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A Family of Variable Step-Size A�ne Projection
Adaptive Filtering Algorithms with Selective

Regressors and Selective Partial Updates

M. Shams Esfand Abadi1;�, V. Mehrdad1 and A. Gholipour1

Abstract. This paper presents a family of Variable Step-Size (VSS) A�ne Projection (AP) adaptive
�ltering algorithms with Selective Partial Updates (SPU) and Selective Regressors (SR). The presented
algorithms have good convergence speed, low steady state Mean Square Error (MSE), and low computa-
tional complexity features. The stability bounds of the family of SPU-APA, SR-APA and SPU-SR-APA
are analyzed, based on the energy conservation arguments. This analysis does not need to assume a
Gaussian or white distribution for the regressors. We demonstrate the good performance of the proposed
algorithms through simulations in system identi�cation and acoustic echo cancellation scenarios.
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INTRODUCTION

Adaptive �ltering has been, and still is, an area
of active research that plays an active role in an
ever increasing number of applications, such as noise
cancellation, channel estimation, channel equalization
and acoustic echo cancellation [1,2]. The Least Mean
Square (LMS) and its normalized version (NLMS) are
the workhorses of adaptive �ltering. In the presence of
colored input signals, the LMS and NLMS algorithms
have extremely slow convergence rates. To solve this
problem, a number of adaptive �ltering structures,
based on a�ne subspace projections [3-5], data reusing
adaptive algorithms [6-8], Block adaptive �lters [2] and
multirate techniques, have been proposed in the liter-
ature [9-11]. In all these algorithms, the selected �xed
step-size can change the convergence and the steady-
state mean square error. It is well known that the
steady-state Mean Square Error (MSE) decreases when
the step-size decreases, while the convergence speed
increases when the step-size increases. By optimally
selecting the step-size during the adaptation, we can
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obtain both fast convergence rates and low steady-state
mean square errors [12-15]. These selections are based
on various criteria. In [12], squared instantaneous
errors were used. To improve noise immunity under
Gaussian noise, the squared autocorrelation of errors at
adjacent times was used in [14], and in [15], the fourth-
order cumulant of instantaneous error was adopted.
Important examples of two new Variable Step-Size
(VSS) versions of the NLMS and the APA algorithm
(APA) can be found in [16]. In [16], the norm of the
projected weighted error vector is used as a criterion to
determine how close the adaptive �lter is to optimum
performance.

Another feature that should be noticed in VSS
adaptive �lter algorithms is computational complexity.
Several adaptive �lters with �xed step-size, such as
the adaptive �lter algorithms with selective partial up-
dates, have been proposed to reduce the computational
complexity. These algorithms update only a subset of
the �lter coe�cients in each time iteration. The Max-
NLMS [17], the MMax-NLMS [18,19], the variants of
the selective partial update Normalized Least Mean
Square algorithms (SPU-NLMS) [20-22], and SPU
A�ne Projection (SPU-AP) algorithm [21] are impor-
tant examples of this family of adaptive �lter algo-
rithms. Recently an a�ne projection adaptive �ltering
algorithm with Selective Regressors (SR) was proposed
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in [23]. This paper presents a novel a�ne projection
algorithm which reduces computational complexity by
optimally selecting a subset of input regressors at every
iteration.

In this paper, we extend the approach in [16]
to establish the family of VSS-APA. Also, to reduce
the computational complexity, the family of VSS-SPU-
APA and VSS-SR-APA is established. By combining
the SPU and SR approaches, the family of VSS-SPU-
SR-APA is established. The stability of these VSS
adaptive algorithms is analyzed based on the energy
conservation relations. This analysis does not need
to assume a Gaussian or white distribution for the
regressors.

What we propose in this paper can be summarized
as follows:

� The establishment of the family VSS-AP algorithms.

� The establishment of the family of VSS-SPU-AP
algorithms.

� The establishment of the family of VSS-SR-AP
algorithms.

� The establishment of the family of VSS-SPU-SR-AP
algorithms.

� Mean-square stability analysis of the family of AP,
and SR-AP, SPU-AP, and SPU-SR-AP algorithms.

� Demonstrating the presented algorithms in system
identi�cation and acoustic echo cancellation scenar-
ios.

We have organized our paper as follows. First,
the NLMS and SPU-NLMS algorithms will be brie
y
reviewed. Then, the family of APA, SR-APA and
SPU-APA is presented and the family of variable step-
size adaptive �lters is established. Following that, the
computational complexity of the VSS adaptive �lters
is discussed. Finally, before concluding the paper,
we demonstrate the usefulness of these algorithms by
presenting several experimental results.

Throughout the paper, the following notations are
adopted:

k:k Euclidean norm of a vector,
k:k2 squared Euclidean norm of a vector,
ktk2� �-weighted Euclidean norm of a column

vector t, de�ned as tT�t,
Tr(:) trace of a matrix,
(:)T transpose of a vector or a matrix,
A
 B Kronecher product of matrices A and B,
vec(T) creating an M2 � 1 column vector t

through stacking the columns of the
M �M matrix T,

vec(t) creating an M �M matrix T form the
M2 � 1 column vector t,

�max the largest eigenvalue of a matrix,

<+ the set of positive real numbers,
Ef:g expectation operator.

BACKGROUND ON NLMS, AND
SPU-NLMS ALGORITHMS

Figure 1 shows a typical adaptive �lter setup, where
x(n), d(n) and e(n) are the input, the desired and
output error signals, respectively. Here, h(n) is the
M�1 column vector of �lter coe�cients at iteration n.
The desired signal is assumed to conform to the
following linear data model:

d(n) = xT (n)ht + v(n); (1)

where x(n) = [x(n); x(n � 1); � � � ; x(n �M + 1)]T are
the input signal regressors, v(n) is the measurement
noise, assumed to be zero mean, white, Gaussian, and
independent of x(n), and ht is the unknown �lter
vector.

It is well known that the NLMS algorithm can be
derived from the solution of the following optimization
problem:

min
h(n+1)

kh(n+ 1)� h(n)k2; (2)

subject to:

d(n) = xT (n)h(n+ 1): (3)

Using the method of Lagrange multipliers to solve this
optimization problem leads to the following recursion:

h(n+ 1) = h(n) +
�

kx(n)k2 x(n)e(n); (4)

where e(n) = d(n) � xT (n)h(n), and � is the step-
size that determines the convergence speed and Excess
MSE (EMSE).

