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A Continuous Vibration Theory for
Beams with a Vertical Edge Crack

M. Behzad*, A. Ebrahimi! and A. Meghdari'

Abstract.

In this paper, a continuous model for flexural vibration of beams with an edge crack

perpendicular to the neutral plane has been developed. The model assumes that the displacement field

1s a superposition of the classical Fuler-Bernoulli beam’s displacement and of a displacement due to

the crack. The additional displacement is assumed to be a product between a function of time and an

exponential function of space. The unknown functions and parameters are determined based on the zero

stress conditions at the crack faces and the concept of J-integral from fracture mechanics. The governing

equation of motion for the beam has been obtained using the Hamilton principle and solved using a modified

Galerkin method. The results have been compared with finite element results and an excellent agreement

1s observed.
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INTRODUCTION

Fatigue and crack initiation and propagation in struc-
tures and machinery subjected to dynamic loading are
one of the main concerns of designers and users. An un-
controlled crack can lead to a catastrophic failure under
certain conditions. The importance of early detection
of cracks makes researchers study various aspects of
the behavior of structures defected by cracks. One
of these aspects is the vibration of cracked structures.
Crack creation and development in a system changes
the dynamic and vibration behavior of that system.
With measurement and analysis of these vibrations, the
cracks can be identified well in advance and appropriate
actions can be taken to prevent more damage to the
system.

The vibration behavior of cracked structures has
been investigated by many researchers. Dimaragonas
presented a review on the topic of the vibration of
cracked structures [1]. His review contains vibration of
cracked rotors, bars, beams, plates, pipes, blades and
shells. Two more literature reviews are also available
on the dynamic behavior of cracked rotors by Wauer
and Gasch [2,3].

Beams are important elements in structures and
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machinery, so the vibration behavior of cracked beams
has been studied by researchers widely. Omne may
define a crack with its edge parallel or perpendicular
to the neutral axis as horizontal or vertical cracks,
respectively, as shown in Figure 1.

There exist three methods for the vibration mod-
eling of beams with horizontal transverse cracks:

1. Discrete models with a local flexibility model for
cracks.

2. Continuous models with a local flexibility model for
cracks.

3. Continuous models with a continuous model for the
crack.

The local flexibility model for the crack has
been suggested by Dimaragonas for the first time [4].
He replaced the cracked beam with two undamaged
half beams connected by a rotational spring. The
stiffness of this spring is obtained from the concept
of the J-integral in fracture mechanics. Papadopoulos
presented a complete literature review on the method
of using the J-integral for finding the local flexibility of
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Figure 1. A beam with (a) horizontal edge crack and (b)
vertical edge crack under bending.
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cracks [5]. The local flexibility idea has been followed
by several researchers till now. Some researchers
modeled two undamaged half beams discretely and
added the flexibility of the rotational spring to the
flexibility matrix of the system [6,7]. Others modeled
two undamaged half beams continuously and used
appropriate boundary conditions for each part to link
them through the rotational spring [8,9]. Some other
researchers have tried to modify and improve the local
flexibility model of the crack by adding one or two
linear springs besides the rotational one [10]. These
methods have also been extended for beams with more
than one crack [11-13]. The local flexibility model for
the crack is a simple approach and has a relatively good
result in finding the fundamental natural frequency
of a cracked beam. However, this method cannot be
implemented for finding stress at the crack area under
dynamic loads, mode shapes in free vibrations and
operational deformed shapes in forced vibrations.

Another approach to the vibration analysis of
cracked beams is continuous modeling of the crack.
Christides and Barr developed a continuous theory
for the vibration of a uniform Euler-Bernoulli beam
containing one or more pairs of symmetric cracks [14].
They suggested some modifications on the familiar
stregs field of an undamaged Euler-Bernoulli beam in
order to consider the crack effect. The differential
equation of motion and corresponding boundary condi-
tions are given as the results. However, in their model,
two different and incompatible assumptions have been
made for displacement and strain fields. Although
the accuracy of the results in finding the natural
frequencies is acceptable for some applications, their
model is still not reliable for more accurate analyses
such as stress analysis near the crack tip under dynamic
loading and mode shape analysis. In addition, the
obtained partial differential equation is complicated
and dependent on some constants that are unknown
and must be calculated by correlating the analytically
obtained results with those calculated by finite element
in each case. Several researchers followed the Christides
and Barr approach by modifying their method and
gained some improvements [15-19]. However, there still
exists the inconsistency between strain and displace-
ment fields, which causes inaccuracy in the results,
especially in mode shapes and stress analysis.

