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Lot Sizing and Lead Time
Quotations in Assembly Systems

F. Kianfar1 and G. Mokhtari1;�

Abstract. In this paper, a simultaneous lead time quotation and lot sizing problem in an assembly
system is investigated. We address a production system with a product that has deterministic demand over
a T-period planning horizon and is produced in lots because of the economy of scale. If a lot is completed
before the demand period, inventory carrying cost is incurred. On shortages, a lead time is quoted to
customers and a lead time quotation cost is incurred. Finally, if the order is delivered later than its due
date period, a tardiness cost is charged. The components supply lead time is stochastic, which follows a
discrete distribution. The problem is to decide on the lot size of products and components, supply and
production starting periods and the due date of lots (to be quoted to customers) so that relevant costs are
minimized. The objective function is the sum of the production, inventory carrying, lead time quotation
and tardiness costs. We develop a genetic algorithm to solve the proposed model. An experimental
framework is set up to test the e�ciency of the proposed method, which turns out to rate high, both in
terms of cost e�ectiveness and execution speed.
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INTRODUCTION

This paper addresses a combination of lot sizing and
lead time quotation problems, which are motivated by
a construction equipment manufacturer that could be
viewed as an assembly system. In fact, for assembly
systems, several types of components are needed to
produce one �nished product. So, the inventories of
the di�erent types of component become dependent.
It must be noted that an assembly system could also
be called a two-level system.

Lot sizing decisions give rise to the problem of
identifying when and how much of a product to produce
such that total related costs are minimized. Making
the right decisions in lot sizing will a�ect directly the
system performance and its productivity, which are
important for a manufacturing �rm's ability to compete
in the market. We consider a lot sizing problem in a
backlogging case, meaning that it is possible to satisfy
the demand of the current period in future periods.
In the considered production system, on shortages,
a lead time must be quoted to the customer, which
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will be one of the contractual terms. A lead time
quotation incurs a cost that arises in the form of sales
price reductions, customer goodwill, etc. Because of
uncertain supply lead times, the quoted lead time may
not be met; a case wherein tardiness cost is incurred.
To the best of our knowledge, a combination of the
above-mentioned lead time quotations and lot-sizing
problems, simultaneously, has not been considered by
other researchers.

The lead time quotation problems make practical
sense when a �rm o�ers a due date to its customers dur-
ing sale negotiations and has to o�er a price reduction
when the due date is far away from the expected one. In
order to maintain a good image among the customers,
many companies tolerate reasonable holding costs in
favor of keeping the established due dates.

In quoting lead times to the customers, a trade-
o� has to be made between the length and reliability of
the lead time. Promising a short lead time might lead
to an impossible task for the order realization function,
with regard to delivering the order close to the order
due date. On the other hand, long lead times make
it easy for the order realization function to obtain a
good due date performance, but these lead times are,
in general, unacceptable to the customers. Long lead
times not only dissatisfy customers but also increase
WIP and total inventories. Many authors have studied
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this trade-o� between the length of lead time quoted
to the customer and delivery reliability.

In this paper, a multi-period and multi-
component lot sizing problem, for assembly systems
with uncertain lead times, is investigated. Because of
the lead time uncertainty, the traditional backlogging
cost has two divisions: the lead time quotation cost
and tardiness cost. To our knowledge, this variant of
the lot sizing problem has not been considered by other
authors.

The rest of the paper is organized as follows. In
the following section, some of the relevant work, both
in the lot sizing and lead time quotation literature, is
summarized. Then, analytical model is presented, the
speci�c problem is described and modeled and, in the
�nal section, we apply genetic algorithms to solve the
sample problems and analyze the results.

LITERATURE REVIEW

In this paper, we consider a problem which is simul-
taneously related to lead time quotation and lot sizing
literature. From the lot sizing viewpoint, this problem
is a multi-period, two-level, incapacitated lot sizing
problem with stochastic lead times and backlogging.
Therefore, we address principal research streams in
these distinct areas.

Lot Sizing Literature

The concept of batching has been examined in various
families of problems. Two major families are lot sizing
and lot scheduling. For a review of lot scheduling
problems, the reader is referred to Sox et al. [1] and
Potts and Kovalyov [2].

