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Research Note

Robust Control of Non-linear Flexible Spacecraft

M. Malekzadeh1;�, A. Naghash1 and H.A. Talebi2

Abstract. In this paper, the problem of attitude control of a 1D non-linear 
exible spacecraft is
investigated. Three controllers are presented. The �rst is a non-linear dynamic inversion, the second is
a linear �-synthesis and the third is a composition of dynamic inversion and a �-synthesis controller. It
is assumed only one reaction wheel is used. Actuator saturation is considered in the design of controllers.
The performances of the proposed controllers are compared in terms of nominal performance, robustness to
uncertainties, vibration suppression of panels, sensitivity to measurement noise, environment disturbance
and non-linearity in large maneuvers. To evaluate the performance of the proposed controllers, an
extensive number of simulations on a non-linear model of the spacecraft are performed. Simulation results
show the ability of the proposed controller in tracking the attitude trajectory and damping panel vibration.
It is also veri�ed that the perturbations, environment disturbance and measurement errors have only slight
e�ects on the tracking and damping responses.
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INTRODUCTION

Modern spacecraft often employ large 
exible struc-
tures such as solar arrays to provide sustainable energy
during space 
ight. When it is required to maneuver
the attitude of the 
exible spacecraft, the dynamic
coupling between the solar panel vibration and the
spacecraft attitude varies with the angle of attitude
maneuver. The equations that govern attitude maneu-
vers and attitude tracking are non-linear and coupled,
thus, the attitude control system must consider these
non-linear dynamics.

A common method to control space vehicles is
to use a linear controller calculated for the linear
approximation of the non-linear system around an
operating point. This method is largely used due to
the fact that, for linear systems, there are plenty of
well established control techniques, and the design can
be done in a more systematic way than in the non-
linear case. Nevertheless, this kind of control technique
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works, in general, only in a small neighborhood of the
operating point where the linear approximation is valid.
Thus, when the system is far from this point, the linear
controller will not behave as desired.

In the context of non-linear systems, the feedback
linearization seems to be a viable choice since the
non-linear system is exactly transformed into a linear
system (valid for the entire operating region) and only
then is the linear controller applied. Therefore, the
dynamic range of the closed-loop system is increased.
However, the classical feedback linearization su�ers
from the lack of robustness in the presence of uncer-
tainties, disturbances and noise.

In [1], the problem of attitude recovery of 
ex-
ible spacecraft with plate type appendages using the
feedback linearization approach is investigated. The
controller ability is shown in the recovery maneuver and
panel vibration suppression. However, the performance
is only tested for impulse disturbance (thruster e�ect)-
it is notable that feedback linearization is robust
against impulse disturbance but is very weak against
constant disturbances. Although this method achieves
good vibration suppression, it does not address the
issue of robustness to combined uncertain conditions
(several uncertain conditions, i.e. environment dis-
turbance, sensor noise and uncertain parameters ex-
ist together, or one uncertain condition with larger



218 M. Malekzadeh, A. Naghash and H.A. Talebi

variations). Moreover, the selected controller bound
is large as if actuator saturation has not been consid-
ered.

Recently, considerable e�orts have been made to
design robust control systems for simultaneous attitude
control and vibration suppression of 
exible spacecraft.
However, most of them are based on a linear control
approach, which results in a poor performance for
large maneuvers. For instance, in [2], an experimental

exible arm serves as a test bed to investigate the
e�ciency of the �-synthesis design technique in con-
trolling 
exible manipulators. In [3], the active optimal
attitude control of a three-axis stabilized spacecraft by

ywheels is studied. The corresponding time-varying
Linear Quadratic Regulators (LQR) are designed for
an approximate system.

Recent papers have discussed non-linear robust
methodologies for the control of 
exible mechanical
systems. In [4], a sliding mode control strategy for
a three-axis attitude maneuver of a 
exible spacecraft
model is proposed. However, the issue of panel
vibration has not been addressed. In [5], a new
approach is presented for vibration reduction of 
exible
spacecraft during attitude maneuvers by using the
variable structure control theory to design switching
logic for thruster �ring. Lead Zirconate Titanate
(PZT) is used as a sensor and actuator for active
vibration suppression; hence, the resulting controller
is not collocated.