Now, partition the input signal vector and the
vector of �lter coe�cients into B blocks, each of length
L (note that B = M=L and is an integer), which are
de�ned as:

x(n) = [xT1 (n);xT2 (n); � � � ;xTB(n)]T ; (5)

h(n) = [hT1 (n);hT2 (n); � � � ;hTB(n)]T : (6)

Figure 1. A typical adaptive �lter setup.
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The SPU-NLMS algorithm for a single block update
at every iteration minimizes the following optimization
problem:

min
hj(n+1)

khj(n+ 1)� hj(n)k2; (7)

subject to Equation 3, where j denotes the index of the
block that should be updated [21]. Again by using the
method of Lagrange multipliers, the update equation
for SPU-NLMS is given by:

hj(n+ 1) = hj(n) +
�

kxj(n)k2 xj(n)e(n); (8)

where j = arg maxkxi(n)k2 for 1 � i � B.

FAMILY OF AP, SR-APA AND SPU-APA

In this section, the family of APA, SR-APA and SPU-
APA is presented.

Family of A�ne Projection Algorithms (APA)

Now, de�ne the M �K matrix of the input signal as:

X(n) = [x(n);x(n�D); � � � ;x(n� (K � 1)D)]; (9)

and the K � 1 vector of desired signal as:

d(n)=[d(n); d(n�D); � � � ; d(n� (K � 1)D)]T; (10)

where K is a positive integer (usually, but not nec-
essarily K � M), and D is the positive integer
parameter (D � 1) that can increase the separation
and, consequently, reduce the correlation among the
regressors in X(n).

The family of APA can be established by mini-
mizing Equation 2 but subject to d(n) = XT (n)h(n).
Again, by using the method of Lagrange multipliers,
the �lter vector update equation for the family of APA
is given by:

h(n+ 1) = h(n) + �X(n)W(n)e(n); (11)

where e(n) is the output error vector, which is de�ned
as:

e(n) = d(n)�XT (n)h(n); (12)

and the matrix W(n) is obtained from Table 1 (in
Table 1, � is the regularization parameter, and I is
the identity matrix). The NLMS, �-NLMS, standard
version of the APA, the Binormalized Data-Reusing
LMS (BNDR-LMS) [7], the Regularized APA (R-
APA) [24] and the NLMS with orthogonal correc-
tion factors (NLMS-OCF) [25] are established from
Equation 11. From this equation the Partial Rank
Algorithm (PRA) [26] can also be established when the
adaptation of the �lter coe�cients is performed only
once every K iterations.

Table 1. Family of a�ne projection adaptive �lter
algorithms.

Algorithm K D W(n)

NLMS K = 1 D = 1 1
kx(n)k2

�-NLMS K = 1 D = 1 1
�+kx(n)k2

APA K �M D = 1 (XT (n)X(n))�1

BNDR-LMS K = 2 D = 1 (XT (n)X(n))�1

R-APA K �M D = 1 (�I + XT (n)X(n))�1

NLMS-OCF K �M D � 1 (XT (n)X(n))�1

Family of Selective Regressor APA (SR-APA)

In [23], another novel a�ne projection algorithm with
Selective Regressors (SR), called (SR-APA) was pre-
sented. In this section, we extend this approach to
present the family of SR-APA. The SR-APA minimizes
Relation 2 subject to:

dG(n) = XT
G(n)h(n); (13)

where G = fi1; i2; � � � ; iP g denote the P subset (subset
with P member) of the set f0; 1; � � � ;K � 1g,
XG(n)=[x(n�i1D);x(n�i2D); � � � ;x(n�iPD)]; (14)

is the M � P matrix of the input signal and:

dG(n)=[d(n�i1D); d(n�i2D); � � � ; d(n�iPD)]T ;
(15)

is the P � 1 vector of the desired signal. Using the
method of Lagrange multipliers to solve this optimiza-
tion problem leads to the following update equation:

h(n+1)=h(n)+�XG(n)(XT
G(n)XG(n))�1eG(n); (16)

where:

eG(n) = dG(n)�XT
G(n)h(n): (17)

The indices of G are obtained by the following proce-
dure:

1. Compute the following values for 0 � i � K � 1:

e2(n� iD)
kx(n� iD)k2 ; (18)

where e(n) = [e(n); e(n�D); � � � ; e(n�(K�1)D)]T .

2. The indices of G correspond to P largest values of
Equation 18.

Setting D = 1 leads to SR-APA presented in [23].
Furthermore, from Equation 16, the family of SR-APA,
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such as SR-BNDR-LMS, SR-NLMS-OCF adaptive al-
gorithms will be established.

Equation 16 can also be represented as:

h(n+ 1) = h(n)

+ �X(n)B(n)(BT(n)XT(n)X(n)B(n))�1BT(n)e(n);
(19)

where B(n) = [1i1 ;1i2 ; � � � ;1iP ] is the K � P matrix
and 1ip = [0; � � � ; 0; 1; 0; � � � ; 0]T is the K � 1 vector
with the element 1 in the position ip.

Family of Selective Partial Update APA
(SPU-APA)

The SPU-APA solves the following optimization prob-
lem:

min
hF (n+1)

khF (n+ 1)� hF (n)k2; (20)

subject to d(n) = XT (n)h(n) where F =
fj1; j2; � � � ; jSg denote the indices of the S blocks out of
B blocks that should be updated at every adaptation.
Again, by using the Lagrange multipliers approach, the
�lter vector update equation is given by:

hF (n+1)=hF (n)+�XF (n)(XT
F (n)XF (n))�1e(n);

(21)

where:

XF (n) = [XT
j1(n);XT

j2(n); � � � ;XT
jS (n)]T ; (22)

is the SL�K matrix and:

Xi(n)=[xi(n);xi(n�D); � � � ;xi(n� (K � 1)D)];
(23)

is the L�K matrix. The indices of F are obtained by
the following procedure:

1. Compute the following values for 1 � i � B:

Tr(XT
i (n)Xi(n)) (24)

2. The indices of F correspond to S largest values of
Relation 24.

By setting D = 1, the SPU-APA in [21] can be derived
from Equation 14. Furthermore, from Equation 21,
the new SPU adaptive algorithms such as SPU-BNDR-
LMS and SPU-NLMS-OCF will be established. Also,
the SPU-PRA can be established when the adaptation
of the �lter coe�cients is performed only once every K
iterations. Equation 21 can be represented in the form
of a full update equation as:

h(n+ 1) = h(n)

+ �A(n)X(n)(XT (n)A(n)X(n))�1e(n);
(25)

where the A(n) matrix is the M �M diagonal matrix
with 1 and 0 blocks, each of length L on the diagonal,
and the positions of 1's on the diagonal determine
which coe�cients should be updated in each iteration.
The positions of 1 blocks (S blocks and S � B) on the
diagonal of the A(n) matrix for each iteration in the
family of SPU-APA are determined by the indices of F .

FAMILY OF VSS-SR-APA, VSS-SPU-APA
AND VSS-SPU-SR-APA

In this section, we present the family of VSS-SR-APA,
VSS-SPU-APA and VSS-SPU-SR-APA.

