1 values for all considered methods by 10000
independent replications, i.e. M = 10000, for di�erent
values of p1, which are indicated in the �rst column of
Tables 1 and 2.

The simulation results given in Tables 1 and 2 and
also Figures 1 and 2, clearly show that the proposed
method is better than binomial EWMA, binomial
CUSUM, the moving average and standard np control
chart for shifts of small magnitude from the target
value, p0, but for shifts of large magnitude from the
target value, our method is not as good as the others.

According to the results represented in Tables 1
and 2, the following are observed:

Figure 1. Comparison between binomial EWMA,
binomial CUSUM, moving average, np chart and variable
limit np control chart for p0 = 0.1 (results of EWMA and
MA are the best results shown in Table 1).
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Table 1. ARL pro�les for binomial EWMA, binomial CUSUM, moving average, np chart and variable limit np control
chart based on p0 = 0.10 and n = 200, M=10000 computed by means of a simulation.

Binomial
EWMA

Binomial
CUSUM

Moving
Average

np Chart

Variable
Limit np
Control
Chart

p1
� = 0.02
A = 2:1257

� = 0.05
A = 2:652

� = 0.08
A = 2:7650

U = 0
K = 0:1
H = 0:39

W = 2 W = 3 W = 4 C = 3
l = 120
C = 1

B(l) = 0.5

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.040 4.4 0.5 3.7 0.6 3.2 0.5 - - 1.7 0.7 1.6 0.6 1.6 0.6 2.21 1.6 4.5 0.6

0.050 5.3 0.8 4.4 0.8 3.8 0.7 - - 2.5 1.5 2.3 1 2.2 0.9 4.7 4.2 5.3 0.8

0.060 6.6 1.1 5.6 1.1 4.9 1.1 - - 5 4 3.7 2.3 3.3 1.7 12.1 11.5 6.5 1.1

0.070 8.8 1.9 7.6 2 6.8 2 - - 13.8 12.5 8.3 6.7 6.4 4.5 36.2 34.7 8.7 1.9

0.080 13.5 3.9 12.4 4.3 11.5 4.7 - - 54.8 55 29 27.3 19.5 17.6 122.8 122.3 13.2 3.7

0.085 18.7 6.5 18.1 7.9 17.6 9.1 - - 123.3 121.1 67.3 66.7 43.1 40.9 226.7 224.3 17.6 5.8

0.090 30.1 13.3 32.7 18.6 34.3 22.9 - - 284 271.6 178.2 175.5 116.6 112.9 381.2 381.3 26.9 11.3

0.095 71.8 46.3 102.7 82.8 120.2 108.3 - - 568 574.6 467.6 461 345.2 344.3 441.2 435.3 59.7 37.4

0.105 70.7 47.1 93.3 76 101.9 92.3 73.3 35.1 213.4 213.4 208 207.2 194.7 186.6 161.6 160.8 57.7 38.7

0.110 30.1 14.5 32 19.6 32.7 22.5 38.8 13.9 92.3 89.6 77.1 74.7 64.3 62.3 84.1 82.9 27.9 12.9

0.115 18.9 7.5 18.1 8.8 17.2 9.6 26.9 7.5 43 40.7 34.9 33 28.4 26 46.9 45.8 17.9 6.7

0.120 13.7 4.7 12.4 5.1 11.5 5.4 20 5 23.1 22.1 17.9 16.7 14.9 13 27.7 26.9 13.2 4.3

0.130 8.9 2.5 7.8 2.6 6.9 2.6 13.9 3 8.3 7.4 6.7 5.6 6 4.6 11.2 10.4 8.8 2.4

0.140 6.6 1.7 5.7 1.6 5 1.6 10.5 1.9 4.3 3.5 3.7 2.6 3.5 2.3 5.6 5.1 6.6 1.6

0.150 5.3 1.2 4.5 1.2 3.9 1.1 8.3 1.4 2.6 1.9 2.5 1.5 2.4 1.3 3.3 2.7 5.4 1.1

0.160 4.5 1 3.8 1 3.3 0.9 7.2 1.24 1.9 1.1 1.9 1 1.8 0.9 2.2 1.6 4.6 0.9

p0 = 0.1 390.1 392 585.3 625.9 537.7 553.6 416 342.6 496.6 495.7 549.7 564.4 556.7 535 302 302 860.5 2391.9

Figure 2. Comparison between binomial EWMA,
binomial CUSUM, moving average, np chart and variable
limit np control chart for p0 = 0.2 (results of EWMA and
MA are the best results shown in Table 2).