Although non-linear robust control methods, such
as non-linear H1 control, can be applied to address
these issues, solving the associated Hamilton-Jacobi
equation is often extremely complicated, and the re-
sulting controller is not easy to implement. Conse-
quently, a robust feedback linearization strategy seems
promising.

In [6], an adaptive feedback linearizing control
law is derived for the trajectory control of the pitch
angle. Unmodeled parameters appearing in the inverse
feedback linearization control law are estimated using a
high gain observer. However, other uncertainties, such
as sensor noise and environment disturbances, have
not been considered. In [7], a hybrid control scheme
with a variable structure and an intelligent adaptive
control method are used for the control of 
exible space
structures.

The objective of this paper is proposing a new
approach for the robust attitude control and vibra-
tion suppression of 
exible spacecraft. A �-synthesis
control law is formulated such that an outer-loop
linear controller can be constructed to provide a robust
stability/performance against the inexact dynamic can-
cellation arising in the inner-loop feedback linearization
design. It is notable that the proposed composite
controller has not yet been applied to spacecraft.

In this paper, the attitude control of a 1D 
ex-

ible spacecraft is considered using three approaches:
dynamic inversion, �-synthesis and a composition of
dynamic inversion and �-synthesis. The goal is attitude
control and panel vibration suppression in the absence
of damping and actuators on panels.

In the design of a dynamic inversion controller,
attitude angles are considered as the output, and
panel de
ection is used for feedback. To enforce the
position and rate saturation limit, a feedback controller
structure is used in the inner loop. The internal
dynamic and closed-loop stability is shown using the
Lyapunov method. In the design of a �-synthesis
controller, attitude angles and panel de
ection are
considered as the output. Moreover, in the design of
a composed controller, it is often the case that the
linearized model is di�erent from the linear model.
Hence, choosing weighting functions is very challeng-
ing. Another important issue in designing the �-
synthesis controller is bounding the linear controller
term, which is di�erent from the bound for the actual
control signal, u. Hence, it is crucial to �nd an appro-
priate weighting function for the linear controller. To
evaluate the performance of the proposed controllers, a
set of simulations are performed on a one-dimensional
stabilized 
exible spacecraft. It was our intention that
the sensors noises, disturbances and uncertainty be as
close as possible to practical situations.

The paper is organized as follows: In the next sec-
tion, dynamic equations of 
exible spacecraft are con-
sidered. The design of three controllers, namely, non-
linear dynamic inversion, linear robust (�-synthesis
method) and inner loop feedback linearization and
outer loop �-synthesis controllers will be presented in
the following sections, respectively. Following that, the
computer simulations of attitude tracking and panel
vibration suppression for these controllers are included.
Finally, some conclusions will be drawn.

FLEXIBLE SPACECRAFT DYNAMIC

The system under investigation consists of a rigid
hub and 2 appendages attached to it. According to
Figure 1, each appendage has linear density (mass per
unit length) �, length l, and is attached at distance r
from the hub.

The kinetic energy of the system is composed of
kinetic energies of the hub, and the appendages. This

Figure 1. Flexible spacecraft model.
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kinetic energy can be written in the form of:

T =
1
2
Jh _�2 +

Z
�[(r + x)2 _�2 + 2(r + x) _� _y

+ _y2 + y2 _�2]dx: (1)

The potential energy does not include a gravity term
and is just the usual potential energy of the beam
bending deformation of the form:

V =
Z
EIy002dx: (2)

To derive the dynamic model of the described sys-
tem, the assumed modes formulation of the 
exible
appendage dynamics is used. Flexible de
ection of the
appendages along the body axis is of the form:

y =
NX
i=1

'iqi; (3)

where qi are modal coordinates, N is the number
of the assumed modes considered, and 'i are shape
functions of the appendage deformation. The following
shape function is an acceptable candidate for a clamped
beam [8].

