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Classifying Hypnotizable Groups Using
EEG Weighted Regional Frequency

G. Baghdadi1 and A. Motie Nasrabadi1;�

Abstract. Determination of hypnotizability is important, before prescribing any hypnotic treatment.
Existing methods for measuring the level of hypnotic susceptibility are subjective, with some problems. In
this study, a feature based on EEG weighted regional frequency was introduced, which can characterize
the level of the subject's hypnotizability objectively. The ability of this feature for making a signi�cant
di�erence between three hypnotizable groups at the end of hypnotic suggestion was shown using statistical
analyses. This feature was calculated based on the empirical mode decomposition method and the Hilbert
transform. The EEG signals that were used in this study were recorded during hypnotic suggestion from
32 subjects. A K-nearest neighborhood-based classi�er was designed for classi�cation of the hypnotizable
groups. The performance of the classi�er was validated using the leave-one-out method, which showed
the mean error of 3.13% in determination of the subject's hypnotic susceptibility level. This evaluation
and obtaining the error were done by comparing the new method's results with the score of hypnotizability
that was determined for each subject, using the subjective Waterloo-Stanford criterion. The new method,
as opposed to common subjective clinical methods, represents a real time and objective procedure for
determining hypnotic susceptibility.

Keywords: Hypnosis; Hypnotizability; Empirical mode decomposition; Hilbert transform; Classi�cation;
K-nearest neighborhood.

INTRODUCTION

In recent years, much research has been devoted to
processing EEG signals that can be recorded from the
brain in di�erent situations such as sleep, anesthesia
and hypnosis. Hypnosis is a trance-like state of mind.
The purpose of hypnosis is to help the subject gain
more control over his behavior, emotions or physical
well-being. Hypnotherapists say that hypnosis creates
a state of deep relaxation and quiets the mind. When
a person is hypnotized, he can concentrate intensely
on a speci�c thought, memory, feeling or sensation,
while blocking out distractions, and this can be used to
change his behavior and, thereby, improve his health
and well-being. However, these changes can only
be done when the subject is more open than usual
to suggestion. In other words, the best e�ect of
hypnotherapy is on subjects who are more hypnoti-
zable. Hypnotizability is the ability to experience a
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hypnotic trance. People vary in their ability to go
into a trance at will and on purpose. Nowadays, the
current method for determination of hypnotizability is
the use of di�erent standard tests that measure how
well a subject conforms to the behavior of a classically
hypnotized person [1-7]. Using the results of these
tests, some people are found to be markedly more
hypnotizable. There are di�erent international tests,
such as the Stanford Hypnotic Susceptibility Scale
(SHSS) [8,9], the Hypnotic Induction Pro�le (HIP) [6]
and the Waterloo-Stanford Group Scale of hypnotic
susceptibility (WSGS) [2-5], which were designed in
order to characterize the hypnotic susceptibility of
a subject based on di�erent questions and activities
that a hypnotizer wants a subject to answer and
perform. These standard clinical tests are subjective,
so, they have some problems. As an example, clinical
and subjective evaluations take time and are boring,
which sometimes makes the subject tired and reduces
the level of hypnotic trance. Also, sometimes the
subjects try to cheat the hypnotherapist, so he has
to investigate the reactions of the subject to the
tests in order to obtain a real hypnotizability level.
Because of these problems, researchers try to �nd an
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objective method for determining the hypnotizability
level. In this way, they try to investigate the e�ect
of hypnosis on di�erent biological signals [10-18]. In
this study, we focus on hypnosis and its e�ects on
the EEG signal, in order to determine the level of
hypnotizability.

Several studies have been directed to the iden-
ti�cation of the hypnosis e�ect on EEG signals. Ini-
tial studies [19-21] suggested that highly hypnotiz-
able people produced more EEG alpha under resting
conditions than low-hypnotizable people. However,
Evans [22] did not show this di�erence and sug-
gested that previous results were biased by demand
characteristics, and Dumas [23] suggested that the
alpha-hypnotizability relationship resulted from biased
subject selection [23]. Perlini and Spanos [24], in their
critical review of alpha and hypnotizability, concluded
that there is little support for an alpha-hypnotizability
relationship. Gra�n et al. [25] showed that following
a standardized hypnotic induction, low susceptible
participants displayed an increase in theta activity,
whereas high-susceptible participants displayed a de-
crease.

Ray [26], using fractal dimensionality measures,
reported that highly hypnotizable individuals display
underlying brain patterns associated with imagery,
whereas low hypnotizable individuals show patterns
consistent with cognitive activity.