1. The initial value of zl is assumed to be 0:5� (LCLl
+ UCLl). It means that the process is in an out-
of-control state with the probability of B(l) = 0:5.
We de�ne this initial value based on our recognition
about the process, and it can have any other values
in the (LCLl, UCLl) interval.

2. We de�ne parameters c and l to obtain the desired
ARL0 and ARL1,

3. The standard deviation of RL0 (SDRL0) in our ap-
proach is large in comparison with other methods;
but the ARL0 value is pretty large. Also, as shown
in Tables 3 and 4, the initial 10 percent of RL0 in the
new method is pretty equivalent to other methods.
Therefore, overall, the ARL0 in the new method is
better than the others.

4. It is noticeable that the ARL0 in the new method
is high and that the ARL1 is low for small process
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Table 2. ARL pro�les for binomial EWMA, binomial CUSUM, moving average, np chart and variable limit np control
chart based on p0 = 0.20 and n = 200, M = 10000 computed by means of a simulation.

Binomial
EWMA

Binomial
CUSUM

Moving
Average

np Chart

Variable
Limit np
Control
Chart

p1
� = 0.02
A = 2:1257

� = 0.05
A = 2:6150

� = 0.08
A = 2:7650

U = 0
K = 0:1
H = 0:52

W = 2 W = 3 W = 4 C = 3
l = 120
C = 1

B(l) = 0.5
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.140 5.9 1 4.9 1 4.3 1 - - 3.2 2.3 2.8 1.5 2.6 1.3 5.5 5 5.9 1

0.150 7 1.4 5.9 1.4 5.3 1.4 - - 5.5 4.4 4.1 2.8 3.7 2.2 10.7 10.3 7 1.4

0.160 8.8 2.1 7.6 2.1 6.8 2.1 - - 11 9.7 7.4 5.9 6 4.3 21.7 21.2 8.7 1.9

0.170 11.9 3.3 10.6 3.5 9.9 3.8 - - 27.3 26.3 16.2 14.7 12.4 10.3 48.9 48.1 11.7 3

0.180 18.7 6.8 17.7 7.9 17.5 9.2 - - 80.8 81.1 48.5 47.1 35 33 121.8 121 17.5 5.7

0.185 26.1 11.3 26.5 14.8 27.6 18.2 - - 154.2 157.1 94.9 92.3 70.2 68.3 187.7 196.8 23.6 9.6

0.190 43.1 24.2 49.6 34.5 56.1 43 - - 289.6 284.6 206.1 202.7 158.1 156.1 272.4 279.7 37.9 20.5

0.195 102.6 77.6 144.8 129.8 172.7 167.6 - - 490.4 509.9 408 412.2 331.9 335.4 326.5 328.4 79.4 61.9

0.205 100.8 74.6 133.4 122.2 154.8 144.5 96.7 52.4 297.4 316.1 257.3 267.1 239.4 246.1 201.8 202 84.5 63.8

0.210 42.8 24.2 48.2 34.9 53.5 43.2 51.2 19.8 158.6 167.7 127.6 133 108.8 112.2 129 127.7 37.3 19.6

0.215 26.2 12 26.4 15.1 27 17.6 36.1 10.1 84 85.4 63.2 63.4 51.2 51.9 82.6 83.1 24.2 10.4

0.220 18.8 7.4 17.7 8.4 17.1 9.5 27.4 7.3 47.9 46.6 34.8 33.6 28.4 26.8 53.5 53.2 17.6 6.6