Behzad et al. presented a new continuous theory
for the bending analysis of a cracked beam [20]. A
bilinear displacement field has been suggested for the
beam strain and stress calculations and the bending
differential equation has been obtained using equilib-
rium equations. The model can predict the load-
deflection relation of the beam near or far from the
crack tip accurately and can be also used for stress-
strain analysis in a cracked beam. This model is also
used for the vibration analysis of a cracked beam and
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showed an excellent performance in dynamic loading
too [21,22]. They used this method also for the force
vibration analysis of beams with a horizontal edge
crack [23].

In all the above approaches, the crack is assumed
to be horizontal. This type of crack is more probable to
be created and other forms of crack tend to grow hor-
izontally in bending. However, by using a pre-cracked
element with specific orientation in a structure, the
crack may become horizontal. The other application
of this research is in the area of rotor dynamics, where
a cracked beam rotates. Figure 1 shows a beam with
horizontal and vertical cracks.

In this paper, a continuous approach for the flex-
ural vibration analysis of a beam with a vertical edge
crack has been presented for the first time. The crack
is assumed to be an open edge notch and the crack
edge is perpendicular to the neutral plane. A quasi-
linear displacement field has been suggested for the
cracked beam and the strain and stress fields have been
calculated. The differential equation of motion of the
cracked beam has been obtained using the Hamilton
principle. This partial differential equation has been
solved with a special numerical algorithm based on the
Galerkin projection method. The constants needed in
this model can be obtained using fracture mechanics.
The results of this study are compared with the finite
element results for verification.

CRACK BEHAVIOR ANALYSIS IN
BENDING AND HYPOTHESES

The basic assumption in the Euler-Bernoulli vibration
theory for beams is that the plane sections of a beam
which are perpendicular to the neutral axis remain
plane and perpendicular to the neutral axis after
deformation. In the presence of an edge crack, this
assumption, especially near the vicinity of the crack, is
no longer correct.

Behzad et al. suggested that for a horizontal
crack, the crack faces have an additional displacement
due to the absence of the normal stress [20,21]. They
discussed that this additional displacement is inherited
by the adjacent area with lesser magnitude, and dissi-
pates away with an exponential regime along the beam
length. Consequently, for planes far from the crack tip,
this warping will be negligible and the displacement
field can be assumed linear.

This idea can be followed here for a vertical
crack with some modifications. In order to have a
better sense of the flexural vibrations in a cracked
beam, a finite element model has been produced in
this research, and the mid span vertical crack flexural
behavior can be seen in Figure 2. This finite element
model is made using ANSYS software [24]. The crack
is modeled as a vertical U-shape notch at the mid-span
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as a crack, and a fine singular mesh is used. Note that
the grid lines of Figure 2 are only some hypothetical
lines that show the deformation field of the beam, and
these lines are not referring to the finite element mesh.

Near the crack area, the plane sections will no
longer remain plane. In fact, the crack faces have an
additional rotation, in comparison with the remaining
part of the section, due to the absence of normal stress.
This additional rotation dissipates gradually, while the
distance from the crack tip increases. With a good
approximation, it can be supposed that each plane
section turns into two straight planes after deformation.
Each straight plane section turns into two planes with
different slopes, one on the right side and the other on
the left side of the crack edge. The slope difference
between these two planes decreases with distance from
the crack tip. These two straight planes connect
to each other through a nonlinear part near the zz-

Figure 2. Displacement field illustration in a beam with
a vertical edge crack subject to bending.
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plane. Figure 3 shows the coordinate system and the
parameter definitions, graphically.

