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Geometrically Non-linear Analysis of
Unsymmetrical Fiber-Reinforced Laminated

Annular Sector Composite Plates

M. Salehi1;� and S.R. Falahatgar2

Abstract. The geometrically non-linear behavior of unsymmetrical, �ber-reinforced, laminated,
annular sector composite plates is studied. The �rst order shear deformation theory is applied to the
von Karman type non-linear behavior of unsymmetrically, laminated, annular sector composite plates.
Five equilibrium equations, �ve stress-displacement relations, three curvature-displacement relationships,
together with eight stress resultants, stress couples and shear force relationships are solved. The non-
linear nature of the problem prohibits the application of a closed form solution method. Consequently,
the Dynamic Relaxation (DR) numerical method is chosen for solving the system of 21 simultaneous
equations. The in-plane and out-of-plane displacements are reported for di�erent con�gurations of annular
sector plates. Di�erent sector angles, �ber orientations and plate thicknesses are considered. For better
observation of the numerical methods, they are illustrated graphically. The correlations of the present
results and the corresponding �nite element generated results are very satisfactory.

Keywords: Sector plate; Unsymmetric laminates; Dynamic relaxation; Rectilinear orthotropic; Large
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INTRODUCTION

Plates, in general, and sector plates in particular have
many applications in engineering �elds, i.e. aerospace,
mechanical and civil engineering as diaphragms, curved
bridge decks and end closures of cylindrical vessels.
Composite materials have gained many advantages [1-
3] over their metal counterparts in engineering appli-
cations, in particular aerospace engineering. Fiber-
reinforced, laminated, composite plates are made of
continuous �bers in mainly epoxy resins with di�erent
�ber orientations in each layer. The layers can be
arranged in a way that the properties of the composite,
with respect to the middle plane of the plate, are either
symmetrical or nonsymmetrical. The nonsymmetrical
properties of the plate are, in particular, useful when
thermal loading produces undesired deformations in
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the plate with symmetrical properties. The �ber-
reinforced, laminated, sector plates with symmetrical
properties have been analyzed previously [4], and
various parametric studies have been carried out and
presented in tabular forms. However, the nonsymmet-
rical properties of the sector plates where the coupling
sti�ness matrix is nonzero have received minor or no
attention. The types of structure which are close
to �ber-reinforced, laminated, annular sector plates
with non-symmetrical properties, with respect to the
middle plane, which have been studied in the literature,
are brie
y reviewed. The geometrically non-linear
analysis of unsymmetrical, laminated, composite plates
with four straight edges is studied in [5]. A type
of analytical-numerical solution method is applied to
solve the von Karman type plate equations. The non-
linear dynamic analysis of moderately thick, laminated,
composite sector plates is studied in [6]. In [6], two and
four layer, cross-ply, antisymmetric plates with �bers in
radial and circumferential directions are studied. This
is only a theoretical �ber orientation, since, in practice,
it is extremely di�cult to align the �bers in radial
and circumferential directions. Even if the �bers are
oriented in radial and circumferential directions, the
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Young's modulus of elasticity in the radial direction will
vary with the radius of the sector. Consequently, the
constant values given in the paper cannot be realistic.
However, the module ratios are assumed constant and
numerical results are presented for de
ections. In [7],
the �ber, asymmetric transverse vibration of polar,
orthotropic, annular sector plates with the thickness
varying parabolically in a radial direction has been
studied using a classical plate theory. The plate is,
in fact, made up of isotropic material with sti�eners in
the radial direction, which produces a polar orthotropic
structure. Most literature surveys carried out resulted
in the dynamic analysis of annular sector plates with
isotropic properties [8-12]. Few static analyses of secto-
rial plates are mentioned with isotropic layers or com-
pletely isotropic properties. A mathematical treatment
of laminated, circular, sector plates is presented in [13]
by looking at the boundary layer phenomena in the
Mindlin-Reissner plate theory. Using the Di�erential
Quadrature Method (DQM) for the vibration analysis
of shear deformable annular sector plates [14] is another
treatment of sector plates. However, the plates have
homogenous and isotropic mechanical properties and
the emphasis is put on the application of DQM. The
development of the Di�erential Quadrature Element
Method (DQEM) and its application to the analysis
of annular sector plates is presented in [15]; the plate is
homogenous and isotropic. The solution of the sector
plate by the Fourier-Bessel series is presented in [16].
The emphasis is, again, on the method of solution
rather than the structure itself. The geometrically non-
linear analysis of thick circular plates with cylindrically
orthotropic properties is treated in [17]. Due to the
fact that shear deformations are very important in
thick plates and, in particular, in �ber reinforced
composite plates, their e�ects have also been examined
and taken into account. By looking at the literature
survey, it is clear that the treatment of �ber reinforced
laminated annular sector plates with symmetric and
antisymmetric properties is not treated. The �rst
author has treated isotropic [18-22], as well as �ber
reinforced, laminated sector plates [4,23-25] with sym-
metrical layer arrangements. However, antisymmet-
rical �ber-reinforced laminated annular sector plates,
to the knowledge of the authors are not presented in
the literature. This paper, therefore, is an attempt to
present new results for the displacements in the radial
and circumferential directions and the de
ections for
this type of plate. The emphasis is on the radial and
circumferential displacements for antisymmetric layer
arrangements.