0.230 12 3.9 10.6 4 9.9 4.3 18.2 4.2 18.3 17.5 13.2 12 11 9.4 24.4 24.4 11.7 3.5

0.240 8.9 2.4 7.6 2.4 6.9 2.5 13.8 2.8 8.8 8 6.7 5.5 5.9 4.4 12.5 11.9 8.8 2.3

0.250 7.1 1.7 6 1.7 5.3 1.6 11.1 2 4.9 4.1 4 3 3.7 2.5 6.9 4.4 7 1.7

0.260 5.9 1.3 4.9 1.25 4.4 1.2 9.2 1.62 3.2 2.4 2.8 1.8 2.7 1.5 4.4 3.8 5.9 1.3

p0=0.2 359 348.2 496.8 515.9 490.6 498.8 400.8 329.7 475.2 481.3 460.3 459 418.1 428.7 284.2 282.8 698.9 1747.9

Table 3. RL0 for initial 10 percent of data (p0 = 0:1, n = 200, M = 10000).

Binomial EWMA Binomial CUSUM Moving Average np Chart
Variable
Limit np

Control Chart

� = 0.02
A = 2:127

� = 0.05
A = 2:652

� = 0.08
A = 2:765

U = 0
K = 0:2
H = 0:52

C = 3
W = 2

C = 3
W = 3

C = 3
W = 4

C = 3
l = 120
C = 1

B(l) = 0:5
Min 18 17 7 43 1 1 1 1 9

Max 67 78 73 123 56 63 66 33 47

Average 43.63 48.3 35.4 89.2 29.4 34.8 37.1 16.5 33.9

Variance 193.6 533.8 288.3 506 316.9 373.9 407.5 92.7 99.6

deviations, compared to other considered methods
in this research.

5. The standard deviation of RL1 (SDRL1) in the
variable limit control chart is usually less than its
value in other methods.

6. The proposed method is e�ective for the control of

production processes, in which the recognition of
small deviations from p0 is important, such as in
high tech processes.

7. In accordance with the gained control limits from
Equations 17 and 18, it is clear that they are
divergent, therefore, in the long run, our interval
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Table 4. RL0 for initial 10 percent of data (p0 = 0:2, n = 200, M = 10000).

Binomial EWMA Binomial CUSUM Moving Average np Chart
Variable
Limit np

Control Chart

� =0.02
A = 2:127

� = 0:05
A = 2:615

� = 0:08
A = 2:765

U = 0
K = 0:2
H = 0:52

C = 3
W = 2

C = 3
W = 3

C = 3
W = 4

C = 3
l = 120
C = 1

B(l) = 0:5

Min 12 10 9 35 1 1 1 1 6

Max 66 54 51 104 44 53 39 29 43

Average 42 37.9 35.4 76 21.2 22 22 14.2 29.1

Variance 223.5 101.9 101.4 338 185.9 231 139.4 61.7 98.5

Table 5. ARL sensitivity analysis for parameter B(l) (p0 = 0:2, n = 200, M = 10000).

p1
B(l) = 0:5

C = 1; l = 120
B(l) = 0:55
C = 1; l = 120

B(l) = 0:6
C = 1; l = 120

B(l) = 0:65
C = 1; l = 120

0.14 5.9 6.4 6.9 7.4

0.15 7 7.7 8.2 8.9

0.16 8.7 9.6 10.3 11.1

0.17 11.7 12.7 13.8 14.8

0.18 17.5 19.2 20.7 22.3

0.185 23.6 26.5 28.1 30.3

0.19 37.9 42.3 46 49.1

0.195 79.4 85.7 94.4 101.2

0.205 84.5 75.9 66.5 59.9

0.21 37.3 34 31.4 27.2

0.215 24.2 22.1 19.8 17.6

0.22 17.6 16.2 14.5 12.6

0.23 11.7 10.5 9.3 8.5

0.24 8.8 8 7.2 6.4

0.25 7 6.5 5.7 5.1

0.26 5.9 5.4 4.8 4.4

p0 = 0.2 698.9 558.5 565.5 504.5

will be wide and the ARL1 of the control chart
is increased. Consequently, it is applicable for
evaluation of the initial setup of a process.

In general, using the new method will results a better
ARL0 despite showing a larger SDRL0. Also, for small
deviations from the target, the ARL1 and SDRL1 of
this approach are better than other methods. Hence,
the proposed method o�ers a better performance under
certain conditions.