Lot sizing problems are production planning prob-
lems with setups between production lots. Because of
these setups, it is often too costly to produce a given
product at every period. On the other hand, generating
fewer setups by producing large quantities to satisfy
future demand results in high inventory holding costs.
Thus, the objective is to determine the periods where
production should take place, and the quantities to be
produced, in order to satisfy demand, while minimizing
production, setup and inventory holding costs. Other
costs might also be considered. Examples are backorder
cost, changeover cost, etc. Several models have been
proposed for lot sizing problems. One of the ancestors
of these models is the Economic Order Quantity (EOQ)
model, which is a continuous time model with an
in�nite time horizon. It considers a single item and
imposes no capacity restrictions. Later, the EOQ
model was extended to consider multiple items and
capacity limits. The discrete lot sizing models assume
that the planning horizon is �nite and divided into
discrete periods for which demand is given and may

vary between periods. Wagner and Whitin's [3] single
item incapacitated problem is a seminal work in this
area. Zangwill [4] considered the Wagner and Whitin
problem in a backlogging case. For recent reviews of
single item and single-level lot sizing problems, the
reader is referred to Brahimi et al. [5] and Karimi et
al. [6].

Production systems may be single-level or multi-
level. In multi-level systems, there is a parent{
component relationship between the items. After
processing by several operations, raw materials change
to end products. The output of an operation (level) is
input for another operation. Therefore, the demand at
one level depends on the demand for its parents' level.
This kind of demand is named dependent demand.
Multi-level problems are more di�cult to solve than
single-level problems. Bahl et al. [7] reviewed the
single and multi-level lot sizing papers. Berretta and
Rodrigues [8] and Dellaert and Jeunet [9] investigated
the multi-level lot sizing problem. Most multi-level
lot sizing papers consider zero or deterministic lead
times, but Dellaert et al. [10] considered the lot
sizing problem with positive deterministic lead times.
Clark and Armentano [11] proposed a heuristic for
the multi-stage lot-sizing problem with general product
structures and lead times. Dellaert and Jeunet [12]
studied the impact of positive lead times on the multi-
level lot-sizing problem in a rolling schedule environ-
ment.

Stochastic lot sizing problems consider the de-
mand or lead time to be stochastic. We review only
the stochastic lead time case. With stochastic lead
times, a di�culty is added to the problem because, in
that case, orders may cross, that is, they may not be
received in the same sequence in which they are placed.
Hadley and Whitin [13] combined the assumptions that
orders cannot cross and lead times are independent.
Liberatore [14] considered the single-item lot sizing
with deterministic demand and stochastic lead time
and avoided the problem of orders crossing in time
by assuming that demands are not interchangeable.
The non-interchangeability assumption works in such
a way that the demand designated for order 1 cannot
be satis�ed by the early arrival of order 2 since, by
assumption, demand 1 can only be satis�ed by order 1.
Liberatore showed that it is optimal to order for groups
of consecutive demands. Nevison and Burstein [15]
showed that if lead time distributions are arbitrary
(except when they are independent of order size and
do not allow orders to cross in time) each order in
an optimal solution will exactly satisfy a consecutive
sequence of demands; a natural extension of the classic
results by Wagner and Whitin. If, on the other hand,
orders can cross in time, optimal solutions will still be
lumpy, in the sense that each order will satisfy a set
(not necessarily consecutive) of the demands.
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In our formulation, we assume that lead times are
stochastic and demands are not interchangeable.

A practical method for a multi-level lot sizing
problem is MRP. In fact, MRP begins with the end-
product need date and uses the lead time to calculate
the components release date. Clearly, the calculation
does not take into account the actual lead time because
it is not known at this moment. The calculation uses
a forecasted value of lead time, i.e. planned lead time.
Gupta and Brennan [16] studied MRP systems using
simulation. They showed that lead time uncertainty
has a large in
uence on the cost. The statistics done
on simulations by Bragg et al. [17] show that lead times
substantially in
uence the inventories.

Dolgui and Ould-Louly [18] considered the search
for the optimal values of the planned lead times for
the MRP method under lead time uncertainty and
the \Lot for Lot" policy. The problem is to �nd
the planned lead times, which minimize the expected
backlogging and holding costs in a two-level assembly
system. They suppose in�nite supply capacity (lead
time does not depend on lot size) and constant demand
level. The solution is based on the use of an auxiliary
Markov chain. Ould-Louly and Dolgui [19] extended
their previous work such that the decision variables
were the planned lead times of components and the
periodic ordering quantity (with a common periodicity
for all of the components). The used criteria is the sum
of the average holding cost for the components, the
average backlogging cost for the �nished product, and
the setup cost. A mathematical formulation, based on
Markov chains, is proposed to measure the average cost
on an in�nite horizon with a �xed demand per period.
The solution method is given under a complementary
assumption. This assumption is that the lead times
of the di�erent types of component follow the same
distribution probability, and that the holding costs per
period of the ordered quantities are the same.