In order to find the stress, strain and deformation
functions for a beam with a vertical crack in flexural
vibration, a displacement field for the beam has been
suggested in this research. In fact, it is assumed that
each plane section turns into two straight planes and a
nonlinear connector after deformation. In this research,
the beam is assumed to be a slender prismatic beam
and the crack is considered as an open edge U-shape
notch. The cross section of the beam is assumed to
be symmetric about the y-axis, so the y-axis can be
assumed to be the neutral axis in pure bending. The
displacements and stresses are supposed to be small
and the crack does not grow. Finally, the material is
assumed to be linear elastic.

DISPLACEMENT FIELD DEFINITION

With reference to Figures 2 and 3 and the above
assumptions, the displacement field for a beam with a
vertical edge crack can be defined. It is well known that
the displacement and stress fields near the crack tip are
3D functions. In this paper, at first, a 3-dimensional
displacement field has been introduced for the beam
but, afterwards, the equations are integrated over the
cross-section area of the beam and a 1-dimensional
relation is obtained for the beam vibrations. This

w(z,y,t)

Y

Figure 3. Coordinate system and parameters definition.
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equation is not an exact equation, but the results of
this research show the good engineering approximation
of this relation.

The crack section consists of two parts: The
crack face, which is denoted in Figure 2 by A., and
the remaining part of the section, which is denoted
by Aj in this research. TUnder pure bending, the
healthy part of the cross section (Aj) rotates about
its neutral axis, which is coincident with the y-axis in
this research. This planar part remains plane after
rotation and perpendicular to the neutral axis. The
crack face rotates about the y-axis too, but more than
the remaining part of the section and, consequently,
does not remain perpendicular to the neutral axis
due to the shear stress near the crack tip. The
crack face can also be assumed to remain plane after
deformation, except at a small area near the crack tip.
The rotation difference between the crack face and the
remaining part of the section inherits to the adjacent
cross sections but, gradually, the magnitude of this
difference decreases. As a side effect, deformation of
the beam along the z-axis is a function of y. In fact,
the parts of the beam sections which have more rotation
cause more vertical displacement, too. The numerical
simulations confirm this phenomenon.

Based on the above explanations, the following
displacement field is introduced for a beam with a
vertical edge crack in flexural vibration:

_ {—zﬂ(x,t) y<0

T 2200 1) + (e, t) y >0
_ {wo@,t) y<0 (1)

wo(z,t) + Az, t) y >0

v=20

In which u,v and w are the displacement components
along x,y and z axes. 6(z,t) is the rotation of that
part of the section with y < 0, as shown in Figure 3.
¥(x,t) is the additional rotation of that part of the
section with y >0 and A(z,#) is the additional vertical
displacement of the beam for y > 0. By assuming that
the plane sections in y < 0 remain perpendicular to the
neutral axis, one has:

Owg(z, t)
4{%ﬁ*~ (2)

The additional rotation ¢ (x,t) of that part of the plane
sections with y > 0 has its maximum value at the crack
face and decreases gradually with distance from the
crack tip. This additional rotation is a nonlinear and
complicated variable with respect to x. Here, in this
research, an exponential regime has been assumed for
function ¥(x) along the z-axis as follows:

O(x,t) =

lo—ac

la,t) = m(t)e "

sgn(z — x.). (3)
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In Equation 3, m(t) is the magnitude of additional rota-
tion of the crack faces, a is a dimensionless exponential
decay rate, which will be obtained later in this paper,
T, is the crack position, b is the depth of the beam and
sgn(x — x.) is the sign function, which is —1 for z < z.
and +1 for # > z.. The application of a sign function
is due to the fact that the additional rotation function
has a discontinuity at the crack position and the sign of
its value changes when passing through the crack tip.
In order to find the value of m(t), zero normal
stress conditions at the crack faces can be used. The
normal strain function can be found using Equation 1:
Ex = Uy

)

—2Wo,zx Y <0

o=z

—z (wom - m(t)%e*Cy 5

(4)

lo—e)

+2m(t)e”