Abootalebi et al. [27] investigated and found
the relation between hypnotizability and higher order
spectra of EEG signals. The �ndings of these studies
have not been consistently replicated either. One
explanation is that perhaps the subject's personal pref-
erences, and the hypnotic techniques used in di�erent
studies vary widely; by the fact that brain activity
di�ers in hypnosis depending on the nature of the
suggestions. Nasrabadi [28] represents a method for
estimating the hypnotizability score based on EEG
feature extraction.

Horton et al. [29] performed the �rst MRI study
to report di�erences in brain structure size between
low and highly hypnotizable, healthy, right-handed
young adults. They imported that highly hypnotizable
subjects had a signi�cantly larger rostrum (a corpus
callosum area involved in the allocation of attention
and transfer of information between prefrontal cortices)
than low hypnotizable subjects.

Lee et al. [30] investigated the correlation between
HIP-induction scores and the scaling exponent of DFA,
but he found no relation between this feature and
hypnotizability.

Baghdadi & Nasrabadi [31] showed that some
EEG fractal features have a signi�cant relationship
with the �nal depth of the hypnosis or hypnotizability
level.

Behbahani and Nasrabadi [32] propose a method

for classifying hypnotizable groups, based on the fuzzy
similarity index of hypnosis EEG signals. Behbahani
reported that based on a fuzzy similarity index feature
we can classify the highly hypnotizable subjects from
other subjects with high accuracy.

The mentioned studies, except [26,31], tried to
�nd the e�ect of hypnosis on di�erent brain wave
features, not to classify the subjects into di�erent
hypnotizable groups. In this way, the studies are con-
tinued in order to �nd an objective general method for
classifying subjects into more hypnotic susceptibility
levels, such as very low, low, medium, high and very
high.

This paper o�ers a promising method for clas-
sifying three hypnotizable groups (Low, medium and
high) using calculation of the weighted regional fre-
quencies based on an Empirical Mode Decomposition
method (EMD) and Hilbert Transformation (HT). A
combination of these two algorithms, which is called the
Hilbert Huang Transform (HHT), was used for analyz-
ing EEG signals during di�erent brain activities [33-37].
Empirical mode decomposition is a new method for
analyzing nonlinear and non-stationary data. By this
method, any complicated data set can be decomposed
into a �nite and often small number of intrinsic mode
functions that admit well-behaved Hilbert transforms.
This decomposition method is adaptive and, therefore,
highly e�cient. Since the decomposition is based on
the local characteristic time scale of the data, it is
applicable to nonlinear and non-stationary processes.
The EMD method was initially proposed for the study
of ocean waves [38], and found immediate applications
in biomedical engineering [39,40]. In this study, the
EMD method was implemented in a study of the
hypnotizability of di�erent subjects and an e�ort was
made to �nd out if there is a signi�cant di�erence
between three hypnotizable groups (low, medium and
high) using a weighted regional frequency instead of
common and earlier subjective clinical methods, such
as WSGS.

MATERIALS AND METHODS

Data and Subjects

The data includes EEG signals that were recorded
from 32 right-handed men during hypnosis. EEG data
were recorded from 19 channels and were sampled with
256 Hz based on a 10-20 system of electrode placement.
Hypnosis induction was done by playing a recorded
sound on a tape, so, the method and time of the
hypnosis induction were the same for all subjects. This
tape was based on the Waterloo-Stanford criterion [2-
5]. An EEG was recorded for 15 minutes during
the hypnosis induction. In order to evaluate and
compare the new method's results with a subjective
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Table 1. Demographic and clinical characteristics of subjects.

Gender Male

Number of hypnosis sessions 3-6 times

Physical features of subjects before recording
No high physical activity

Enough relaxation

Right handed

Duration of hypnosis 15 mins

Time of recording Afternoon (about 4 to 8 o'clock)

Score of hypnotizability in Waterloo-Stanford criterion 12 to 52

Number of low hypnotizable subjects 4

Number of medium hypnotizable subjects 18

Number of high hypnotizable subjects 10

method, a score of hypnotizability was determined
for each subject based on the subjective Waterloo-
Stanford criterion. The WSGS scores are between 12-
60. Based on these scores, the subjects divided into
three groups, low (WSGS scores are between 12 and
22), medium (WSGS scores are between 23 and 41) and
high (WSGS scores are between 42 and 60). Table 1
shows the demographic and clinical characteristics of
subjects.