In the considered problem in this paper, the unit
backlogging cost is not constant at di�erent periods.
Product application is seasonal and shortage cost will
be higher at some periods, implying that the planned
lead time will not be constant in the planning horizon;
for the critical periods, more safety lead time is needed.
Therefore, the planned lead time approach could not be
applied.

Lead Time Quotation Works

The lead time quotation is also called the due date
assignment, especially when combined with order se-
quencing and scheduling problems (e.g. [20,21]). The
majority of papers that consider due date assignment
and sequencing together address a single machine shop.
Several models of assigning due dates are considered in
the scheduling literature, the simplest being the model

in which all jobs have a common due date. Gordon et
al. [22] provided a uni�ed framework of common due
date assignment problems in the deterministic case by
surveying the literature concerning models involving a
single machine and parallel machines.

When there is a signi�cant setup time and/or
setup cost, it is useful to consider problems where three
types of decision are combined: the scheduling, batch-
ing, and due date assignment. Cheng and Kovalyov [23]
considered such a problem in a common due date case
in a single machine system, wherein a set-up time is
required before the batch of a group is processed.

But, in the case of complex assemblies, a customer
order due date assignment is a higher level decision
in the production planning hierarchy, which could be
combined with shop 
oor scheduling problems. A
due date assignment must be set at the MPS level
in coordination with the marketing and sales func-
tion.

Some studies use simulation and regression to
analyze the performance of manufacturing systems
under di�erent due date setting regimes (e.g. [24,25]).
An overview of the studies which examine (using
simulation) the relative performance of simple heuristic
rules for the due date assignment can be found in the
survey by Cheng and Gupta [26]. Another approach
is the use of 
ow time for due date assignment; each
order has a 
ow time that usually follows a probability
distribution function (e.g. [27-31]). A queuing theory
has also been used in due date assignment literature.
For example, Wein [32] considered the simultaneous
due date setting and priority sequencing. Duenyas [33]
considered the due date quotation in a production
system modeled as a single server queue. Slotnick and
Sobel [34] modelled the due date assignment as a semi-
Markov decision process.

From the lead time quotation viewpoint, we ad-
dress a situation where, upon shortages, a lead time is
quoted to the customer and a cost that is proportional
to the quoted lead time is incurred. If products are
delivered with tardiness, a tardiness cost, which is
proportional to delivery lateness, is charged.

MODEL FORMULATION

We consider the problem of having a dynamic exter-
nal demand for one �nished product. The demand
for this product is known exactly for number T of
periods; the demand window. The �nished product
demands are satis�ed at the end of each period. In
order to reduce set-up costs, the demand for several
periods can be lumped at the cost of a carrying
charge. We assume that the �nished product is
assembled from sub-assemblies or components. Like
the product, these components will have a replen-
ishment lead-time or production lead-time, ordering
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or set-up costs and holding costs, for carrying the
inventory over some periods. The lot sizing decisions
for the product completely determine the requirements
for components with a lead-time correction. The
assembly system capacity is supposed in�nite. The
lead times of component types are independent ran-
dom variables (each component type has its own lead
time, which is a random variable). The lead time
(the number of periods from order placement until
order arrival) is independent of whether an order is
placed at any particular period or the amount of any
order.

Our objective is to minimize the sum of the
set-up, and inventory holding costs (for product and
components) as well as lead time quotations and
tardiness costs for the �nished product over the T -
periods horizon.

Notation and Formulation

We follow the Krarup and Bilde [35] approach, which
is called the facility location-based formulation and the
disaggregate formulation too. They presented a refor-

mulation for a single-item, single-level, deterministic
lot sizing problem by introducing new variables, xij ,
representing the quantity produced in time period i
to satisfy the demand in time period j for all j 2
fi; � � � ; Tg. The di�erence of our formulation is due
to backlogging; in xij : j 2 f1; � � � ; Tg.

To formulate the problem, we use the symbols
summarized in Table 1.