'i = 1� cos
�
i�x
l

�
+

1
2

(�1)i+1
�
i�x
l

�2

: (4)

The vibration equations of motion are obtained by
using the conventional form of the Lagrange equation.

d
dt

�
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@ _�

�
� @L
@�

= �;
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�
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@ _q

�
� @L
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@
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�
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@q0
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� @2

@q2

�
@L
@q00

�
= 0;

where L = T � V .
Substituting the kinetic and potential energy

equations in the Lagrange equation, the �nal form of
the vibration equation is obtained:

Jh�� + 2
Z
�(r + x)2dx�� +

Z
�'iqi

X
'iqi��

+ 2
Z
�(r + x)

X
'i�ql + 2

Z
�'iqTi

X
'iqi _�

= �; (5)

2
Z
�(r + x)

X
'idx�� + 2

Z
�'i

X
'i�ql

+ 2
Z
EI'00i

X
'00i �ql = 0: (6)

The above equation may be rewritten in a simple form:�
J + qTMqqq M�q

M�q Mqq

� ���
�q

�
+
�
0 0
0 Kqq � _�2Mqq

� �
�
q

�
+
�
2 qTMqq q _�

0

�
=
�
�
0

�
: (7)

The modal cross-inertia vector, M�q, modal inertia
matrix, Mqq, and modal sti�ness matrix, Kqq, are
de�ned through the shape functions.

With regard to a small q, by neglecting the high
order term of q, this equation can be linearized as:�

J M�q
M�q Mqq

� ���
�q

�
+
�
0 0
0 Kqq

� �
�
q

�
=
�
�
0

�
: (8)

To include structural damping, a proportional damping
term is added to Equation 6 which results in a diagonal
damping matrix, D, with entries 
1 and 
2 as damping
parameters [8].

D = 
1Mqq = 
2Kqq; (9)

M�q �� +Mqq�q +D _q + (Kqq � _�2Mqq)q = 0: (10)

FEEDBACK LINEARIZATION

It is assumed that no actuators are available on the

exible beam-type appendages, hence, exact feedback
linearization (i.e. input-state) cannot be performed
and we must turn to the input-output feedback lin-
earization (or so called dynamic inversion [9]) control
technique (Figure 2).

It is assumed that a full state measurement of the
system is available through attitude (e.g. sun sensors,
gyros and accelerometers). Consider the dynamic
equations of attitude of a 
exible spacecraft; assuming
1 panel and 1 mode:

(J = qTMqqq)�� +M�q�q + 2 _�qTMqqq = �; (11-1)

M�q �� +Mqq�q +D _q + (Kqq � _�2Mqq)q = 0: (11-2)

The repeated di�erentiation process is done on the

Figure 2. Feedback linearization method.
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output (attitude angle) until the control signal appears:

~Y = ~� yields�! ~�Y = ~�� = ~_! = �: (12)

By calculating �q from Equation 11-2 and putting it in
Equation 11-1 the following will be obtained:

�q� = �M�1
qq fM�q �� + (Kqq � _�2Mqq)qg; (13)

� = (J + qTMqqq)�� +M�q �q� + 2 _�qTMqqq: (14)

According to the following equation:

� = I(q)� �M�qM�1
qq fM�q� + (Kqq � _�2Mqq)qg

+ 2 _�qTMqqq; (15)

where I(q) = J + qTMqqq.
The coe�cient, I(q), in the speci�c case (q = 0)

is equal to J and in other cases it can also be shown
that this term is invertible. Hence, the signal, �,
should be constructed to control the new linear system.
The system can be controlled by introducing a linear
controller of the form:

� = !2
��e � 2��!� _� + !2

nqe � 2�q!q _q: (16)

The 
exible spacecraft with one panel, and considering
one elastic mode, has the order of 4. By considering
the output as y = � and di�erentiating the output of
the system 2 times to generate an explicit relationship
between output y and controller input � , it is clear that
the relative degree is r = 2 < n = 4.

Therefore, parts of the system dynamics have
been rendered `unobservable' in the input-output lin-
earization. This part of the dynamics will be called
internal dynamics, because it cannot be seen from the
external input-output relationship.