6(32—1’6)) y>0

in which é(z — z.) is the Dirac delta function and the
subscript , 2 denotes the partial derivative with respect
to . The normal stress at the crack faces where y > 0
and z =z} or z should be zero, so one has:

m(t) = gwg,m(ajc, t). (5)

The additional displacement, A(z,t), which also de-
creases gradually with distance from the crack tip can
be assumed to be a function similar to ¢ (z, t) as follows:

lz==c]

A(xa t) = n(t)eiaTa (6>

where n(t) is the magnitude of additional displacement
at the crack face, which can be found using a zero shear
stress condition at the crack faces. The shear strain
function, 7,., can be found using Equation 1:

1
Yoz = 5(“# + w,z)

2{0 Le=sel y<0(”

—(m(t)+n(t)E) e ™ 7 sgn(z—z.) y>0

The shear stress at the crack faces, where y > 0 and
x =z} or x7, should be zero so one has:

) o
n(t) = —am(t) = —ﬁwmm(xc,t). (8)
To avoid discontinuity and considering the nonlinearity
at the crack tip, it is assumed that the displacement
field at y > O transforms into the defined functions
in Equation 1 with an exponential regime from the
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displacement field at y < 0. So, the displacement field
is modified in this paper as follows:

—2W0 4 y <0
b

uw=< —z(wo+ — (1 - e*ﬁi)
e

wO,wz(xc)eia ”_b

wo(x, 1) y <0
b? _p
w = wo(x,t)—? (1 —e ) ,|
Woze(Tc)e™ D y>0
0 y <0
V= 2 4 s—we 9
{Zz’gze_ﬁée_al e y>0 ®)

In Equation 9, 3 is a dimensionless parameter and will
be discussed later in this paper. The term (1 — e~ #7)
prevents the discontinuity at the crack tip. The
displacement component, v, is modified in order that
y- becomes zero at the crack faces.

EQUATION OF MOTION

Now, the strain field can be extracted from the dis-
placement field. The normal strain component of the
stress field can be written using Equation 9 as follows:

—2W0,22 y <0

—z (wo,m — (1 — e_ﬁ%)

fr = (1 — 225(% — xc)> (10)

lo—we
) y>0

wO,xx(Ic)eia
The normal stress energy of the beam can be obtained
using the following relation:

1 1
V= i/amazdv = iE/aidV‘ (11)

|4 v

In which V is the normal strain energy function, V
is the volume of the beam and E is the modulus of
elasticity.

In this research, the cracked beam is assumed to
be slender. So, the Euler-Bernoulli assumption can
be used and one can neglect the shear strain energy
in comparison with the normal strain energy. The
displacement field is defined in order to force average
shearing strain components to be zero; similar to an
undamaged Euler-Bernoulli beam.

The kinetic energy of the cracked beam can be
also calculated as follows:

1
T= i/pw?tdv. (12)
v
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In Equation 12, the rotational inertia has been ne-
glected, similar to the undamaged FEuler-Bernoulli
beam theory.

Using the Hamilton principle, one has:

6/t1(T ~V)dt = 0. (13)

Now, using Equations 10 to 13 and performing ap-
propriate calculations, the following equations can be
obtained:
82
E—
ox?

k:/z2 (l—e*ﬂ%>dA:Ic—/zQe*’6%dA. (14)

A A

=]

(Iwo,xz_ ka,zz(xcvt)eia b

)-H)Aw,tt =0,

Equation 14 is the governing equation of motion of
a beam with a vertical edge crack. In this equation,
k is a geometrical factor which can be found for
every given cross-section and crack. I and I. are the
moment inertia of the cross-section and the crack face,
respectively. In an undamaged beam, the geometrical
parameter, k, is zero and, hence, Equation 14 turns into
a familiar form of the Euler-Bernoulli vibration equa-
tion for slender beams. The dimensionless exponential
decay rates («, ) are the only factors that have not
been discussed yet. In the next section, the parameters,
« and (3, are calculated and then, the solution for the
partial differential Equation 14 is presented.