Empirical Mode Decomposition (EMD)

Huang et al. [38] have introduced the EMD method
for nonlinear and nonstationary signal analysis. The
general idea of this method is the sifting process to
decompose any given signal into its intrinsic oscilla-
tions. With the EMD approach, the basic functions
themselves are nonlinear, which can be derived directly
from the data. Hence, the analysis is adaptive. The
adaptive basis is called the Intrinsic Mode Function
(IMF) and this method decomposes a time series into
a �nite and often small number of IMFs each of which
must satisfy the following de�nition:

1. Number of extreme and number of zero-crossings
must di�er at most by one.

2. At any point, the mean value of the upper and lower
envelope is zero.

The IMFs, xi(t), of a signal y(t), is found by the
following loop:

1. Compute the mean of upper and lower envelopes of
signal, m(t),

2. Subtract from the signal to obtain zi(t) = y(t) �
m(t).

3. Check if zi(t) is an IMF, then, zi(t) is the �rst IMF
of y(t). If it is not an IMF, zi(t) is treated as the
original signal and steps 1 to 3 are repeated;

4. Separating zi(t) from y(t), we get yi(t) = y(t) �
zi(t). yi(t) is treated as the original data and, by
repeating the above processes, the second IMF of
y(t) could be obtained [41-43].

The second step is applying the Hilbert transform
to each IMF, in order to compute the instantaneous
frequency and amplitude at each time [38,44]. X(t)
in the following equation is the Hilbert transform
of Y (t).

X(t) = Hilbert TranformfY (t)g =
1
�

1Z
�1

Y (t)
t� t0 dt0:(1)

Using Equation 1, instantaneous frequency, If(t),
and instantaneous amplitude, a(t), are de�ned
as [38,44,45]:

a(t) =
p
Y 2(t) +X2(t); (2)(

If(t) = d�(t)
2�dt

�(t) = arctan
h
X(T )
Y (T )

i
:

(3)

Weighted Instantaneous and Regional
Frequency

Equations 2 and 3 give the frequencies and their ampli-
tudes that make a signal in each time. Investigating the
time-frequency-amplitude spectrum of a signal shows
that a number of frequencies have larger amplitude,
and this subject o�ers that these frequencies are more
dominant in each time. However, a simple average
of all obtained frequencies in each time does not
consider the larger e�ect of the dominant frequencies.
This problem can be solved by considering a larger
weight for the dominant frequencies in calculating
the average frequency in each time. In this study,
the weight of each instantaneous frequency, Ifj(t), is
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the instantaneous amplitude of this frequency, aj(t),
divided by the summation of all instantaneous fre-
quency amplitudes (see Equation 4). Therefore, the
weight of the instantaneous frequencies that have the
larger amplitude is greater than of those with lower
amplitudes.

WIF (t) =
nX
j=1

aj(t)Ifj(t)=
nX
j=1

aj(t); (4)

where n is the number of the IMFs of a signal
that is recorded from one of the brain channels.
Ifj(t) and aj(t) is the series of the estimated in-
stantaneous frequency and amplitude for each IMF
[44]. WIF (t) is a series of weighted instantaneous
frequencies. In this study, we used the average of
WIF (t) in di�erent time windows of the hypnosis
EEG, so we have used a weighted regional frequency
instead of an instantaneous frequency (see Equa-
tion 5).

RF =
t0+TX
t=t0

WIF (t): (5)

Therefore, RF is the average of WIFs in a time
window whose duration is T . In this paper, the
ability of this feature in di�erent brain channels
is investigated in order to classify the hypnotizable
groups.

Statistical Analysis and Area Under ROC
Curve

Before designing and using any classi�er, it was tested
whether or not a feature based on a weighted regional
frequency can make a signi�cant di�erence between
three hypnotizable groups. This investigation was
performed using some statistical analyses, such as
ANOVA [46] and MANOVA [47,48]. The normality
of the data was investigated before performing the
analyses. ANOVA was used when one feature was
employed for making a di�erence between three hypno-
tizable groups and MANOVA was used in a situation
where the ability of the simultaneous usage of di�erent
features was investigated. The MANOVA can also give
a linear combination of the di�erent features that make
the largest separation between groups. Calculation of
the coe�cients of this linear combination was done by
maximizing the F ratio:

F =
~WT P

b
~W

~WT
P ~W

: (6)

This ratio represents the between groups variability,
�b, with respect to within the groups variability, �.
This means that when ~W is an eigenvector of ��1�b,

the separation will be equal to the corresponding
eigenvalue. Therefore, the coe�cients of the linear
combination maximize the ratio of between-groups to
within-groups variance.