PLATE GOVERNING EQUATIONS

The cylindrical coordinate system is used to de�ne the
geometry of the plate, as shown in Figure 1. The

Figure 1. Annular sector plate geometry and �ber
orientation.

positive axes, the radii and thickness measurements,
are well illustrated. In this study, the �bers are
arranged in a regular form and the sector plate is cut
from this ply. ri and ro are inner and outer radius,
respectively, and the sector angle is �. The analysis is
performed in angle �g, and �m is the angle of �ber
orientation in each ply (see the Appendix).

Plate governing equations are classi�ed as �ve
equilibrium equations including shear forces, eight
kinematic equations, which consist of three in-plane
strain-displacement relationships, three curvature-
rotation relationships, two out-of-plane shear strain-
displacement relationships and eight constitutive equa-
tions. In order to carry out the solution procedure,
the plate governing equations are supplemented by
relevant boundary conditions on displacements and
stress resultants and couples. For brevity, the �-
nal forms of the resulting equations are given be-
low.

As mentioned in the above paragraph, there are
�ve non-linear de�nitional equations [26] (Chia). They
are obtained by considering the equilibrium of a plate
element in the radial, circumferential and transverse
directions, and by taking moments about r and �
axes:
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where Nr; N� and Nr� are radial, circumferential and
shear stress resultants, Mr;M� and Mr� are radial, cir-
cumferential and twisting stress couples and Qr; Q� are
transverse shear stress resultants. The underlined part
of Equation 1c gives the non-linear part of the equation
and, if omitted, small de
ection results are found.

Considering the deformations of the plate ele-
ment, the following relationships are found. The strain-
displacement relations given in non-linear terms are
similar to those originally obtained by Sanders [27].
Using the assumptions made by Sanders, they are
stated as the following:
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where "�r ; "�� and 
�r� are the radial, circumferential and
shear strains of the plate mid-plane, respectively. u and
v are radial and circumferential in-plane displacements
and w is the de
ection. The Sanders' assumptions are
also used to determine the curvature-rotation relation-
ships:
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where ��r ; ��� and ��r� are mid-plane curvatures, �r and
�� are rotations.

These relationships stem from the fact that the
shear deformations are accounted for and, in terms
of the di�erentials of displacements, they are stated
below:
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where 
�rz and 
��z are plate mid-plane shear strains.
General forms of the unsymmetrically laminated plate
constitutive equation are given here. They include

the coupling between in-plane strains and curvatures
in the stress resultant equations, and the coupling
between curvatures and strains in the stress couple
equations. Consequently, in general form, they are
stated as follows:
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The extensional, coupling, bending sti�ness matrices
are de�ned in terms of the reduced sti�ness matrix,
�Q = �S�1, and the location of ply, z, as follows:
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The transverse shear stress resultants are as stated
below:

�
Qr
Q�

�
=
�
A55 A45
A45 A44

��

�rz

��z

�
; (6c)

where:
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K1 and K2 are shear correction factors of FSDT.
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Table 1. Boundary conditions of the plate radial and circumferential edges.