EXPONENTIAL DECAY RATES o« AND g3
CALCULATION

The exponential decay rates presented in this research
can be obtained using the concepts of additional
remote point rotation and the J-integral, which are
two familiar concepts in fracture mechanics. Several
researchers used a similar method to evaluate the crack
properties [5,20].

When a pair of static bending moments, M, are
applied to the cracked beam, an additional relative
rotation, 6%, will exist between two ends of the beam,
due to the crack, as shown in Figure 4.

For an Euler-Bernoulli simply supported beam,
the slope function of the neutral axis is as follows:

dw M )

Figure 4. Additional rotation of a beam with a vertical
crack under bending.
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For a beam with a vertical crack under pure static
bending, the time derivatives vanish from Equation 14.
Integrating two sides of the obtained equation and us-
ing appropriate boundary conditions for pure bending,
the following equation will be obtained:

dz2 ~ EI

2 M e
d"wo (1+Ifke_a Z ) (16)

Solving Equation 16 will result in the load-deflection
relation of a beam with vertical crack under static pure
bending. The results are as follows [20]:

wo =

2 o ue
%(%-}—clx—l—cz—l—%ﬁe“ b ) r<x,

(17)

2 2 . m—=e
%(%+03x+04+b—2ﬁe R ) T> T,

in which constants ¢y, ¢z, ¢3 and ¢4 will be as fol-
lows [20]:

_ bk
a=c =275

_ _ bk —a%e
C2 = a? 17k€ ’ (18)
o= L _ea 1B k —algEe

3= 723 l laZl—k

_ bk
C4—Cz-2ﬁ?cam

Using Equations 15 and 17, one can obtain the addi-
tional remote point rotation, 8%, as follows:

0" = (6.(0) — 8,(0)) = (8.(1) — 6, (1))

Mb k —ale _alzte
e O (19)

where 6. and 0, are the rotation of a cracked beam
and an undamaged or healthy beam under static
bending, respectively. In Equation 19, parameter & is
a function of 3. However, the finite element results, in
comparison with those obtained by this model, show
that parameter [ is a large enough parameter and,
accordingly, it can be assumed that parameter S tends
to infinity. It must be noticed that, despite the fact
that the exponential decay rate, 3, is obtained here
by finite element analysis and correlating analytical
and finite element results, this value for § is a general
value and, in other cases, can be used without separate
calculations.

On the other hand, additional rotation 8* means
that the cracked beam accumulates more strain energy
compared with an undamaged beam. This extra strain
energy which is called Ur here is stored at the vicinity
of the crack. The additional rotation of a beam
subjected to a pair of bending moments at two ends, as
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shown in Figure 4, can be obtained using Castigliano’s
theorem as follows:

_ OUr

0" = L

(20)
This additional strain energy is due to the crack and
can also be written in the following form [1,5]:

UT:/A T, (a)dA. (21)

c

In Equation 21, A, is the crack face area. Equation 21
is called the Paris equation, and J, in this equation
is the strain energy release rate. There are several
experimental, analytical and numerical formulas to
calculate the value of the J-integral based on the
geometry, loading and type of crack [25,26]. In this
case, the value of the J-integral could be obtained from
the following equation [1,5]:

1 6 2 6 2
Jo=5 (Z Kh) + (Z ls'm)
=1 =1

6 2
+m (Z IX’HL) s (22)
i=1

where Ki,, K, and Kiyp, are the Stress Intensity
Factors (SIF), corresponding to three modes of frac-
ture, which result for every individual loading mode, 1.
In pure bending, SIF is nonzero only for mode I. In
Equation 22, if the plane stress assumption is used,
then, £/ = E and, if the plane strain assumption is
used, then E' = E/(1 — v?). In this article the plane
strain assumption is used.

The beam with a vertical edge crack can be
assumed to consist of a set of thin plates along a z-
axis, and each plane to contain an edge crack and be
subjected to axial tension or compression. This Stress
Intensity Factor (SIF) for such plates is [26]:

K; = ooV/maF (3.