To keep the notation simple, a linear system in
state space form is considered:

_x = f(x) + g(x)�:

The new set of states can be de�ned by:

X =
�
� _� q _q

�
:

Choosing the state vector as X, The corresponding
vector �elds, f and g, can be written as:

f(x)

=

266664
_�

A�q(M�qM�1
qq (Kqq� _�2Mqq)q�2 _�qTMqqq)

_q
�M�1

qq (M�qA�q((M�qM�1
qq + 1)

(Kqq� _�2Mqq)q+D _q�2 _�qTMqqq))

377775 ; (17)

g(x) =
�
0 A�q 0 �M�1

qq M�qA�q
�
; (18)

A�q = (J + qTMqqq �M�qM�1
qq M�q)�1: (19)

In order to �nd the normal form, take �1 = � and
�2 = _�. From Equation 19, we can write:

_�1 = �2;

_�2 = A�q(M�qM�1
qq (Kqq � _�2Mqq)q � 2 _�qTMqqq)

+A�q�; (20)

The third function  (x) is required to complete the
transformation, which brings the dynamics to their
normal form. It should satisfy the following equation:

Lgj k =
@ k
@x

gj = 0;

@ i
@ _�

A�q +
@ i
@ _q

(�M�1
qq M�qA�q) = 0: (21)

One solution of this equation is:

 1 = q;  2 = M�1
qq M�q _� + _q: (22)

By di�erentiating these functions and by using system
dynamics, the internal dynamics are obtained as:

_ 1 = _q;

_ 2 = M�1
qq (Kqq � �2

2Mqq) 1 �M�1
qq d _q; (23)

_ =
� _ 1

_ 2

�
=

24  2 �M�1
qq M�q�2

M�1
qq (Kqq � �2

2Mqq 1�M�1
qq D( 2 �M�1

qq M�q�2)

35 :
(24)

It is shown that the local asymptotic stability of zero-
dynamics is enough to guarantee the local asymptotic
stability of the internal dynamics. Zero dynamics are
de�ned to be the internal dynamics of the system when
the system output is kept at zero by the input.

_ (0;  ) = w(0;  ); (25)

_ 1 =  2; (26-1)

_ 2 = �M�1
qq Kqq 1 �M�1

qq D 2 (26-2)

By di�erentiating Equation 26-2 and substituting
Equation 26-1, the zero dynamics can be written as:

� 2 +M�1
qq D _ 2 +M�1

qq Kqq 2 = 0: (27)

Since 
1, 
2 and Kqq > 0, we can conclude that zero
dynamics are asymptotically stable.

In most modern spacecraft, momentum exchange
devices are used as actuators. Due to the saturation
e�ect in these actuators, considering saturation is very
important. It has been shown by several authors
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that enforcing actuator constraints for input-output
linearization can result in a poor closed-loop perfor-
mance (when compared to an unconstrained closed
loop performance) [10]. Di�erent methods have been
successfully demonstrated that assist in preventing the
destabilizing e�ects of control saturations in the feed-
back linearization method. In most cases, saturation is
considered by designing a special outer loop (linear)
controller; hence, these methods cannot be used in
this paper. To enforce the position and rate of the
saturation limits, feedback controller structures are
used [10-12]. Most of these structures �lter the peak of
the response. Simulation studies show that considering
saturation in inner and outer loops together is more
e�ective. In this paper, the structure shown in Figure 3
is used [11]. The gain can be chosen depending on the
bounds of the output response. In appropriate scaling,
tanh can be used to represent saturation behavior:

usat = tan h
�

u
umax

�
umax: (28)

By de�ning the following parameters:

A�q = J + qTMqqq �M�qM�1
qq M�q; (29)

Add = M�qM�1
qq (Kqq � _�2Mqq)q � 2 _�qTMqqq: (30)

Equation 15 can be written as:

A�q �� = Add + �: (31)

Let � be the di�erence between the calculated controller
and the applied control:

� = uc � ua: (32)

From Equations 31 and 32:

A�q �� = Add + � + �: (33)

The linearized model takes the following form:

�� = � +A�1
�q �: (34)

As shown in Equation 34, the hedge signal, A�1
�q �, acts

as a disturbance.