We can mathematically formulate this problem as
follows:

minZ =
TX
t=1

24�tRt +
TX
j=1

(�t + ujth+ �2tvjt)Xjt

+ �1tdtKt +
mX
i=1

 
aitSit +

tX
j=1

(bit

+(� + eijt)hi)Yijt

!#
; (1)

st:

Table 1. Notations for the problem.

t; j Period indices j = 1; � � � ; T t = 1; � � � ; T
i Component indicator i = 1; � � � ;m
Decision Variables:
Xjt Batch size of �nished product, started in period j to ful�ll the demand of period t
Yijt Batch size of component i, started in period j to ful�ll the requirements of period t
Kt Lead time quoted to customers of period t
Rj Boolean variable addressed to capture set-up cost in period j
Sij Boolean variable addressed to capture set-up cost of component i in period j
Parameters:
hi Holding cost of the component i per period
h Unit inventory carrying cost per period (for �nished product)
�t + �tn Production cost of a �nished product batch with size n released in period t
ait + bitn Production cost of a batch of component i with size n released in period t
� Assembly lead time (deterministic), measured as an integer multiple of planning periods

Li
Supply lead time of component i (a discrete random variable), measured as an integer
multiple of planning periods


i Quantity of component i required to produce one unit of �nished product
�2t One period tardiness cost per unit of �nished product
�1t Cost of quoting one period lead time for each unit demanded in period t
dt Demand of period t
Auxiliary Variables:
ujt Expected inventory carrying periods of batch Xjt
vjt Expected tardiness of batch Xjt
eijt Expected inventory carrying periods of batch Yijt
Wj Delay in starting assembling of Xj� batches (because of late receiving of required components)

wij
Delay in starting assembling of Xj� batches (because of late receiving of required components
other than component i)
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TX
j=1

Xjt = Dt; t = 1; � � � ; T; (2)

TX
j=1

Xtj � M.Rt; t = 1; � � � ; T; (3)

TX
j=1

Yitj � M.Sit; t=1; � � � ; T; i=1; � � � ;m;
(4)

tX
j=1

Yijt=
i
TX
j=1

Xtj ; t=1; � � � ; T; i=1; � � � ;m;
(5)

Rt; Sit = 0 or 1 : t = 1; � � � ; T; i = 1; :::;m; (6)

Kt � 0; Integer : t = 1; � � � ; T; (7)

Xjt; Yijt � 0 : j = 1; � � � 5; t;
t = 1; � � � ; T; i = 1; � � � ;m: (8)

The proposed model is a Mixed Integer Nonlinear
Programming (MINLP) model, as it contains both con-
tinuous and integer variables. The objective function
in Equation 1 is the sum of production, lead time
quotation, tardiness, set-up and inventory holding costs
over the planning horizon. Note that the possibility
of time-varying unit production and set-up costs is
allowed.

ujt and vjt are de�ned by:

ujt =
t�j+Kt��X

r=0

(t� j +Kt � � � r):P (wj = r); (9)

vjt =
1X

r=t�j+Kt��
[r � (t� j +Kt � �)]:P (wj = r):

(10)

In Equations 9 and 10, t � j + Kt � � is the 
oating
time of batch Xjt. Similarly, we have:

eijt=
1X
r=0

t�j+rX
l=0

(t�j+r�l):P (wit = r):P (Li = l):
(11)

wj and wij are random expressions and are de�ned by:

P (wj = r) = P (wj � r)� P (wj � r � 1); (12)

P (wj � r)
=

Y
n=1;��� ;m; t=1;��� ;j; Yntj>0

P (Ln � j � t+ r); (13)

P (wij � r) =
Y

n=1;��� ;m; t=1;��� ;j; Yntj>0; n 6=i
P (Ln � j � t+ r):

(14)

Equation 2 expresses the demand satisfaction con-
straint for �nished product. Constraints 3 and 4, where
M is a large number, guarantes that a set-up cost will
be incurred when a batch is purchased or produced.
The sum of supply of a component in a period must
be equal to its requirement in the �nished product
assembly, as stated in Equation 5.

THE GENETIC ALGORITHM

In the past decade, meta-heuristics such as Genetic
Algorithms (GA), tabu search and simulated anneal-
ing have become more and more popular for solving
complex combinatorial problems. Readers not familiar
with the basic concepts of genetic algorithms are
referred to Goldberg [36]. General guidelines for the
design of meta-heuristics are discussed in Hertz and
Widmer [37]. One of the main reasons for the success of
these meta-heuristics is their 
exibility and capacity to
handle large and complex problems. As a consequence,
these methods are usually developed for extensions of
the standard lot sizing problem, for which no good
special purpose algorithm exists and which is too
di�cult to solve with commercial integer optimization
software. For a recent review on the applications of
meta-heuristics for lot sizing problems, see Jans and
Degraeve [38].