Family of VSS-SR-APA

We now proceed by determining the optimum step-
size, �o(n), instead of using � in the VSS version of
Equation 16. The latter equation can be stated in
terms of weight error vector, ~h(n) = ht � h(n), as:

~h(n+ 1) = ~h(n)� �XG(n)(XT
G(n)XG(n))�1eG(n);

(26)

Taking the squared Euclidean norm and expectations
from both sides of Equation 26,

Efk~h(n+ 1)k2g = Efk~h(n)k2g
+ �2EfeTG(n)(XT

G(n)XG(n))�1eG(n)g
� 2�EfeTG(n)(XT

G(n)XG(n))�1XT
G(n)~h(n)g;

(27)

Equation 27 can be represented in the form of Equa-
tion 44:

Efk~h(n+ 1)k2g = Efk~h(n)k2g ���; (28)

where �� is:

�� = ��2EfeTG(n)(XT
G(n)XG(n))�1eG(n)g

+2�EfeTG(n)(XT
G(n)XG(n))�1XT

G(n)~h(n)g:
(29)

If �� is maximized, then Mmean-Square Deviation
(MSD) will undergo the largest decrease from iteration
n to iteration n + 1. The optimum step-size will
be found with derivation of ��, with respect to �,
d��=d� = 0,

�o(n) =
EfeTG(n)(XT

G(n)XG(n))�1XT
G(n)~h(n)g

EfeTG(n)(XT
G(n)XG(n))�1eG(n)g :

(30)

As we mentioned, we assumed a linear model for the
desired signal, d(n), which we can also express as:

d(n) = XT (n)ht + v(n); (31)
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where v(n) = [v(n); v(n � D); � � � ; v(n � (K � 1)DT

is measurement noise vector assumed to be zero mean,
white, Gaussian, and independent of the input signal
matrix X(n). Since eG(n) = dG(n) �XT

G(n)h(n) and
using Equation 31, we obtain:

eG(n) = XT
G(n)~h(n) + vG(n): (32)

where:

vG(n) = [v(n� i1D); v(n� i2D); � � � ; v(n� iPD)]T :

Using the previous assumptions for the noise sequence
and neglecting the dependency of ~h(n) on the past
noises, we establish the following two sub equations
from the two parts of Equation 30:

� PART I:

EfeTG(n)(XT
G(n)XG(n))�1XT

G(n)~h(n)g
= Ef(~hT (n)XG(n)

+ vTG(n))((XT
G(n)XG(n))�1XT

G(n)~h(n))g
=Ef~hT(n)XG(n)(XT

G(n)XG(n))�1XT
G(n)~h(n)g;

(33)

� PART II:

EfeTG(n)(XT
G(n)XG(n))�1eG(n)g

=Ef~hT(n)XG(n)(XT
G(n)XG(n))�1XT

G(n)~h(n)g
+ EfvTG(n)(XT

G(n)XG(n))�1vG(n)g
=Ef~hT(n)XG(n)(XT

G(n)XG(n))�1XT
G(n)~h(n)g

+ �2
vTr(Ef(XT

G(n)XG(n))�1g): (34)

Finally, the optimum size in Equation 30 becomes:

�o(n) =

Ef~hT (n)XG(n)(XTG(n)XG(n))�1XTG(n)~h(n)g
Ef~hT(n)XG(n)(XTG(n)XG(n))�1XTG(n)~h(n)g+�2

vTr(Ef(XTG(n)XG(n))�1g) :

(35)

Substituting �o(n) instead of � in Equation 16, the
generic variable step-size update equation for SR-APA
will be established. From Equation 35, the optimum
step-size in the family of SR-APA can be stated as:

�o(n)=
EfkqG(n)k2g

EfkqG(n)k2g+�2
vTr(Ef(XT

G(n)XG(n))�1g) ;(36)

where:

qG(n) = XG(n)(XT
G(n)XG(n))�1XT

G(n)~h(n): (37)

Since, from Equation 32, XT
G(n)~h(n) = eG(n)�vG(n),

the expectation of qG(n) can be stated as:

EfqG(n)g=EfXG(n)(XT
G(n)XG(n))�1eG(n)g: (38)

Now, we can estimate qG(n) from the following recur-
sion:

q̂G(n) = �q̂G(n� 1)

+ (1� �)XG(n)(XT
G(n)XG(n))�1eG(n); (39)

where � (0 � � < 1) is the smoothing factor. Using
kq̂G(n)k2 instead of EfkqG(n)k2g in Equation 36, the
update equation for the family of VSS-SR-APA is given
by:

h(n+ 1) = h(n)

+ �(n)XG(n)(XT
G(n)XG(n))�1eG(n); (40)

where:

�(n) = �max:
kq̂G(n)k2

kq̂G(n)k2 + 	
: (41)

Also, 	 = �2
vTr(Ef(XT

G(n)XG(n))�1g) which can be
approximated as P=SNR (the details of this approxi-
mation is given in Appendix A). The step-size changes
with the kq̂G(n)k2, and the constant 	. Also, �max
should be selected in the stability bound to guarantee
the stability (in Appendix B, the stability of the family
of APA has been discussed in details). From Equa-
tion 40, the VSS-SR-PRA will also be established when
the adaptation of the �lter coe�cients is performed
only once every K iterations.

Family of VSS-SPU-APA

The same as in the previous subsection, we again
proceed by determining the optimum step-size, �o(n),
instead of using � in the VSS version of Equation 21.
This equation can be stated in terms of weight error
vector, ~hF (n) = ht;F �hF (n), where ht;F is the partial
unknown true �lter vector, as:

~hF (n+1)=~hF (n)��XF (n)(XT
F (n)XF (n))�1e(n);

(42)

Taking the squared Euclidean norm and expectations
from both sides of Equation 42:

Efk~hF (n+ 1)k2g = Efk~hF (n)k2g
+ �2EfeT (n)(XT

F (n)XF (n))�1e(n)g
� 2�EfeT (n)(XT

F (n)XF (n))�1XT
F (n)~hF (n)g;

(43)
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Equation 43 can be represented in the following form:

Efk~hF (n+ 1)k2g = Efk~hF (n)k2g ���; (44)

where �� is given by:

�� = ��2EfeT (n)(XT
F (n)XF (n))�1e(n)g

+ 2�EfeT (n)(XT
F (n)XF (n))�1XT

F (n)~hF (n)g;
(45)

If �� is maximized, then mean-square deviation
(MSD) will undergo the largest decrease from iteration
n to iteration n + 1. The optimum step-size will be
found with a derivation of ��, with respect to �,
d��=d� = 0,

�o(n) =
EfeT (n)(XT

F (n)XF (n))�1XT
F (n)~hF (n)g

EfeT (n)(XT
F (n)XF (n))�1e(n)g :