Figure 3. Enforcing Control saturation limits.

�-SYNTHESIS CONTROLLER

Equation 8 is the linear equation of motion for 
exible
spacecraft. The advantage of the �-synthesis approach
is that it allows the direct inclusion of modeling errors
or uncertainties, measurement and control inaccura-
cies, and performance requirements into a common
control problem formulation. These uncertainties in-
clude: unmodeled high frequency dynamics, errors in
natural frequencies and damping levels, and actuator
and sensors errors.

According to low and high frequency uncertainties
in a 
exible spacecraft model, two uncertainties are
included in the control problem formulation. A mul-
tiplicative input uncertainty model, W�, accounts for
actuator errors in high frequencies, and unmodeled ac-
tuator dynamics and the additive uncertainty, denoted
by Wadditive, account for high-frequency dynamics and
non-linearities neglected in the design model.

To choose low frequency weight, W�, di�erent
system parameters (such as J , M�q, Mqq and Kqq) were
perturbed by 20% of their nominal values. The nominal
transfer function

� �
�

�
of the system was selected. Then,

the bode diagram of the actual system and the nomi-
nal transfer function plus the multiplicative weighting
functions were obtained. The weighting functions were
then tuned to get the best possible match which is
obtained for:

W� =
3(s+ 1)
s+ 10

: (35)

The e�ect of uncertain parameters on this transfer
function and uncertain plant G(I + W��G) is shown
in Figure 4.

Wadditive is added to the panel vibration de
ec-
tion. To include the uncertainty in the model, di�erent
system parameters were perturbed by 20% of their
nominal values. Then, the bode diagram of the actual

Figure 4. Bounded of low frequency uncertainties and
weight.
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system, y
� , and the nominal transfer function plus

the additive weighting functions were obtained. The
weighting functions were then tuned to get the best
possible match which is obtained for:

WA =
0:3(0:631s2 + 5:31s+ 22:62)

s2 + 59:41s+ 2270
: (36)

The e�ect of uncertain parameters on the transfer
function and uncertain plant, G + WA�, is shown in
Figure 5.

The additive uncertainty level is of less impor-
tance when the models of the higher frequency modes
are available to the designer.

A feedback system with the following block dia-
gram can be rearranged as a lower Linear Fractional
Transformation (LFT). The controller structure is
shown in Figure 6.

A concern is that as the number of states in
the problem formulation increases the accuracy of the
numerical solution decreases. This provides a reason to
limit the states in the problem formulation. So, in this
paper, the controller is designed using pitch angle and
tip displacement feedback. A performance tip weight

Figure 5. Bounded of high frequency uncertainties and
weight.

Figure 6. �-synthesis arrangement block diagram.

of constant magnitude equal to 0.1 is applied to the
system.

The hub performance weighting function is cho-
sen by considering the desired transient performance
measures, such as settling time and overshoot:

Wp� =
0:98(s2 + s+ 0:25)

(s2 + 4s+ 0:9)
: (37)

Wact is the actuator saturation limitation weighting
function. It may be used to re
ect the restrictions on
the control or actuator signals. To achieve a robust
performance, it is necessary that jjWact� jj < 1, so,
Wact < 1

� . According to the actuator saturation
limitation, j� j < 0:8 N.m, Wact is set to Wact = 1.

The weighting function, Wn, is used to model
sensor noise associated with the hub-angle and tip-
displacement sensors corresponding to the measure-
ment noise. It is assumed that the angular velocity and
the pitch angle are measured by the rate gyro and earth
sensor corrupted with a random measurement noise of
magnitude 0.1 deg per second and 0.2 deg. The velocity
and acceleration of the point on the 
exible panel is
measured by a tachometer and accelerometers with a
random measurement noise of 0.0001 m/s and 0.0001
m/s2. Wn is a high-pass �lter, according to the nature
of the high frequency noise. Hence, we have:

Wn� =
�

0:2�
180

�
0:12s+ 1
0:001s+ 1

;

Wnq = (3� 10�4)
0:12s+ 1
0:001s+ 1

: (38)

The resulting controller is stable and of high order.
This is obviously not practical and it should be reduced
without signi�cant performance degradation. Using
balanced truncation, the order of the controller is
reduced to 7 without much loss of the closed-loop
performance or robustness.