Along the Radial Edge Along the Circumferential Edge

Edge Condition Simply Supported Clamped Simply Supported Clamped

In-plane �xed
u = v = w = 0

�r =0
M� = 0

u = v = w = 0
�r = �� = 0

u = v = w = 0
�� = 0
Mr = 0

u = v = w = 0
�r = �� = 0

In-plane free
w = 0
�r = 0

N� = Nr� = M� = 0

w = 0
�r = �� = 0
N� = Nr� = 0

w = 0
�� = 0

Nr = Nr� = Mr = 0

w = 0
�r = �� = 0
Nr = Nr� = 0

Two types of boundary condition are used in
the present study. They are simply supported and
clamped edge constraints, each with �xed and moving
boundaries. The boundary conditions are such de�ned
that both edge conditions can be applied to di�erent
edges of a plate. The mathematical expressions in
Table 1 can be used to de�ne the above edge con-
straints along the two radial and two circumferential
edges.

PLATE GOVERNING EQUATIONS
NUMERICAL SOLUTION

There are several numerical procedures that may be
chosen for the solution of non-linear partial di�erential
equations, i.e. plate equilibrium equations. Among
them, the most suitable one, considering the �rst
author's experience, is the Dynamic Relaxation (DR)
iterative method. This method is accompanied by
the �nite di�erence discretization technique. The DR
method is only applied to the plate equilibrium equa-
tions, and the �nite di�erence discretization technique
is used to discretize the partial di�erential terms in
the plate governing equations. The DR algorithm
is a time stepping initial value iterative procedure.
Consequently, it cannot be used directly to solve
the boundary value problem given by Equations 1-5.
Therefore, Equations 1 must �rst be transformed to an
initial value format. This is achieved by introducing
damping and inertia terms to the right hand side of
Equations 1 and, then, the following �nite di�erence
approximations for velocity and accelerations can be
applied:
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where � may be one of the following displacements or
rotations: u; v; w; �r or ��. The superscripts a and b
refer to the values of the velocities after and before the
time increment, �t, respectively. With the application
of the above procedure, from the �ve equilibrium

equations, the following linear and rotational velocity
equations may be obtained.
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in which C�� = 1
2C��t�

�1
� , � and superscripts a and b

are as de�ned above.
The �nite di�erence discretization technique is

applied to the right hand side of Equations 1 in the
square brackets. Using the following simple integration
relations, the displacement and rotations are calculated
at the end of each time step, �t:

�a = �b + �t _�a; (9)

in which � and superscripts a and b are the same as
those de�ned in Equations 7. Consequently, Equa-
tions 8, 9, 2 and 5, together with the appropriate
boundary conditions, Equations 6, in their �nite di�er-
ence form, constitute the set of equations suitable for
the DR algorithm, which brie
y is outlined in Figure 2.

STABILITY OF DR ALGORITHM

The stability and convergence of the DR algorithm is
heavily dependent on the correct selection of �ctitious
densities and damping factors. The densities are
automatically computed, using the procedure originally

Figure 2. Flowchart for DR procedure.

developed by Cassel and Hobbs and presented in [28].
Based on the procedure in [28], the pseudo-densities,
��, are set to one quarter of the absolute values of the
largest rowsum of the sti�ness matrix implicit in the
�nite di�erence discretization. So, the time step, �t, is
set to one.

The damping factors which also control the con-
vergence of the iterations have been computed from the
method proposed in [29]. To calculate the critical time
step, the vibration of the dynamical system with zero
damping factors is considered. Following the variation
of kinetic energies, the number of iterations to reach
the �rst true maximum of total kinetic energies for
each direction of displacement is calculated. These are
equivalent to one quarter of a cycle of the fundamental
mode. If the kinetic energy is the maximum after N�
iterations, then, the critical damping factor is given
by:

C� = �=N��t: (10)

This procedure has been successfully employed in
previous studies.

NUMERICAL RESULTS

Graphical numerical results are useful in terms of
observing variations of a parameter and making the
appropriate design or other decisions. Fiber-reinforced
laminated composite plates have many di�erent param-
eters, which may be studied. Consequently, the number
of examples had to be limited, as well as the output
results.