(46)

Now, by using the following approximation,
XT (n)~h(n) � XT

F (n)~hF (n), and neglecting the
dependency of ~hF (n) on past noises, the optimum size
in Equation 46 becomes:

�o(n) =

Ef~hTF (n)XF (n)(XTF (n)XF (n))�1XTF (n)~hF (n)g
Ef~hTF(n)XF(n)(XTF (n)XF (n))�1XTF(n)~hF (n)g+�2

vTr(Ef(XTF (n)XF (n))�1g) :

(47)

Now, by de�ning:

qF (n) = XF (n)(XT
F (n)XF (n))�1XT

F (n)~hF (n); (48)

the optimum variable step-size can be approximated
as:

�(n) = �max:
kq̂F (n)k2

kq̂F (n)k2 + �
; (49)

where � = �2
vTr(Ef(XT

F (n)XF (n))�1g), and we can
estimate qF (n) with the following recursion:

q̂F (n) = �q̂F (n� 1)

+ (1� �)XF (n)(XT
F (n)XF (n))�1e(n): (50)

Therefore, the updated equation for the family of VSS-
SPU-APA is established as:

hF (n+ 1) = hF (n)

+ �(n)XF (n)(XT
F (n)XF (n))�1e(n); (51)

where �(n) is obtained from Equation 49. In this
equation, � can be approximated as K=SNR (the
details of this approximation is given in Appendix A).
The step-size changes with kq̂F (n)k2, and �. Again,
�max should be selected in the stability bound to
guarantee the stability (in Appendix B, the stability of
the family of SPU-APA has been discussed in details).
From Equation 51, the VSS-SPU-PRA will also be
established when the adaptation of the �lter coe�cients
is performed only once every K iterations. Table 2
summarizes the presented algorithms.

Family of VSS-SPU-SR-APA

We can combine the VSS-SPU and VSS-SR approaches
in a�ne projection adaptive �lter algorithms to estab-
lish the family of VSS-SPU-SR-APA. De�ning SL�P
input signal matrix through:

XF;G(n) =0BBB@
xj1(n�i1D) xj1(n�i2D) � � � xj1(n�iPD)
xj2(n�i1D) xj2(n�i2D) � � � xj2(n�iPD)

...
...

. . .
...

xjS (n�i1D) xjS (n�i2D) � � � xjS (n�iPD)

1CCCA ;
(52)

Table 2. VSS adaptive �lter algorithms.

XG(n) = [x(n� i1D);x(n� i2D); � � � ;x(n� iPD)]

dG(n) = [d(n� i1D); d(n� i2D); � � � ; d(n� iPD)]T

VSS-SR-APA eG(n) = dG(n)�XT
G(n)h(n)

q̂G(n) = �q̂G(n� 1) + (1� �)XG(n)(XT
G(n)XG(n))�1eG(n)

�(n) = �max: kq̂G(n)k2
kq̂G(n)k2+	 ;	 � P=SNR

h(n+ 1) = h(n) + �(n)XG(n)(XT
G(n)XG(n))�1eG(n),

XF (n) = [XT
j1(n);XT

j2(n); � � � ;XT
jS (n)]T

d(n) = [d(n); d(n�D); � � � ; d(n� (K � 1)D)]T

VSS-SPU-APA e(n) = d(n)�XT (n)h(n)

q̂F (n) = �q̂F (n� 1) + (1� �)XF (n)(XT
F (n)XF (n))�1e(n)

�(n) = �max: kq̂F (n)k2
kq̂F (n)k2+� ;� � K=SNR

hF (n+ 1) = hF (n) + �(n)XF (n)(XT
F (n)XF (n))�1e(n)
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the update equation for the family of VSS-SPU-SR-
APA is given by:

hF (n+ 1) = hF (n)

+ �(n)XF;G(n)(XT
F;G(n)XF;G(n))�1eG(n); (53)

where:

�(n) = �max:
kq̂F;G(n)k2

kq̂F;G(n)k2 + �
: (54)

The positive constant, � = �2
v Tr (Ef(XT

F;G(n)
XF;G(n))�1g), can be approximated as P=SNR, and
we can estimate qF;G(n) with the following recursion:

q̂F;G(n) = �q̂F;G(n� 1)

+ (1��)XF;G(n)(XT
F;G(n)XF;G(n))�1eG(n): (55)

COMPUTATIONAL COMPLEXITY

The computational complexity of the VSS adaptive al-
gorithms has been given in Table 3. The computational
complexity of the APA is from [5]. The SPU-APA
needs (K2 + 2K)SL + K3 + K2 multiplications and
1 division. This algorithm needs B log2 S+O(B) com-
parisons when using the heapsort algorithm [27]. The
SR-APA needs (P 2 + 2P )M +P 3 +P 2 multiplications
and K divisions. This algorithm needs (K � P )M +
K + 1 additional multiplications and K log2 P +O(K)
comparisons. Comparing the updated equation for
APA and VSS-APA shows that the VSS-APA needs
M additional multiplications due to variable step-
size. In VSS-SPU-APA, the additional multiplication
is SL. Also, this algorithm needs B log2 S + O(B)
comparisons. It is obvious that the computational
complexity of VSS-SPU-APA is lower than VSS-APA.
The number of reductions in multiplication for VSS-
SPU-APA is (M �SL)(K2 + 2K+ 1), which is large in

some applications such as networks and acoustic echo
cancellations. Also, the computational complexity of
VSS-PRA and VSS-SPU-PRA is reduced by the factor
of K, because the adaptation of the �lter coe�cients
is performed only once every K iterations. In VSS-SR-
APA, the additional multiplication isM compared with
SR-APA. Also this algorithm needs K log2 P + O(K)
comparisons. It is obvious that the computational
complexity of VSS-SR-APA is lower than VSS-APA.
The computational complexity of VSS-PRA and VSS-
SR-PRA is reduced by the factor of K, because the
adaptation of the �lter coe�cients is performed only
once every K iterations. The VSS-SPU-SR-APA needs
(P 2 + 2P )SL+P 3 +P 2 multiplications, which is lower
than VSS-SR-APA and VSS-SPU-APA. This algorithm
needs also K + 1 divisions, SL + (K � P )M + K +
1 additional multiplications and K log2 P + O(K) +
B log2 S +O(B) comparisons.

SIMULATION RESULTS

We justi�ed the performance of the proposed algorithm
by carrying out computer simulations in system iden-
ti�cation and line echo cancellation scenarios.