DESIGN OF COMPOSITE CONTROLLER

The performance of feedback linearization is rather
poor in the presence of uncertainty, disturbance and
noise. Due to the uncertainty, inexact dynamic can-
cellation arises in the inner-loop feedback linearization
design. Hence, a �-synthesis control law is added
as an outer-loop linear controller. Dynamic inversion
and structured singular value synthesis are combined
to achieve robust control of 
exible spacecraft. The
controller structure is shown in Figure 2. In this
method, non-linear dynamics are linearized by an
input-output feedback linearization method. The new
linear system is in the form of �� = �, so, a new control
signal, �, should be designed.

The advantage of the �-synthesis method is that
it allows the direct inclusion of modeling errors or
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uncertainties, measurement and control inaccuracies,
and performance requirements into a common control
problem formulation.

By considering uncertainty on parameters such as
J , Mqq, M�q and Kqq, Equation 31 can be written as:

A�q �� �Add = Â�q� � Âdd; (39)

where:

�A�q = A�q � Â�q;
and:

�Add = Add � Âdd;
denote the parametric uncertainty.

�� = A�1
�q Â�q� +A�1

�q (Add � Âdd): (40)

By substituting real parameters, Equation 40 can be
written as:

�� = A�1
�q (A�q ��A�q)� +A�1

�a (Add � Âdd)
= � �A�1

�q �A�q� +A�1
�q �Add: (41)

As Equation 41 shows, uncertain parameters result
in a multiplicative uncertainty in controller input
(A�1

�q �A�q), and a disturbance, A�1
�q �Add. The con-

troller structure is shown in Figure 7.
To include the uncertainty in the model, di�erent

system parameters (such as J , Mqq, M�q, Kqq) were
perturbed by 20% of their nominal values. Then,
the nominal transfer function

� 1
s2
�

of the system was
selected as a double integrator, i.e. 1

s2 . The bode
diagram of the actual system, and the nominal transfer
function plus the multiplicative weighting functions
were obtained. The weighting functions were then
tuned to get the best possible match which is obtained
for:

W� =
70(s+ 1)
s+ 100

: (42)

Figure 7. Composite arrangement block diagram.

Figure 8. Bounded of uncertainties and chosen weight.

The e�ect of uncertain parameters on the transfer
function and uncertain plant P (I + W�G�) is shown
in Figure 8. This uncertainty description must be suf-
�ciently large to require the control design to stabilize
unmodeled modes.

Wp weights the error between the complementary
sensitivity function of the closed loop system and an
ideal model of the system response. The performance
objective can be written as jWpSj � 1. So, Wp should
be selected such as WP < 1jjSjj . According to the �rst
and third frequency of the vibration modes of a 
exible
panel, this function is chosen as:

Wp� =
0:1(s2 + s+ 0:25)
(s2 + 4s+ 0:01)

: (43)

Therefore, the hub performance weight has a relatively
large magnitude at low frequencies.

According to the weakness of the dynamic inver-
sion method against constant disturbance, a distur-
bance weight is chosen, such as:

Wdist

j�j =
Wdistact

j� j : (44)

Wdistact of constant magnitude equal to 0.001 is applied
to the system. The parametric uncertainty disturbance
in Equation 41 is very small, so, in comparison, it has
not been considered.

To enforce the controller saturation limits in the
inner loop, the feedback controller structure shown
in Figure 3 is used. Also, this saturation can be
considered in the designing of a �-synthesis controller;
however, using the dynamic inversion formulation, the
actuator dynamics are not directly accessible. In [10],
an algorithm is derived to catch the bound on � in
the feedback linearization outer loop, according to the
actuator saturation limit. In this paper, this limit
is approximately obtained, according to the following
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equation, by assuming a small q:

� = (J + qTMqqq)�

�M�qM�1
qq fM�q� + (Kqq � _�2Mqq)qg

+ 2 _�qTMqqq: (45)

According to the actuator saturation limitation:

Wact = 500: (46)

The new input torque, �, is obtained by adding two
terms, �!n _q and !2

nq. These terms are added to the
�-synthesis controller output to increase the rate of
vibration suppression of the appendages. Without
these terms, the time constant of vibration suppression
is too high and not optimal for practical implemen-
tation. The gain parameters are chosen as !n = 0:2
and � = 1.