A set of load-de
ection results are presented for
correlation purposes and the new results are presented
for the �rst time.

A comprehensive set of results for symmetrical
laminated sector plates has been presented previ-
ously [4]. In the following subsections, graphical
results for unsymmetrical Graphite/Epoxy laminates
have been presented for annular sector plates.

The numerical results are illustrated along the
radial line of symmetry for de
ections, radial displace-
ments and rotations about the r-axis for di�erent sector
angles, �ber orientations and thicknesses, for both
simply supported (SSSS) and clamped edge (CCCC)
constraints with in-plane �xed and free boundaries.
A similar set of results is presented along the mid-
radius circumferential direction for de
ections, cir-
cumferential displacements and rotations about the �-
axis.

This subsection is divided into three subsections
for better description of the present results. A compar-
ison with FE results is presented for simply supported
and clamped edge plates.
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Figure 3. Load-center de
ection for �ber arrangement [60/-60/90/10/-45/45/30/10], ro=ri = 2, � = 90�.

Di�erent Loads

In order to verify the accuracy of the computational
procedure outlined above, and to illustrate the non-
linear behavior of the plate, a set of load-center
de
ection results is presented for simply supported and
clamped annular sector plates in Figure 3. The �ber ar-
rangement is [60/-60/90/10/-45/45/30/10], ro=ri = 2,
� = 90�and two thicknesses for SSSS and CCCC edges
under dimensionless uniform loads, �q(= qr4

o=E2h4), are
assumed.

On the same graph, the non-linear Finite Element
Method (FEM) results are presented for comparison
purposes. The FE results are generated by the ANSYS
commercial code using the nonlinear 8 noded shell
element [30]. The results show that the FE predicts
slightly higher values for de
ections at high pressures.
However, for smaller values of pressure, the correlations
are very good.

Di�erent Plate Thicknesses

The next set of results corresponds to [�60= � 45]2

�ber orientation, � = 90� sector angle, two uniform
pressure and two di�erent boundary conditions (see
Figure 4). Although the FEM predicts slightly higher
de
ections than the DR method for thicker plates, they
correlate well for thinner plates (see Figure 4a). The
correlation for the clamped edge plate is very good
(Figure 4b).

Di�erent Fiber Angle

Di�erent �ber angles, from 0� to 90�, are chosen for a
single layer composite annular sector plate with ro=ri =
2, � = 120� and h = 0:1(ro � ri). De
ections along the
radial and circumferential lines of symmetry with in-
plane free and in-plane �xed boundary conditions are
illustrated in Figures 5 and 6, respectively. The SSSS
plates are under a uniform pressure of �q = 100 and
CCCC plates are under a uniform pressure of �q = 300.
From the experience gained in isotropic sector plate
analysis [20], the de
ections along the radial line of
symmetry of all angles of 0� to 90� �ber orientation are
symmetric at about the mid-radial point (Figures 5a
and 5c). However, this is not true for the de
ections
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along the mid-radius at di�erent angles (Figures 5b and
5d). The de
ections exhibit the expected behavior, i.e.
larger de
ections for 0�sector angles.

Di�erent Fiber Arrangements

The �nal set of results is presented for the following
�ber arrangements:

I. (0=90)4 �xed edge,
II. (45=� 45)4 �xed edge,

III. (0=90)4 free edge,
IV. (45=� 45)4 free edge,

with ro=ri = 5, � = 90�, h = 0:1(ro � ri) and uniform
pressure �q = 200 for simply supported plates and
�q = 400 for clamped plates. The simply supported

Figure 4. Center de
ection for di�erent thicknesses of �ber arrangement [�60=� 45]2, ro=ri = 2, � = 90�.