System Identi�cation

In this experiment, the unknown system has 32 taps
and is selected at random. The input signal, x(n), is
a �rst order autoregressive (AR(1)) signal generated
according to:

x(n) = �x(n� 1) + w(n); (56)

where w(n) is a zero mean white Gaussian signal. The
value of � is set to 0:9, generating a highly colored
Gaussian signal. The measurement noise, v(n), with
�2
v = 10�3 was added to the noise free desired signal

generated through d(n) = hTt x(n). The adaptive �lter
and the unknown channel are assumed to have the

Table 3. The computational complexity of the APA, SPU-APA, SR-APA, VSS-APA, VSS-SPU-APA, and
VSS-SPU-SR-APA.

Algorithm Multiplications Divisions Additional
Multiplications

Comparisons

APA (K2 + 2K)M +K3 +K2 � � �
SPU-APA (K2 + 2K)SL+K3 +K2 � 1 B log2 S +O(B)

SR-APA (P 2 + 2P )M + P 3 + P 2 K (K � P )M +K + 1 K log2 P +O(K)

SPU-SR-APA (P 2 + 2P )SL+ P 3 + P 2 K (K � P )M +K + 1 K log2 P+O(K)+B log2 S+O(B)

VSS-APA (K2 + 2K)M +K3 +K2 1 M �
VSS-SPU-APA (K2 + 2K)SL+K3 +K2 1 1 + SL B log2 S +O(B)

VSS-SR-APA (P 2 + 2P )M + P 3 + P 2 K + 1 M + (K � P )M +K + 1 K log2 P +O(K)

VSS-SPU-SR-APA (P 2 + 2P )SL+ P 3 + P 2 K + 1 SL+ (K � P )M +K + 1 K log2 P +O(K) +B log2 S +O(B)
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Table 4. Stability bounds of the SR-AP, SPU-AP and SPU-SR-AP algorithms with di�erent parameters for colored
Gaussian input.

Algorithm 2
�max(EfDT (n)XT (n)g)

1
�max(M�1N)

1
max(�(H)2<+) �max

SR-APA (K = 4; P = 1) 3:7009 2:0000 2:8049 2:0000

SR-APA (K = 4; P = 2) 3:7030 2:0001 3:0259 2:0001

SR-APA (K = 4; P = 3) 3:9993 2:0002 3:2445 2:0002

SR-APA (K = 4; P = 4) 3:3778 2:0002 3:6000 2:0002

SPU-APA (K = 4; B = 4; S = 1) 4:3020 0:0315 0:5623 0:0315

SPU-APA (K = 4; B = 4; S = 2) 3:6542 0:6431 2:7474 0:6431

SPU-APA (K = 4; B = 4; S = 3) 3:4910 1:4723 3:2691 1:4723

SPU-APA (K = 4; B = 4; S = 4) 3:2658 2:0002 3:4391 2:0002

SPU-SR-APA (K = 4; B = 4; P = 2; S = 2) 3:8036 0:8999 2:7722 0:8999

SPU-SR-APA (K = 4; B = 4; P = 2; S = 3) 4:0876 1:5911 3:1756 1:5911

SPU-SR-APA (K = 4; B = 4; P = 2; S = 4) 4:1587 2:0013 3:1900 2:0013

same number of taps. The parameters, K, and the
number of blocks (B), are set to 4, and di�erent values
for S and P are used in simulations. In all simulations,
the learning curves are obtained by ensemble averaging
over 200 independent trials. Also, �max is selected
in stability bound to guarantee the stability. Table 4
shows the stability bounds of SR-APA, SPU-APA and
SPU-SR-APA for di�erent values of S. These values are
obtained from Equations B22 and B24 (Appendix B).
Figure 2 shows the simulated steady-state MSE curves
of the SPU-AP algorithm as a function of the step-
size for colored Gaussian input. The step-size changes
from 0:04 to �max for each parameter adjustment.
As we can see, the theoretical values for �max show
the good estimation of the stability bound of SR-AP
algorithms. Figure 3 shows the results for the SPU-

Figure 2. Simulated steady-state MSE of SR-APA with
K = 4 and P = 1; 2; 3; 4 as a function of the step-size for
colored Gaussian input signal.

Figure 3. Simulated steady-state MSE of SPU-APA with
K = 4, B = 4 and S = 2; 3; 4 as a function of the step-size
for colored Gaussian input signal.

AP algorithm. The parameter, B, was set to 4 and
di�erent values for S (2, 3, and 4) were selected. The
step-size changes from 0:04 to �max for each parameter
adjustment. Again, the theoretical values for �max
show the good estimation of the stability bound of
SPU-AP algorithms. In the simulations, �max is set
to 1 for VSS-SR-APA. In VSS-SPU-APA, for S = 2
and S = 3, �max is set to 0.3 and 1, respectively.
Also, the constant values of 	, � and � were set to
0:001.

Figure 4 shows the results for VSS-SR-APA. The
parameter, P , was set to 2, and di�erent values for
� (0.03, 0.1, 1) were used in SR-APA. This result
shows that the VSS-SR-APA has fast convergence
speed and low steady-state MSE. Figure 5 compares
the learning curves of VSS-APA and VSS-SR-APA
for di�erent values of P . As we can see for P =
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Figure 4. Learning curves of SR-APA and VSS-SR-APA
for K = 4 and P = 2.

Figure 5. Comparing the learning curves of VSS-APA
and VSS-SR-APA with P = 2 and VSS-SR-APA with
P = 3.

3, the VSS-SR-APA will be close to the VSS-APA.
Furthermore, the computational complexity of VSS-
SR-APA is lower than VSS-APA. In Figure 6, we
presented the learning curves for PRA and VSS-PRA.
Again, VSS-PRA has better performance compared
with PRA. Figure 7 shows the results of VSS-SR-PRA
for P = 2. The results present a better performance
for VSS-SSR-PRA compared with SR-PRA. Figure 8
compares the performance of the VSS-PRA and VSS-
SR-PRA for P = 2 and P = 3. For P = 3, the results
will be close to VSS-PRA. Also, the computational
complexity of VSS-SPU-PRA will be lower than VSS-
PRA. In Figure 9, we presented the learning curves
of VSS-APA, VSS-PRA, VSS-SR-APA and VSS-SR-
PRA. As we can see, the curve (e) in this �gure, which
is related to VSS-SR-ARA, has close performance to
VSS-APA. Also, the curve (b) in this �gure, which

Figure 6. Learning curves of PRA and VSS-PRA for
K = 4.

Figure 7. Learning curves of SR-PRA and VSS-SR-PRA
for K = 4 and P = 2.

Figure 8. Comparing the learning curves of VSS-PRA,
VSS-SR-PRA with P = 2 and VSS-SR-PRA with P = 3.
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is related to VSS-SR-PRA, with P = 3, has close
performance to VSS-SR-PRA. In this algorithm, the
input vectors are optimally selected and the adaptation
is performed only once every K iterations. Therefore,
the reduction of the computational complexity is large
in this algorithm. Figure 10 shows the performance
of VSS-SR-APA for di�erent values of 	. As we
can see, this algorithm is not very sensitive to this
parameter.