SIMULATIONS AND RESULTS

In this section, simulation results for the closed loop
system (Equation 12), with the control laws derived in
the previous sections, are presented using MATLAB
and SIMULINK software. In the simulation, the
system parameters are chosen the same as those in [1].
EI = 1500 N/m2, � = 0:2 kg/m, l = 30 m, Jn = 4000
kgm2, r = 1 m.

The control input and its rate are bounded as:

juj < 0:8 N.m;

j _uj < 0:8 N.m/s: (47)

The environmental disturbances (i.e. gravity gradient,
solar pressure, aerodynamic and magnetic torques)
on the spacecraft are obtained from the following
equation:

�d = 0:005� 0:05 sin
�

2�t
400

�
+ �(200; 0:2) + �1; (48)

where �(T;�T ) denotes an impulsive disturbance with
magnitude 1, period T , and width �T . The terms �1
denote white Gaussian noise with mean values of 0 and
variances of 0:0052.

It is assumed that angular velocity and pitch
angle are measured by the rate gyro and the earth
sensor, respectively, which are corrupted with random
measurement noise. Earth sensor noise has Gaussian
distribution, zero mean and a standard deviation of
0.2 degrees. The Gyro noise sources correspond to a
random drift rate and a random bias rate. This model

is represented by the following Laplace transformed
equation:

!M = Hgyro! + !D + !N : (49)

!M and ! are the measured and actual spacecraft
angular velocity, respectively. Gyro random bias rate,
!N , and Gyro random drift noise, !D, have Gaussian
distribution, with zero mean, and standard deviation
of 10�6 rad/s. The gyro transfer function is:

Hgyro =
4469s+ 89:22

s3 + 89:22s2 + 4469s+ 89:22
: (50)

The velocity and acceleration of a point on the 
exible
panel are measured by a tachometer and accelerometers
with Gaussian distribution noise, zero mean, and a
standard deviation of 0.0001 m/s and 0.0001 m/s2,
respectively. The robustness speci�cation is to account
for variation on the values of J , Mqq, M�q and Kqq
in Equation 12, which would represent the model
parameter uncertainties in the system up to 20%.

In this paper, the gain parameters are chosen as:

!� = 0:015; �� = 1;

!q = �0:07; �q = 0:1: (51)

In this subsection, a comparison of robustness obtained
for the non-linear system with the three proposed
controllers (1- feedback linearization 2- �-synthesis 3-
combination of feedback linearization and �-synthesis)
is presented.

A number of time and frequency domain analysis
procedures are carried out on the resulting designs and
their performance is tested. In all simulations, no
damping is considered. The results for the classical
feedback linearization, robust (�-synthesis method)
and combined controllers are given in Figures 9-11,
respectively.

Feedback Linearization Controller

Figure 9 shows the simulation results of the feedback
linearization controller. As compared to Figures 9a,
10a and 11a, in normal conditions, or in conditions
wherein only one �nite uncertain variation (distur-
bance, noise and uncertainty) exists, this method shows
the best response. It means the feedback linearization
design leads to smaller settling times, smaller maxi-
mum overshoot and a complete suppression of panel
de
ection. The dynamic inversion controller achieves
this decoupling at the cost of larger control de
ections
(comparing Figures 9c, 10c and 11c).

However, as shown in Figures 9, in a maneuver
or in combined uncertain conditions (several uncertain
conditions existing together or one uncertain condition
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Figure 9a. Spacecraft attitude, dynamic inversion
method.

Figure 9b. Body angular velocity, dynamic inversion.