In the next stage, a sensitivity analysis is per-
formed for the parameters of our model. There are
six parameters in our model, namely, n, c, l, p0, p1 and

B(l). Based on simulation results, sensitive parameters
in our model are B(l), c and l. The variations of other
parameters are not e�ective. The sensitivity analysis
for parameter B(l) is given in Table 5. Appropriate
values of c and l depend on process conditions and must
be evaluated properly.

Table 5 demonstrates that when the value of B(l)
is increased, our method is more capable of recognizing
an upward shift in the quantity of nonconforming (p1 >
p0), and vice-versa. Also, for fair comparison, we used
other good values for parameters of Binomial EWMA
and Binomial CUSUM, the results of which are shown
in Tables 6 and 7.
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Table 6. Other simulation results for binomial EWMA and binomial CUSUM (p0 = 0:1, n = 200, M = 10000).

Binomial EWMA Binomial CUSUM

p1
� = 0.02
A = 2:1275

� = 0.05
A = 2:6520

� = 0.08
A = 2:7650

� = 0.1
A = 2:8155

� = 0.2
A = 2:9

U = 0
K = 0:1
H = 0:39

U = 0:05
K = 0:1
H = 0:39

U = 0
K = 0:101
H = 0:3

U = 0:05
K = 0:101
H = 0:3

ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.105 70.7 93.3 101.9 111 119.7 73.3 68.6 66.8 62.3

0.110 30.1 32 32.7 33.7 38.7 38.8 36.1 33.5 29.4

0.115 18.9 18.1 17.2 17.3 18.6 26.9 23.9 22 18.9

0.120 13.7 12.4 11.5 11.3 11.3 20 18.1 16.4 14.1

0.130 8.9 7.8 6.9 6.5 5.9 13.9 12.2 11.1 9.4

0.140 6.6 5.7 5 4.7 4 10.5 9.2 8.3 7

0.150 5.3 4.5 3.9 3.7 3.1 8.3 7.5 7.4 5.8

0.160 4.5 3.8 3.3 3.1 2.5 7.2 6.3 5.7 4.9

p0 = 0.1 390.1 585.3 537.7 531 443 416 395.5 415 402

Table 7. Other simulation results for binomial EWMA and binomial CUSUM (p0 = 0:2, n = 200, M = 10000).

Binomial EWMA Binomial CUSUM

p1
� = 0:02
A = 2:1275

� = 0:05
A = 2:6150

� = 0:08
A = 2:7650

� = 0:1
A = 2:84

� = 0:2
A = 2:9

U = 0
K = 0:2
H = 0:52

U = 0:05
K = 0:2
H = 0:52

U = 0
K = 0:201
H = 0:45

U = 0:05
K = 0:201
H = 0:45

ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.205 100.8 133.4 154.8 170.4 175.4 96.7 90.9 95.8 91.5

0.210 42.8 48.2 53.5 58.9 67.4 51.2 49.2 49 45.4

0.215 26.2 26.4 27 28.5 31.6 36.1 33.1 32.6 29.9

0.220 18.8 17.7 17.1 17.6 18.1 27.4 25 24.4 22.2

0.230 12 10.6 9.9 9.5 8.9 18.2 16.8 16.4 14.6

0.240 8.9 7.6 6.9 6.6 5.8 13.8 12.5 12.3 11

0.250 7.1 6 5.3 5.1 4.4 11.1 10.2 9.9 8.8

0.260 5.9 4.9 4.4 4.2 3.4 9.2 8.5 8.3 7.5

p0=0.2 359 496.8 490.6 508 391 400.8 385.6 430.4 427.3

Also, for low values of p1 that are related to high
tech processes, Table 8 demonstrates that our method
is superior to others.

As clear from Tables 6 to 8, the results of ARL1
related to the proposed control chart are better than
the best results of Binomial EWMA and Binomial
CUSUM.

NUMERICAL EXAMPLE

In this section, we describe our methodology step by
step as follows.

1. Input l; B(l); c; n; p0 and p1,
2. For k = 0 : m,
3. Calculate LCLk+l and UCLk+l,

4. End,

5. Set Ln(zl) = B(l)(LCLl + UCLl),

6. For k = 1 : m,

7. Determine Xk and Ln(zk+l),

8. If LCLk+l � Ln(zk+l) � UCLk+l,

9. The process is in-control,

10. Else,

11. The process is out-of-control and makes an alarm,

12. Check the process and perform corrective action,

13. Go to step 3,

14. End,

15. End.
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Table 8. Simulation results for binomial EWMA, binomial CUSUM and variable limit np control chart (p0 = 0:01,
n = 500, M = 10000).