F (%) - (1 +0.122 cost ;—Z) q/i—Ztan Z—Z (23)

Equation 23 has an accuracy of 0.5% for any a/b. From
Equations 22 and 23, the energy release rate is:

2
_ K

1—v2 (Mz\’ 5 (@
=5 =g <1>”FQ)~ (24)
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Now, substituting Equation 24 into 21 and, then, using
Equation 20, the additional rotation of the cracked
beam, 6%, can be obtained in terms of bending moment
and geometrical parameters. For a rectangular cross
section, this additional rotation is:

_1-v*2M
=T F ?7“;97

= /gl /Oa 2?sF? (%) dsdz. (25)

The additional rotation can be evaluated using the
obtained relation in Equation 19 too. Comparing the
two sides of Equations 25 and 19, one has:

bk
al —k

9*

la

s 2
(2—«3_0‘T e ) =1 -7y
(26)

The numerical solution of Equation 26 will lead to
finding the value of exponential decay rate a for any
values of geometrical parameters and simply supported
ends. From Equation 26, it can be shown that
exponential decay rate a is a function of a/d, 1/d
and z./l. However, Behzad et al. discussed that, for
slender beams (I/d > 10), slenderness factor (I/d) and
crack position ratio z./l have a minor effect on « for
horizontal cracks [20]. It can be shown that exponential
decay rate «is only a function of crack depth ratio (a/b)
for slender beams with vertical cracks too. Figure 5
shows a versus a/b for slender beams (I/d > 10).

EIGEN SOLUTION FOR SIMPLY
SUPPORTED BEAM WITH VERTICAL
CRACK

In order to find the natural frequencies and mode
shapes of a beam with vertical crack, the equation of
motion presented in Equation 14 must be solved. How-
ever, this equation cannot be solved analytically, and a

6.0
5.5

5.0\
45 \
4.0 \
3.5 \ /
3.0 /
2.5 i

2.0

Exponential decay data («)

1.5

1.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Crack depth ratio (a/b)
Figure 5. Exponential decay rate (a) versus crack depth
ratio (a/b) for a slender simply supported beam with a
vertical edge crack.
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numerical method must be used. The especial form of
Equation 14 in which the solution at the crack position
is appeared in the governing equation prevents one
from using the ordinary Galerkin projection method.
Behzad et al. presented a modified Galerkin projection
algorithm for solving this type of equation [21]. In
this paper, a similar approach has been used. The
beam is assumed to be simply supported in this section.
However, for every desired boundary condition, the
presented solution can be used.

It can be assumed that the solution is a harmonic
function, so one has:

w(x,t) = X(x)e™?, (27)

in which w is the natural frequency of the beam. Substi-
tuting Equation 27 into Equation 14 and assuming ET
to be constant along the beam, the following eigenvalue
problem will be obtained:

X(0)=X(1)=0
XII(O) — Xll(l) — 0 (28)

In Equation 28, simply supported boundary conditions
have been used. In a normal Strum-Louiville problem,
one can easily consider function X to be in the form
of 3 ¢;Si(x) in which S;(z) are shape functions that
satisfy the physical boundary conditions. However, in
this research, the results show that such an approach
will lead to a divergence of the results. Since the
function e~ in Equation 28 is not a smooth
function, it seems that the solution, especially for larger
crack depth ratios, tends to have large derivatives
near the crack tip. Accordingly, extracting the value
of X"(z.) from X by derivation can lead to large
fluctuations in the results and divergence. In order
to avoid the divergence problem, function X’ and the
value of X" (z.) are not extracted from X by direct
derivation. Instead, X' is discretized independently
from X and, then, a constraint equation is provided to
link X" to X.

Considering the above discussion, the following
relations can be written:

«

lw—wel

N
X" =X (x)ema =3 eiSi(x)
N =1 (29)
X =X aSi(x)

=1

in which ¢; and ¢} are two independent sets of constants,
functions S;(x) are shape functions, which must satisfy
physical boundary conditions, and N is the number
of shape functions. Substituting Equation 29 into
Equation 28, multiplying two sides of the equation by
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S;(z), then, integrating along the length of the beam,
one has:

j=1,2,---,N. (30)
Or in the matrix form:
PA oo
Kc — Pc =
C EI,]w c =0,
l
Kij:/ S:I(Q’/')SJ(Z)(L’L',
0
!
P, = / S4(2)S, (x)d. (31)
0

On the other hand, if one substitutes the second
equation of Equation 29 into the first one, the following
relation will be obtained:

N N

IACHOE %sg'(xc)e—a'ﬁ“‘) - Z ciSi(x).