Figure 5. De
ections for di�erent laminae with in-plane �xed boundary.
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and clamped plate de
ections, in-plane displacements
and rotations are illustrated in Figures 7 and 8,
respectively, for in-plane free and �xed conditions.
The results include dimensionless radial displacements,
�u(= uro

h2 ), circumferential displacements, �v(= vro
h2 ),

de
ections, �w(= w
h ) and rotations about the radial axis,

��r(= �rro
h ). The radial displacements for in-plane

�xed cases I and II are small in comparison to those
for free in-plane edge conditions, cases III and IV, of
about 15 times, as shown in Figure 7a, and of about
7 times, as shown in Figure 8a. There is almost no
di�erence in transverse displacements (or de
ections)
for cases I and II, as shown in Figures 7c and 7d,
which means that the �ber orientations have no e�ect
on the plate behavior in terms of displacements. A
similar behavior is observed for cases III and IV for
simply supported plates, as shown in Figures 7c and 7d.
However, the de
ections for cases I and II and III and
IV are the same, as shown in Figures 8c and 8d. This
means that in clamped plates, the �ber orientations
have similar responses, in terms of displacements under

uniform loading conditions. However, case I is more
suitable than the other two cases, in terms of exhibiting
smaller de
ections for the same conditions of the plate.
The rotation results for the four cases are shown in
Figures 7e and 7f for simply supported plates, and
Figures 8e and 8f for clamped plates. The rotations
for cases I and III are nearly the same, whereas
those for cases II and IV are very di�erent. This
means that the in-plane �xed or in-plane free edge
conditions for �ber orientations of (0/90)4 do not make
a signi�cant di�erence to the rotations about the radial
axis, whereas they make a lot of di�erence to the (45/-
45)4 �ber arrangements, ��r.

CONCLUDING REMARKS

A linear and non-linear, non-axisymmetric formulation
for symmetrically, as well as unsymmetrically, �ber-
reinforced, laminated, thick annular sector plates is de-
veloped. The loading is uniform pressure with a simply
supported and clamped edge with �xed or moving

Figure 6. De
ections for di�erent laminae with in-plane free boundary.
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Figure 7. Displacements of simply supported plate for di�erent �ber arrangement, �q = 200.

in-plane conditions. The DR iterative algorithm is
successfully applied and the stability of the algorithm is
controlled by the correct and automatic selection of the
�ctitious densities and damping factors. A veri�cation
of the present numerical results is carried out by
modeling the same plate in the Finite Element Method

(FEM) code. The correlation of the present results and
the FEM results is very satisfactory. Unpredictable
displacement results were obtained, which justify pre-
sentation of the new results in the present study. The
unusual e�ect of boundary conditions on the displace-
ments for this type of plate con�guration is appreciable.
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Figure 8. Displacements of clamped plate for di�erent �ber arrangement, �q = 400.
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NOMENCLATURE

Aij(i; j = 1; 2; 6) extensional sti�ness
Aij(i; j = 4; 5) transverse shear sti�ness
Bij(i; j = 1; 2; 6) coupling sti�ness
Dij(i; j = 1; 2; 6)
exural sti�ness
Cu; Cv; Cw in and out-of-plane �ctitious damping
C�r ; C�� rotational �ctitious damping



Geometrically Non-linear Analysis of Unsymmetrical Plates 215

Ki;Kj(i; j=4; 5)shear correction factor
k layer number
Mr;M�;Mr� radial, circumferential and twisting

stress couples
Nr; N�; Nr� radial, circumferential and shear stress

resultants
q uniform pressure
Qij(i; j = 1 � � � 6)reduced sti�ness matrix
Qr; Q� transverse shear stress resultants
ri; r0 inner and outer radius of annular

sector plate
r; � polar coordinate system
u; v; w radial and circumferential in-plane

displacements and de
ection
_u; _v; _w radial, circumferential and transverse

velocities
z distance from neutral axis
"�r ; "�� radial and circumferential middle-plane

strains

�r�; 
�rz; 
��z shear strains
�t time increment
��r ; ���; ��r� middle-plane curvatures
�u; �v; �w in and out-of-plane �ctitious densities
��r ; ��� rotational �ctitious densities
� stress
� sector angle
�m �ber angle
�g angle related to sector angle
�r; �� rotations
_�r; _�� rotational velocities
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APPENDIX

Using the transformation matrices, T� and T", for
stresses and strains, the compliance matrix in cylindri-
cal coordinate �S, at angle �g, in which the analysis

is performed, in terms of sti�ness in the material
coordinate, S, and the angle of �ber orientation in each
ply, �m, is stated as:

�S = T"(�g)T�1
" (�m)ST�(�m)T�1

� (�g): (A1)
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