Binomial EWMA
Variable
Limit np

Control Chart
Binomial CUSUM

p1
� = 0:02
A = 2:1275

� = 0:005
A = 1:4800

� = 0:001
A = 0:800

c = 0:7
l = 350

B(l) = 0:5

c = 0:7
l = 400

B(l) = 0:65

U = 0
K = 0:01
H = 0:085

U = 0:02
K = 0:01
H = 0:085

U = 0
K = 0:0105
H = 0:048

U = 0:02
K = 0:0105
H = 0:048

U = 0
K = 0:0108
H = 0:038

U = 0:015
K = 0:0108
H = 0:038

ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.0105 160.6 158.3 167.9 127.4 92.6 140.8 124.3 134.8 113.1 142.3 126.4

0.0110 75.1 78 85.7 63.4 47 79.5 67.1 68.5 52.2 68.8 56.5

0.0115 44.8 51 56.6 43.4 30 56.1 45.3 43.7 30.2 42 32.2

0.0120 31.9 37.4 42.4 31 26.3 42.8 34.4 30.8 20.9 30 20.9

0.0125 24.5 29.6 34 25.8 19.8 34.7 27.6 24.3 15.7 21.8 15.5

0.0130 19.9 24.5 28.3 21.1 15.3 28.9 23.1 20 12.8 17.5 12.1

0.0135 16.8 20.7 24.4 16.5 14.7 25.1 19.8 16.8 11 14.9 10

0.0140 14.5 18.2 21.3 15 11.8 22 17.3 14.6 9.2 12.6 8.4

p0=0.01 406 399 397.6 411 407.8 415.4 394 418.3 394 410.4 391.4

Table 9. Obtained values for LCLk+l, UCLk+l, Xk and Ln(zk+l) for mentioned case study when process is in-control.

l = 120; B(l) = 0:5; c = 1; n = 200; p0 = 0:1; p1 = 0:12

k 0 1 2 3 4 5 6 7 8 9

LCLk+l -15.0 -15.1 -15.3 -15.4 -15.5 -15.7 -15.8 -15.9 -16.0 -16.2

UCLk+l -6.0 -6.1 -6.1 -6.2 -6.3 -6.4 -6.5 -6.6 -6.6 -6.7

Xk - 20 16 15 22 15 23 18 20 15

Ln(zk+l) -10.5 -10.6 -11.1 -11.8 -11.7 -12.3 -12.1 -12.4 -12.5 -13.1

In the above algorithm, m is the number of
subgroups that will be observed from the process. As
mentioned before, the best values for l and c are 120
and 1, respectively. For example, assume that l = 120,
c = 1, n = 200, p0 = 0.1 and p1 = 0.12. Also, assume
that the number of subgroups, m, is 10. Obtained
values for LCLk+l, UCLk+l, Xk and Ln(zk+l) are
shown in Table 9.

The drawing of control limits for the above infor-
mation is shown in Figure 3. As observed from Table 9
and Figure 3, at �rst the control limits are divergent
and then they have a negative gradient.

CONCLUSIONS

In this research, we applied an initial belief to detect
the out-of-control state in the np attribute control
charts, and since this approach analyzes data sequen-
tially, it has demonstrated a very good performance.
It has been found that, in general, the variable limit
control np charts are able to improve the e�ectiveness
of detecting shifts in p0 to a substantial degree, es-
pecially for the small shifts in p0, without increasing
the false alarm rate. Although the cost of running
variable limit control np charts is relatively high, the

Figure 3. Control limits for Ln(zk+l) based on
information shown in Table 9.

use of these charts can be justi�ed by the signi�cant
improvement in their performance. In general, the
proposed method yields a signi�cant improvement in
ARL0 and, for small deviations of the process, it
improves ARL1.

For future research, we propose considering other
functions to de�ne the beliefs and economic design of
parameters using this approach.
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