For more con�dence about the results of the
statistical analyses, we calculated the area under the
ROC curve, abbreviated as AUC. The ROC curve is a
two-dimensional depiction of the classi�er performance.
The two axes of this graph represent tradeo�s between
errors (false positives) and bene�ts (true positives)
that a classi�er makes between two classes [49]. In
this project, we have used an ROC analysis before
implementing the data into a classi�er, so, false positive
and true positive rates are obtained from the data
distribution of each class. The other point is that
a ROC analysis is commonly employed in problems
with two classes. For calculating AUC in a problem
with more than two classes, the following equation is
introduced [46]:

AUCtotal =
2

jCj(jCj � 1)

X
(ci;cj)2C

AUC(ci; cj); (7)

where jCj is the number of classes, (in this investiga-
tion, we have three hypnotizable groups) and AUC (ci,
cj) is the area under the two-class ROC curve involving
classes ci and cj .

KNN Algorithm and Cross Validation Method

The K-Nearest Neighbors (K-NN) algorithm is a
method which does not need to calculate any parameter
for making a classi�er, in which, like the neural
network based classi�er, we are not required to estimate
classi�er parameters, for example the weight of the
neurons. We just select an appropriate K and start
the classi�cation. In this method, the proximity of
neighboring input (x) observations in the training data
set and their corresponding output values (y) are used
to predict (score) the output values of cases in the
validation data set. The measuring of the adjacency of
the neighboring input (x) is done using some distance
function. In this project, the Euclidean distance
function was used. For evaluating the performance
of the KNN-based classi�er, we have used the leave-
one-out (LOO) cross validation method. When using
the leave-one-out method, the learning algorithm is
trained multiple times using all but one of the training
set data points. Then, the removed data point is
tested and the error is calculated. This procedure is
repeated R times where R is the number of training
set points. Then, the mean error is calculated over
all R data points. Leave-one-out cross validation is
useful, because it uses all data in the test and training
stages. Therefore, its result is essentially the same as
using all data points in the training stage. This method
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is very appropriate when the size of the data set is
small.

RESULTS

As mentioned before, our goal is determination of
hypnotizability at the end of hypnotic suggestion; using
calculations of the weighted regional frequency from
hypnosis EEG, instead of using di�erent standard
subjective clinical tests, such as WSGS. So, the RF
in Equation 5 was calculated in the last three minute
time window of the EEG signals that were recorded
from di�erent brain channels during hypnosis induc-
tion. Then, it was investigated if whether or not the
calculated RF in the last time window of the hypnosis
induction in di�erent brain channels can separate three
hypnotizable groups. This investigation was performed
using statistical analyses and AUC.

The ANOVA showed that the calculated RF in
the last time window of a single channel could not
make a signi�cant di�erence between three groups.
The MANOVA also showed that the simultaneous
use of the calculated RF of all brain channels (19
channels) could not separate three hypnotizable groups
signi�cantly. However, a linear combination of the RF s
of all channels was found that could make a signi�cant
di�erence between three hypnotizable groups in the last
time window of the hypnosis EEG. So, the new feature
can be obtained as follows:

The feature in one channel = RF =
t0+TX
t=t0

WIF (t);

Linear combination of RF in all channel =

19X
i=1

Mi �RFi: (8)

In this relation [t0; t0 + T ] is the last time window of
the hypnosis EEG. So, T is equal to three minutes
and is considered the same for all channels, and Mis
are the coe�cients of making this linear combination.
These coe�cients are obtained from MANOVA by the
procedure introduced in previous sections. In this
study, calculated coe�cients (Mi) are validated using
the LOO cross validation method.

The ANOVA results of investigating the ability
of this linear combination for making a signi�cant dif-
ference between three hypnotizable groups were shown
in Table 2. The null hypothesis is that there is no
signi�cant di�erence between groups. The statistical
signi�cance for rejecting the null hypothesis was deter-
mat 0.05.

According to the recorded p-value in Table 2,
the null hypothesis is rejected and we can report that

Table 2. The ANOVA results of investigating the ability
of the linear combination of the RF s of all brain channels
(19 channels) for making a signi�cant di�erence between
three hypnotizable groups.