=1

Multiplying two sides of Equation 32 by S;(x) and,
then, integrating along the length of the beam, one
has:

(33)

Rearranging Equation 33 into matrix form, the follow-
ing equation can be written:

Qc’ = Rec,

l
Qi = / §1(2)S;(2)dz

lo—we]

K l
(s, / §;(x)e T e,
] 0

l
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Now, from Equation 34, coefficients ¢, can be related
to ¢;, as follows:

¢ =Q 'Re. (35)
Substituting Equation 35 into 31, the following equa-
tion will be obtained:

PA
K- —wM =
( EIw )c 0,

M =PQ 'R. (36)
The natural frequencies and corresponding mode
shapes for the cracked beam can be calculated solv-
ing the matrix eigenvalue problem of Equation 36.
In the next section, the results are presented for
a simply supported beam with a rectangular cross-
section.

RESULTS FOR A SIMPLY SUPPORTED
BEAM WITH RECTANGULAR
CROSS-SECTION

In this section, the eigenvalue problem of Equation 36
has been solved for free vibration analysis of a simply
supported slender prismatic beam with a vertical edge
crack and rectangular cross-section. In such a beam,
the exponential decay rate, 3, can be assumed to be
infinite and the exponential decay rate, a, can be
calculated from Equation 26. The values of o versus
crack depth ratio (a/b) have been shown in Figure 5.

In a simply supported cracked beam, shape func-
tions S;(z) can be assumed to be in the form of
sin(émx /1), which satisfy physical boundary conditions.
The natural frequency and mode shapes can be calcu-
lated using the eigenvalue problem of Equation 36. In
this research, the number of shape functions, N, is set
to be 100. In order to generalize the results, the natural
frequencies of the cracked beam have been divided into
the corresponding values for an undamaged beam (wy).
Figures 6, 7 and 8 show the fundamental, second and
third natural frequency ratios of the cracked beam,
respectively. In Figures 6 to &, the natural frequency
ratios have been plotted versus the crack depth ratio
(a/b) for several crack positions.

In Figures 6 to 8, the results of Finite Element
(FE) analysis are also presented for verification. The
finite element results have been obtained using ANSYS
software. In order to have an accurate and reliable
model, the PLANE183 singular element has been used
in the cracked area [22]. This element is an &node
quadratic solid singular element, especially designed for
crack analysis. In this research, a fine mesh has been
used at the vicinity of the crack, and the dependency of
the results on mesh size has been checked. In all results,



202

1.05

T/l =
1.00

]
JH
/1]
]
o8
at

N
z./l=0.3
0.85
—— Analytical results for z./l = 0.1 \
— Analytical results for z./l = 0.2
— Analytical results for ./l = 0.3
0.80 | — Analytical results for z./1 = 0.5
YT ¢ FE results for z./l = 0.1
+ FE results for z./l = 0.2 \
®* FE results for ./l = 0.3
* FE results for z./l = 0.5
0.75 T T T T T
0.0 01 02 03 04 05 06 07 08 09 1.0

Crack depth ratio (a/b)

Figure 6. Fundamental natural frequency ratio for a
beam with a vertical crack versus crack depth ratio.

1.05
1.00 ——

'\AQ\ z./1=0.5
0.95 \1

N ™ _
0.90 = F\\ \l
DN

0.85

— Analytical results for z./
— Analytical results for z./
— Analytical results for ../
Analytical results for z../

0.80H + FE results for z./l = 0.1
0.2
0.3
0.5

z./l=0.3

Frequency ratio (w/wo)

4 FE results for z./l =
* FE results for ./l =
* FE results for @/l =

T T I
0.2 03 04 05 06 07 08 09 1.0

Crack depth ratio (a/b)

0.75 :
0.0 0.1

Figure 7. Second natural frequency ratio for a beam with
a vertical crack versus crack depth ratio.