Figure 11 shows the results for VSS-SPU-APA.
The parameter, S, was set to 2, and di�erent values for
� (0.03, 0.1, 0.5) were used in SPU-APA. This result
shows that the VSS-SPU-APA has fast convergence
speed and low steady-state MSE. This fact can be seen
in Figure 12 for S = 3. Figure 13 compares the learning
curves of VSS-APA and VSS-SPU-APA. As we can see
for S = 3, the VSS-SPU-APA will be close to the VSS-

Figure 9. Comparing the learning curves of VSS-APA,
VSS-PRA, VSS-SR-APA with P = 2; 3 and VSS-SR-PRA
with P = 2; 3.

Figure 10. Learning curves of VSS-SR-APA for di�erent
values of 	.

Figure 11. Learning curves of SPU-APA and
VSS-SPU-APA for K = 4, B = 4 and S = 2.

Figure 12. Learning curves of SPU-APA and
VSS-SPU-APA for K = 4, B = 4 and S = 3.

Figure 13. Comparing the learning curves of VSS-APA,
VSS-SPU-APA with S = 2 and VSS-SPU-APA with
S = 3.
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APA. Furthermore, the computational complexity of
VSS-SPU-APA is lower than VSS-APA. Figures 14 and
15 show the results of VSS-SPU-PRA for S = 2 and
S = 3. The results present better performance for
VSS-SPU-PRA compared with SPU-PRA. Figure 16
compares the VSS-PRA and VSS-SPU-PRA for S = 2
and S = 3. For S = 3, the results will be close to
VSS-PRA. Also, the computational complexity of VSS-
SPU-PRA will be lower than VSS-PRA. In Figure 17,
we presented the learning curves of VSS-APA, VSS-
PRA, VSS-SPU-APA and VSS-SPU-PRA. As we can
see, the curve (b) in this �gure, which is related to
VSS-SPU-PRA, has close performance to VSS-APA.
In VSS-SPU-PRA, the �lter coe�cients are partially
updated and this adaptation is performed only once
every K iterations. Therefore, the reduction of the
computational complexity is large in this algorithm.

Figure 18 shows the learning curves of SPU-SR-

Figure 14. Learning curves of SPU-PRA and
VSS-SPU-PRA for K = 4, B = 4 and S = 2.

Figure 15. Learning curves of SPU-PRA and
VSS-SPU-PRA for K = 4, B = 4 and S = 3.

Figure 16. Comparing the learning curves of VSS-PRA
and VSS-SPU-PRA with S = 2, and VSS-SPU-PRA with
S = 3.

Figure 17. Comparing the learning curves of VSS-APA,
VSS-PRA and VSS-SPU-APA with S = 2; 3, and
VSS-SPU-PRA with S = 2; 3.

Figure 18. Simulated steady-state MSE of SPU-APA
with K = 4, B = 4 and S = 2; 3; 4 as a function of the
step-size for colored Gaussian input signal.
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APA and VSS-SPU-SR-APA with S = 2 and P = 2.
This �gure shows that VSS-SPU-SR-APA has better
performance. This fact can be seen in Figure 19 for
P = 3 and S = 3. Figure 20 compares the learning
curves of VSS-SPU-SR-APA and VSS-APA. This �gure
shows that VSS-SPU-SR-APA with S = 3 and P = 3
has close performance to VSS-APA.

We have also studied the performance of the
presented algorithms for real impulse response systems.
Figure 21 shows the impulse response of the car echo
path with 256 taps (the impulse response of the car
echo path is from [21]). The parameters K and B were
set to 4, and the input signal is the same as previous
simulations. Figure 22 compares the performance
of VSS-APA, VSS-SR-APA, VSS-PRA and VSS-SR-
PRA. This �gure shows that for P = 3, the convergence

Figure 19. Simulated steady-state MSE of SPU-APA
with K = 4, B = 4 and S = 2; 3; 4 as a function of the
step-size for colored Gaussian input signal.

Figure 20. Comparing the learning curves of VSS-APA
and VSS-SPU-SR-APA with P = 2, S = 2, and
VSS-SPU-SR-APA with P = 3, S = 3.

Figure 21. Impulse response of the car echo path.

Figure 22. Comparing the learning curves of VSS-APA,
VSS-PRA and VSS-SR-APA with P = 3, and
VSS-SR-PRA with P = 3 when the impulse response of
the car echo path should be identi�ed.

speed of VSS-SR-APA with P = 3 will be close to
the VSS-APA. Figure 23 compares the performance
of VSS-APA, VSS-SPU-APA, VSS-PRA and VSS-
SPU-PRA. This �gure shows that for S = 3, the
convergence speed of VSS-SPU-APA will be close to
VSS-APA.

Line Echo Cancellation

In communications over phone lines, a signal traveling
from a far-end point to a near-end point is usually
re
ected in the form of an echo at the near-end due
to mismatches in circuity. The purpose of a Line
Echo Canceller (LEC) is to eliminate the echo from
a received signal. In this experiment, the input signal
is a speech signal. Also, Figure 24 shows the impulse
response sequence of a typical echo path (the impulse
response of the line echo path and the input speech sig-
nal is from [5], page 347). In this simulation, the length
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Figure 23. Comparing the learning curves of VSS-APA,
VSS-PRA and VSS-SPU-APA with S = 3 and
VSS-SPU-PRA with S = 3 when the impulse response of
the car echo path should be identi�ed.

Figure 24. Impulse response of the line echo path.

of the adaptive �lter is 128. Figure 25a shows the far-
end signal samples. This signal is a synthetic signal
that emulates the properties of speech [5]. Figure 25b
shows the Echo signal. Figures 26a, b and c show the
error signals that are obtained by VSS-SR-APA with
P = 2, and P = 3, and VSS-APA. As we can see,
by increasing the parameter, P , the error has smaller
amplitude. Figures 27a, b and c show the error signals
that are obtained by VSS-SPU-APA with S = 2, S = 3
and VSS-APA. Again, by increasing the parameter S,
the error has smaller amplitude. Figures 28a, b and
c show the results for VSS-SPU-S-APA with P = 2,
S = 2, and VSS-SPU-SR-APA with P = 3, S = 3 and
VSS-APA.

CONCLUSIONS

In this paper, we presented the family of VSS-APA,
VSS-SR-APA, VSS-SPU-APA and VSS-SPU-SR-APA.

Figure 25. (a) Far-end signal; (b) Echo signal.

Figure 26. (a) Error obtained by VSS-SPU-APA with
P = 2; (b) Error obtained by VSS-SPU-APA with P = 3;
(c) Error obtained by VSS-APA.