ANOVA Table

Source SS df MS F Prob >F

Groups 136.198 2 68.099 68.1 1.10586e-011

Error 29 29 1

Total 165.198 31

this linear combination can separate three hypnotizable
groups signi�cantly (p-value � 1.1e-011 << 0.05)
during the last time window (last 3 minutes) of the
hypnosis EEG. The distributions of this feature, in
di�erent three minute time windows during hypnosis
suggestion, were represented in Figure 1 using a box
plot [50]. This �gure allows us to visually follow
the changes of the obtained feature in three groups
during hypnosis induction. It should be noted that
the last 3 minutes of hypnosis EEG were considered
for calculating the mentioned linear combination, but
the obtained coe�cients (Mi) have been used for the
other time windows.

According to Figure 1, it is obvious that the
distributions of the obtained feature in three groups
have an overlap in di�erent time windows during
hypnosis induction. However, in the last time windows
of the hypnosis, the distributions of the three groups
are nearly separated from each other. Therefore,

Figure 1. The box plots of the distributions of the linear
combination of the RF s of all brain channels in three
hypnotizable groups in di�erent three minute time
windows during hypnosis suggestion.
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we can state that the obtained feature, based on
weighted regional frequency, can be used as a feature
for classifying three hypnotizable groups at the end of
hypnosis induction.

This claim was proved by implementing the fea-
ture in a KNN-based classi�er. In this study, we deal
with a problem with three classes: low, medium and
high hypnotizable. The obtained feature values in three
hypnotizable groups were entered to the classi�er as
inputs. The desired output of the classi�er that was the
level of each subject's hypnotizability, was determined
by WSGS. The number of low hypnotizable subjects in
our data was four, and we have used the LOO cross
validation method for evaluating the results. Thus,
we have set K = 3, because at least 3 numbers of
the values of this group exist in the training data
set. Also, by a trial and error technique, K = 3
had the best result. Using the LOO cross validation
method, the average classi�cation error is obtained
as 3.13%. It should be mentioned that this error is
the mean error of the classi�cation error of all three
groups.

Then, it is investigated if whether or not a lower
number of channels can make such a di�erence between
groups. This investigation was done by looking for
channels that were more e�ective than those of others
in the linear combination. The level of each channel's
e�cacy could be shown by its coe�cient (Mi) in
the obtained linear combination. The values of the
obtained Mi were shown in Figure 2; these values are
validated by the LOO method. The low tolerance
of the channel coe�cients shows that we can use the

Figure 2. The coe�cient values of each channel in order
to make the linear combination of the RF values of all
channels using LOO cross validation method.

obtained coe�cients for making the mentioned linear
combination con�dently.

These coe�cients can show the e�ectiveness of
each channel in the mentioned linear combination.
According to these coe�cients, we can report that
channels (FP2) and (F8) have the most e�ect in
this linear combination. The coe�cient values of the
channels (O2, C4, Fz, F4) and (T4), respectively, are
between 0.0027 and 0.0606, so, we have considered
them unimportant. Then, the linear combination was
made without them, and the previous analysis was
done in order to investigate the new linear combination.
It was observed that the results do not have any
considerable di�erence from when we considered all
channels in the linear combination (see the �rst and
second rows of Table 3).

Channels (Cz, T6, T5) and (P4) are the next
channels whose coe�cients are less than the remaining
channels. In the next stage, these channels were,
respectively, removed from the linear combination, and
the result of the ability of the newly produced linear
combination in separating three hypnotizable groups
was investigated by di�erent analyses whose results
were recorded in Table 3.

According to the recorded results in Table 3, it is
seen that elimination of channel (Cz) does not have
any signi�cant e�ect on the result, too. However,
removing channels (T6) and (T5) makes a considerable
increase in classi�cation error. Therefore, it is resulted
that the 13 channels highlighted in Table 3 are the
most e�ective channels in the linear combination. In
other words, these are the channels whose RF linear
combination can determine the level of hypnotizability
with the lowest error. Thus, the linear combination
of these 13 channels can be replaced with the linear
combination of all 19 channels. Therefore, the number
of electrodes will reduce. Table 4 shows the classi-
�cation error of each hypnotizable group separately
using the LOO cross validation method. Figure 3
shows the scatter plot of the values of the newly
obtained linear combination in three hypnotizable
groups.

According to the classi�cation errors in Table 4,
it is resulted that the error comes from a miss-
classi�cation in high hypnotizable groups and in ac-
cordance with Figure 3, this mistake is because of the
proximity of two data in high and medium hypnotizable
groups (two data that are located in a circle). These
data belong to two subjects whose WSGS score is 41
and 42. So, this closeness may be because of the
nearness of their hypnotizability.