Figure 9c. Reaction wheel torque, dynamic inversion.

with larger variations), much larger control de
ections
are necessary (out of the maximum acceptable control
input) and the attitude rate and position cannot
converge completely. In this method, the rate of panel
de
ection is lower, in comparison with the two other
methods.

Figure 9d. Tip de
ection, dynamic inversion method.

Figure 9e. Rate of tip de
ection, dynamic inversion.

Figure 10a. Spacecraft attitude, �-synthesis method.

�-Synthesis Controller

Figure 10 shows the simulation results of the �-
synthesis controller. As shown in Figures 9c and
10c, this procedure requires signi�cantly less iteration
e�ort compared with the feedback linearization case,
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Figure 10b. Body angular velocity, �-synthesis method.

Figure 10c. Reaction wheel torque, �-synthesis method.

Figure 10d. Tip de
ection, �-synthesis method.

to achieve the desired loop shape. As shown in Figure
9, this method performs just as well under combined
uncertain conditions (perturbations, disturbance and
measurement errors) as under nominal conditions.

The results show that the �-synthesis method has
the longest settling time (compare Figures 9a, 10a,

Figure 10e. Rate of tip de
ection, �-synthesis method.

Figure 11a. Spacecraft attitude, composite method.

Figure 11b. Body angular velocity, composite method.

11a), the highest controller order and less tip de
ection
(Figures 9d, 10d and 11d).

It is worth mentioning that by increasing un-
certainty weight, (WA and W�), system robustness
increased. However, the response has a large overshoot
or steady state error (smaller performance) and by
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Figure 11c. Reaction wheel torque, composite method.

Figure 11d. Tip de
ection, composite method.

Figure 11e. Rate of tip de
ection, composite method.

decreasing these weights the response performance
improved whereas its robustness decreased.

Combined Controller

Figure 11 shows the simulation results of the composite
controller. With the designed composite algorithm,

the response of the pitch angle is shown in Fig-
ure 11a. We can see that the pitch angle approaches
the reference trajectory at a time of 700s. Hence,
fast and precise attitude control is achieved for the
current design system. As compared to Figure 9a
and Figure 10a (uncertain condition), in the dynamic
inversion method, the response has a steady state error
and cannot converge and, in the �-synthesis method,
the response has the largest overshoot and settling
time.

Figure 11e shows the low frequency oscillation of
the appendage in the composite method. The maxi-
mum tip de
ection of the appendage in the dynamic
inversion method is the largest and can be seen to be
around 0.02 m (Figure 9e with uncertainty). Com-
paring rate of plots shown in Figures 11e and 9e, the
composite controller has a larger rate of tip de
ection
caused by faster panel de
ection damping.

The requirement for the momentum of each reac-
tion wheel is illustrated in Figure 11c. As compared to
Figures 9c and 10c, the composite method requires the
largest controller e�ort.

A composite control algorithm has a larger con-
troller order than the dynamic inversion method. In
comparison with the �-synthesis method, it has a
smaller controller order (because the inner loop linear
model is simpler and rigid). Overall, the composite
control algorithm yields controllers which exhibit ex-
cellent performance and robustness for a broad range
of operating conditions.

CONCLUSIONS

Vibration attenuation is a di�cult control problem
due to the stringent requirements on performance and
the inherent characteristics of such structures. In this
paper, 
exible spacecraft pitch angle is controlled by
three controller designs. The �rst controller is dynamic
inversion, the second is �-synthesis and the third is
a composition of dynamic inversion and a �-synthesis
controller. It is assumed that only one reaction wheel
is used. Actuator saturation is considered in the design
of controllers.

Simulation results prove the composite controller
ability in controlling attitude and, also, the suppression
vibration of panels, which exhibit excellent perfor-
mance and robustness for a broad range of operating
conditions with minimal control e�ort.

It is interesting that these controllers damp the
vibration of panels without considering damping terms
and without using any �lters.

In this paper, it is attempted to make sensor noise,
disturbance and uncertainty close to real values. It is
notable that this combined control method has never
been used on spacecraft and seldom have all terms,
such as disturbance, noise, uncertainty, non-linearity
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and saturation, been considered in the simulations of

exible spacecraft.
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