These algorithms exhibit fast convergence while reduc-
ing the steady-state mean square error as compared to
the ordinary APA, SR-APA and SPU-APA algorithms.
The presented algorithms were also computationally
e�cient. The stability bounds of these algorithms
were analyzed based on energy conservation arguments.
We demonstrated the performance of the presented
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Figure 27. (a) Error obtained by VSS-SPU-SR-APA
with S = 2; (b) Error obtained by VSS-SPU-APA with
S = 3; (c) Error obtained by VSS-APA.

Figure 28. (a) Error obtained by VSS-SPU-SR-APA with
P = 2, S = 2; (b) Error obtained by VSS-SPU-SR-APA
with P = 3, S = 3; (c) Error obtained by VSS-APA.

VSS adaptive algorithms in system identi�cation and
acoustic echo cancellation scenarios.
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APPENDIX A

Finding an Approximation for 	, and �

In VSS-SR-APA, positive constant 	 is related to
	 = �2

vTr(Ef(XT
G(n)XG(n))�1g). This quantity is

given by:

	 = �2
vTr

0BBB@E
0BBB@
0BBB@
x(n� i1) x(n� i1 � 1)
x(n� i2) x(n� i2 � 1)

...
...

x(n� iP ) x(n� iP � 1)

� � � x(n� i1 �M + 1)
� � � x(n� i2 �M + 1)
. . .

...
� � � x(n� iP �M + 1)

1CCCA
�

0BBB@
x(n� i1) x(n� i2)

x(n� i1 � 1) x(n� i2 � 1)
...

...
x(n� i1 �M + 1) x(n� i2 �M + 1)

� � � x(n� iP )
� � � x(n� iP � 1)
. . .

...
� � � x(n� iP �M + 1)

1CCCA
1CCCA
�11CCCA : (A1)

Similar to [28], by neglecting the o�-diagonal elements,
Equation 53 can be obtained:

	 = �2
vTr(E

0BBB@
1

x2(n�i1)+���+x2(n�i1�M+1)
0
...
0

0 � � �
1

x2(n�i2)+���+x2(n�i2�M+1) � � �
...

. . .
0 � � �
0
0
...
1

x2(n�iP )+���+x2(n�iP�M+1)

1CCCA : (A2)

Now applying the expectation and trace operators, we
obtain:

	 = �2
v

�
E
�

1
kx(n� i1)k2

�
+ E

�
1

kx(n� i2)k2
�

+ � � �+ E
�

1
kx(n� iP )k2

�
: (A3)

Equation 55 can be stated as:

	 = P:�2
vE
�

1
kx(n� i1)k2

�
: (A4)



96 M. Shams Esfand Abadi, V. Mehrdad and A. Gholipour

Now, we obtain that 	 can be approximated as
P=SNR. Therefore, 	 is inversely proportional to SNR
and proportional to P .

In VSS-SPU-APA, parameter � is obtained from
the following relation:

� = �2
vTr

0BBB@E
0BBB@
0BBB@

xTj1(n) xTj2(n)
xTj1(n� 1) xTj2(n� 1)

...
...

xTj1(n�K + 1) xTj2(n�K + 1)

� � � xTjS (n)
� � � xTjS (n� 1)
. . .

...
� � � xTjS (n�K + 1)

1CCCA

�

0BBB@
xj1(n) xj1(n� 1)
xj2(n) xj2(n� 1)

...
...

xjS (n) xjS (n� 1)

� � � xj1(n�K + 1)
� � � xj2(n�K + 1)
. . .

...
� � � xjS (n�K + 1)

1CCCA
1CCCA
�11CCCA ;

(A5)

which can be represented as:

� =�2
vTr

0BBB@E
0BBB@

1kxj1 (n)k2+���+kxjS (n)k2
0
...
0

0 � � �
1kxj1 (n�1)k2+���+kxjS (n�1)k2 � � �
0
...

. . .
0 � � �

0
0
...
1kxj1 (n�K+1)k2+���+kxjS (n�K+1)k2

1CCCA
1CCCA : (A6)

By applying the expectation and trace operators,
Equation A2 can be stated as:

� = K:�2
vE
�

1
kxj1(n)k2 + : : :+ kxjS (n)k2

�
: (A7)

Now we obtain that � can be approximated asK=SNR.

APPENDIX B

Mean-Square Stability Analysis of the Family
of SPU-APA, SR-APA and SPU-SR-APA

Now, we introduce the general �lter vector update
equation to analyze the mean-square stability of the
family of SPU and SR a�ne projection algorithms. The
general �lter vector update equation to establish the
family of SPU-APA and SR-APA is introduced as:

h(n+ 1) = h(n) + �C(n)X(n)Z(n)e(n): (B1)

where C(n) and Z(n) matrices are obtained from
Table B1. To �nd the theoretical stability bound,
we �rst study the transientbehavior of the adaptive
algorithms. The transient behavior of an adaptive �lter
algorithm is determined by evolution of the expected
squared a priori error in time n, i.e. Efe2

a(n)g, which
is:

Efe2
a(n)g = Ef~hT (n)x(n)xT (n)~h(n)g; (B2)

where ~h(n) = ht � h(n) is the weight-error vector.
Employing the common independence assumption [2],
we have:

Efe2
a(n)g = Ef~hT (n)R~h(n)g = Efk~h(n)k2Rg; (B3)

where the autocorrelation matrix is R = Efx
(n)xT (n)g. Thus, to obtain the learning curve, we
need to �nd Efk~h(n)k2Rg as a function of n. We
can recursively obtain Efk~h(n)k2�g, where � is a
positive de�nite symmetric matrix whose dimension
is commensurate with that of ~h(n). If we substitute
Equation 1 into Equation 12, the relation between the
output estimation error vector, the a priori error vector
and the noise vector is:

e(n) = ea(n) + v(n); (B4)

where ea(n) = XT (n)~h(n) is the a priori error vector.
The generic weight error vector update equation can
be stated as:

~h(n+ 1) = ~h(n)� �C(n)X(n)Z(n)(XT (n)~h(n)

+ v(n)): (B5)

By de�ning D(n) = ZT (n)XT (n)CT (n), the �
weighted norm of both sides of Equation B5 is:

k~h(n+ 1)k2� = k~h(n)k2�0 + �2vT (n)X�(n)v(n)

+ fCross terms involving one instance ofv(n)g;
(B6)
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Table B1. Family of SPU, SR, and SPU-SR a�ne projection algorithms.