CONCLUSION

In this study, we introduced a feature based on
weighted regional frequency, which allows determina-
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Table 3. The results of investigating the ability of the linear combination of the RF s in di�erent brain channels for
making signi�cant di�erence between three hypnotizable groups.

The Channels Which Contributed
in the Linear Combination

p-value1 AUC2 Classi�er Error3

All channels (19 channels) 1.1059e-011 0.9944 3.13%

Fp1,Fp2,F8,F3,F7,Cz,C3,T3,T6,P4,Pz,P3,T5,O1 2.0230e-011 0.9944 3.13%

Fp1,Fp2,F8,F3,F7,C3,T3,T6,P4,Pz,P3,T5,O1 9.6434e-011 0.9907 3.13%

Fp1,Fp2,F8,F3,F7,C3,T3,P4,Pz,P3,T5,O1 3.4886e-010 0.9852 18.75%

Fp1,Fp2,F8,F3,F7,C3,T3,P4,Pz,P3,O1 6.1038e-008 0.9602 37.5%

Fp1,Fp2,F8,F3,F7,C3,T3,Pz,P3,O1 5.004e-006 0.9102 40.63%

1-The p-values are obtained from the ANOVA, and the null hypothesis said that there is no signi�cant

di�erence between groups.

2-The values of the AUC are obtained before performing the KNN classi�cation.

3-The classi�er is based on KNN algorithm, the average error is the result of LOO validating method, and

this error is the mean error of the classi�cation error of all three groups.

Table 4. The resulting errors of the KNN based classi�er in each hypnotizable group using LOO cross validation.

Feature Hypnotizable Group Classi�er Error

The linear combination of the RF s Low 0%

values of the channels Medium 0%

Fp2, Fp1, F8, F3, F7, C3, T3, T6, P4, Pz, P3, T5 and O1 High 10%

Figure 3. The scatter plot of the linear combination of
the RF s values of the channels Fp2, Fp1, F8, F3, F7, C3,
T3, T6, P4, Pz, P3, T5 and O1 in three hypnotizable
groups.

tion of the level of hypnotic susceptibility of a subject
by an average error of 3.13%. The separation of
groups was possible only during the �nal 3 minutes
of hypnotic induction. Before obtaining this result, we
also expected that the best separation would be done at
around the end of the hypnosis induction, because from
the beginning of the hypnosis induction to the end, the
hypnosis depth of the subjects would increase and at
about the end of the hypnosis induction the subjects
would be in the �nal level of hypnotizability. In
other words, during the �rst time windows of hypnosis
induction, the hypnosis depth of the subjects are near
each other and, at about the end of hypnosis induction
(�nal 3 minutes), the di�erent hypnotizable groups stay
at a di�erent hypnotic depth. Thus, the separation can
be done during the last time window of the hypnotic
induction.

Instead of the study of Ray [26] and Behba-
hani [31], who used classi�er algorithms for hypno-
tizability level determination, the other previously
EEG based studies only paid attention to �nding the
relation between some features and hypnotizability
using statistical analyses. Therefore, we can com-
pare our results only to the study results of Ray
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and Behbahani. Ray found an average precision of
94% (without any cross validation) in separating the
low hypnotizable groups from the high hypnotizable
subjects. Behbahani reports an average precision of
93% (LOO cross validation method) in separating
high hypnotizable subjects from medium and low
ones. In classifying low hypnotizability, she reported
high error. But, in the current study, using the
obtained procedure, three hypnotizable groups can
separate from each other signi�cantly, by an aver-
age precision of 96.9% (using LOO cross validation
method). Moreover, the error is not because of the low
hypnotizable subject's classi�cation, it is related to a
high hypnotizable subject whose hypnotizability score
is close to medium hypnotizable subjects. In other
words, the RF values of high hypnotizable subjects
that have medium behavior are close to medium RF
values.

Calculation of the introduced feature in the cur-
rent study takes about 90 seconds (using a Pentium4
with 3.2 GHz CPU). So, just after hypnosis suggestion,
we can say that the subject has low, 2medium or
high hypnotizability. Common clinical methods based
on behavioral assessment take time to determine the
level of hypnotizability and are usually boring. Also,
sometimes these assessments bring the subject out
from hypnosis. Therefore, in comparison with common
clinical methods such as (WSGS), the introduced pro-
cedure is a real time method for measuring hypnotic
susceptibility. Another problem in clinical methods
is that they are subjective and the subject's answers
need to be trusted. But, the new method o�ers an
objective procedure for determination of the hypno-
tizability level by measuring EEG weighted regional
frequencies.
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