1.05
1.00

§ @ /l=0.1 7
0.95 \ z./120.3

2y
/A

0.90 e \1\\
N
2. /1=0.2 \

0.1 \
0.2
0.3
0.5

Frequency ratio (w/wo)

—— Analytical results for ./l
— Analytical results for z./l
/L

1

— Analytical results for
0.80— ", FE results for ./l =
FE results for ./l =
FE results for z./

FE results for a../

o m >

0.75 T T T
0.0 0.1 0.2 0.3 0.

0.5 0.6 07 08 09 1.0
Crack depth ratio (a/b)

Figure 8. Third natural frequency ratio for a beam with
a vertical crack versus crack depth ratio.

M. Behzad, A. Ebrahimi and A. Meghdari

there is good agreement between analytical results and
those obtained by FE analysis.

As can be seen in Figure 6, the reduction rate of
the fundamental natural frequency has a direct relation
with the position of the crack. This rate reduces for
cracks that have more distance from the mid span of the
beam. For the cracks at z./l = 0.1, the fundamental
natural frequency drops less than 1 percent when the
crack reaches half of the beam depth, while for the
cracks at the mid span, this value is about 4 percent.

The dependency of the reduction of the natural
frequency on the crack position is also seen in the first
few natural frequencies. For cracks at the mid span,
the second natural frequency remains nearly constant
with the crack depth, because this point coincides with
the node of the second vibration mode of the beam.

Figures 9 and 10 compare the natural frequency
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Figure 9. Fundamental natural frequency ratio versus
crack depth ratio for vertical crack and horizontal
crack [21] at z./l = 0.5.
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drop for horizontal and vertical cracks. In Figure 9, the
fundamental frequency ratio for the mid span vertical
crack has been compared with a horizontal one in
the same position. It can be seen that a horizontal
crack has much more effect than a vertical one on the
natural frequency. This result was predictable, because
a horizontal crack reduces bending stiffness more than
a vertical crack. Figure 10 shows a similar comparison
for the second natural frequency at z./l = 0.25. It can
be seen that a horizontal crack has more effect on the
second natural frequency, too.

Figures 11 to 13 show the first three normalized
mode shapes for a cracked beam with a/d = 0.5 and
z./l = 0.1, 0.3 and 0.5. Comparison of the analytic
and finite element results in this set of figures shows
the efficiency of the model presented in this research.

CONCLUSIONS

A continuous model for flexural vibration analysis of a
beam with a vertical edge crack has been developed in
this paper. It is assumed that the crack face rotates
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Figure 11. First three normalized mode shapes of a
cracked beam with z./l = 0.1 and a/b=0.5. (—):
Analytical results; (e @ ee): Finite element results.
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more than other parts of the section, as well as its
adjacent area. The additional rotation decays with an
exponential regime along the beam length. On the base
of this assumption, a displacement field for the beam
has been suggested and modified for compatibility,
continuity and consistency. The strain and stress fields
are calculated by direct derivation of the displacement
field and by using the linear elastic material model.
Then, the partial differential equation of motion has
been obtained using the Hamilton principle. This
equation has been evaluated for static conditions and
the exponential decay rate has been obtained with the
aid of the J-integral concept in fracture mechanics.

The obtained governing equation of motion for
a simply supported beam with a rectangular cross-
section and vertical edge crack has been solved with
a modified Galerkin projection method. The obtained
results have been compared with finite element results
for a few first natural frequencies and mode shapes,
and an excellent agreement has been observed.

The obtained results have also been used for
studying the effect of crack parameters on natural
frequencies and mode shapes. The calculated natural
frequencies for a beam with vertical crack have been
compared with those obtained for horizontal crack, and
it is observed that the natural frequencies are more
sensitive to horizontal cracks. Finally, it must be
noticed that the developed theory in this research is
only correct for open edge cracks without extension.
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