Algorithm K D C(n) Z(n)

SPU-APA K �M D = 1 A(n)I (XT (n)A(n)X(n))�1

SPU-BNDR-LMS K = 2 D = 1 A(n)I (XT (n)A(n)X(n))�1

SPU-R-APA K �M D = 1 A(n)I (�I + XT (n)A(n)X(n))�1

SPU-NLMS-OCF K �M D � 1 A(n)I (XT (n)A(n)X(n))�1

SR-APA K �M D = 1 I B(n)(BT (n)XT (n)X(n)B(n))�1BT (n)

SR-BNDR-LMS K = 2 D = 1 I B(n)(BT (n)XT (n)X(n)B(n))�1BT (n)

SR-R-APA K �M D = 1 I B(n)(�I + BT (n)XT (n)X(n)B(n))�1BT (n)

SR-NLMS-OCF K �M D � 1 I B(n)(BT (n)XT (n)X(n)B(n))�1BT (n)

SPU-SR-APA K �M D = 1 A(n)I B(n)(BT (n)XT (n)A(n)X(n)B(n))�1BT (n)

SPU-SR-BNDR-LMS K = 2 D = 1 A(n)I B(n)(BT (n)XT (n)A(n)X(n)B(n))�1BT (n)

SPU-SR-R-APA K �M D = 1 A(n)I B(n)(�I + BT (n)XT (n)A(n)X(n)B(n))�1BT (n)

SPU-SR-NLMS-OCF K �M D � 1 A(n)I B(n)(BT (n)XT (n)A(n)X(n)B(n))�1BT (n)

where:

�0 = �� ��DT (n)XT (n)� �X(n)D(n)

+ �2X(n)X�(n)XT (n); (B7)

and:

X�(n) = D(n)�DT (n): (B8)

Taking the expectation from both sides of Equation B6
yields:

Efk~h(n+ 1)k2�g = Efk~h(n)k2�0g
+ �2EfvT (n)X�(n)v(n)g: (B9)

We now obtain the time evolution of the weight-error
variance. The expectation of k~h(n)k2�0 is di�cult to
calculate because of the dependency of �0 on C(n),
Z(n), X(n) and of ~h(n) on prior regressors. To solve
this problem, we need to use the following indepen-
dence assumptions [4]:

1. X(n) is an independent and identically distributed
sequence matrix. This assumption guarantees that
~h(n) is independent of both �0 and X(n).

2. ~h(n) is independent of DT (n)XT (n).

Using these assumptions, the �nal results is:

Efk~h(n+ 1)k2�g = Efk~h(n)k2�0g
+ �2EfvT (n)X�(n)v(n)g; (B10)

where:

�0 = ����EfDT (n)XT (n)g��EfX(n)D(n)g�
+ �2EfX(n)X�(n)XT (n)g: (B11)

Looking only at the second term of the right hand side
of Equation B10, we write:

EfvT (n)X�(n)v(n)g = EfTr(v(n)vT (n)X�(n))g
= Tr(Efv(n)vT (n)gEfX�(n)g): (B12)

Since Efv(n)vT (n)g = �2
vI, Equation B10 can be

stated as:

Efk~h(n+ 1)k2�g = Efk~h(n)k2�0g
+ �2�2

vTr(EfX�(n)g): (B13)

Applying the vec(:) operator [29] on both sides of
Equation B11 yields:

vec(�0) = vec(�)� �vec(�EfDT (n)XT (n)g)
� �vec(EfX(n)D(n)g�)

+ �2vec(EfX(n)X�(n)XT (n)g): (B14)

Since, in general, vec(P�Q) = (QT 
 P)vec(�) [29],
Equation B14 can be written as:

�0 = � � �(EfX(n)D(n)g 
 I):�

� �(I
 EfX(n)D(n)g):�
+ �2(Ef(X(n)D(n))
 (X(n)D(n))g):�; (B15)

where �0 = vec(�0) and � = vec(�). By de�ning the
M2 �M2 matrix G as:

G = I� �EfX(n)D(n)g 
 I� �I
EfX(n)D(n)g
+ �2Ef(X(n)D(n))
 (X(n)D(n))g; (B16)
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Equation B15 becomes:

�0 = G:�: (B17)

The second term of the right hand side of Equation B13
is:

Tr(EfX�(n)g) = Tr(EfDT (n)D(n)g:�): (B18)

De�ning 
 as:


 = vec(EfDT (n)D(n)g); (B19)

we have:

Tr(EfDT (n)D(n)g:�) = 
T :�: (B20)

From the above, the recursion of Equation B13 is:

Efk~h(n+ 1)k2�g = Efk~h(n)k2G�g+ �2�2
v


T�: (B21)

The equation is stable if matrix G is stable [4]. From
Equation B16, we know that G = I � �M + �2N,
where M = EfX(n)D(n)g
I+I
EfX(n)D(n)g, and
N = Ef(X(n)D(n)) 
 (X(n)D(n))g. The condition
on � to guarantee the convergence in the mean-square
sense of the adaptive algorithms is:

0 < � < minf 1
�max(M�1N)

;
1

max(�(H) 2 <+)
g;
(B22)

where H =
� 1

2M � 1
2N

I 0

�
. Taking the expectation

from both sides of Equation B5 yields:

Ef~h(n+ 1)g = [I� �EfDT (n)XT (n)g]Ef~h(n)g:
(B23)

From Equation B23, the convergence to the mean of
the adaptive algorithm in Equation B1 is guaranteed
for any � that satis�es:

� <
2

�max(EfDT (n)XT (n)g) : (B24)

BIOGRAPHIES

Mohammad Shams Esfand Abadi was born in
Tehran, Iran, in 1978. He received a BS degree in
Electrical Engineering from Mazandaran University,
in Iran, and his MS degree in Electrical Engineering
from Tarbiat Modares University, in Tehran, in 2000
and 2002, respectively. He, subsequently, received his
PhD degree in Biomedical Engineering from Tarbiat
Modarres University, in Tehran, Iran, in 2007.

Since 2004, he has been with the Department of
Electrical Engineering at Shahid Rajaee University, in
Tehran, Iran. During the Autumn of 2003, Spring
2005, and again in the Spring of 2007, he was a
visiting scholar with the Signal Processing Group at
the University of Stavanger, Norway. His research
interests include Digital Filter Theory and Adaptive
Signal Processing Algorithms.

Vahid Mehrdad was born in Khoramabad, Iran,
in 1985. He received a BS degree in Electronic
Engineering from Shahid Rajaee Teacher Training Uni-
versity, in Tehran, Iran, in 2007, where he is now a
Master's degree student in the Department of Electrical
Engineering. His research activities include Adaptive
Signal Processing and Adaptive Filtering.

Azizollah Gholipour was born in Behshahr, Mazan-
daran, Iran, in 1974. He received a BS degree
in Electronic Engineering from Mohajer Institute of
Technology, in Isfahan, Iran, in 1999. He is presently a
Master's degree student in the Department of Electrical
Engineering at the Shahid Rajaee Teacher Training
University, in Tehran, Iran. His research activities
include Adaptive Signal Processing and Adaptive Fil-
tering.