For a GA, the major decisions concern:

1. Representation,

2. Evaluation,

3. Construction of genetic operators to generate o�-
spring,

4. Choice of selection mechanism to determine the
next population.

In this section, we present the way a genetic
algorithm can be customized to address the problem.
We �rst discuss the issue of encoding and the feasibility
constraints. Then, we turn to the evolutionary stages
of the algorithm and the speci�c genetic operators that
have been designed to increase search e�ciency.

Encoding

In the representation of a solution of lot sizing prob-
lems, there are two basic options for a direct represen-
tation, as we are dealing with mixed integer program-
ming problems containing both integer and continuous
variables [38]. In the �rst option, we explicitly include
both integer variables and production quantities in the
representation. The second option is to include only
integer variables and discard the production quantities.
Each setting of the integer variables corresponds to an
optimal value for the production variables.
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As discussed in previous sections, we know that
the demand of each period will be satis�ed by only one
order. There is never more than one lot to cover a
demand or a requirement. In other words, among all
Xjt, j = 1; � � � ; T for period t, there is only one j, such
that Xjt > 0. We design the chromosome structure
as an integer matrix (with T columns), based on this
property:266664

P1;1 ::: P1;T
P2;1 ::: P2;T
P3;1 ::: P3;T
::: ::: :::

P2+m;1 ::: P2+m;T

377775 : (15)

In the �rst row, P1;t equals the period within which
the assembly of a �nished product batch is released to
satisfy the demand of period t. The �rst row data could
be converted to Xjt, Rj variables:

Xjt =

(
dt; P1;t = j
0; otherwise

(16)

Rj =

(
1; � t : P1;t = j
0; otherwise

(17)

In the second row of the matrix, P2;t is the lead time
quoted to the customers in period t. Each row of the
next m rows corresponds to a component. For example,
P3;t equals the period in which an order of component 1
is released to satisfy its requirements in period t. This
data could be converted to Sij , Yijt variables:

Sij =

(
1; � t : P2+i;t = j
0; otherwise

(18)

Yijt =

8<:
i
P

8n:P1;n=t
dn; P2+i;t = j

0; otherwise
(19)

For a solution to be feasible, the following restrictions
must be considered in the corresponding chromosome:

a) P1;t>0 if, and only if, dt>0 for t=1; � � � ; T; (20)

b) P2+i;t � t for t = 1; � � � ; T; i = 1; � � � ;m; (21)

c) P2+i;t > 0 if, and only if, � j : P1;j = t

for t = 1; � � � ; T: (22)

In our genetic algorithm, only feasible chromosomes
will be considered. Therefore, these restrictions are
considered in developed crossover and mutation oper-
ators.

A set of such chromosomes is generated randomly
to form an initial population. The �tness of each
chromosome in the population is evaluated based on
the total cost of the plan it represents. A new popu-
lation of the same size is generated from the original
population by manipulating its chromosomes using
genetic operators. The new population is evaluated and
another population is generated from it. This process
continues until a stopping criterion is met. Genetic
operators generate new chromosomes (children) from
existing ones (parents) by manipulating the values
assigned to the genes (digits) of some chromosomes
(that are chosen randomly) in two ways: crossover and
mutation. Every crossover operator is applied to two
chromosomes (parents) and results in two new ones
(children). Every mutation operator is applied to one
chromosome and results in a di�erent chromosome.

Crossover

Crossover is the means by which two di�erent chromo-
somes (i.e. members of the population) can combine
to form some new \o�spring". We tested two crossover
operators.

Period Crossover [10]
The classical crossover is a one-point crossover that
combines two chromosomes on the basis of one cross
site randomly selected. Genetic material is swapped
between two chromosomes to produce a pair of o�-
spring. Our crossover is a period crossover that chooses
a point in time, t�, randomly selected in the planning
horizon. To produce o�spring, we combine the �rst
periods of one parent's strings with the last periods of
the second parent's strings, the appropriate corrections
being made when lead times have to be incorporated
(i.e. when P1;t is selected from a parent, P2+i;j ,
j = P1;t, i = 1; � � � ;m will be selected from that parent
too).

Uniform Crossover
In the uniform crossover, for each gene position, a
decision (based on a random number) is made on
whether to swap the genes of the two parents at that
position (Y ) or not (N). So, the child is produced in
the following manner:

� For each period t, P2;t is selected from a parent by
random.

� For each period t, P1;t is selected from a parent by
random.

� If P1;t of the two parents are the same, then P2+i;j ,
j = P1;t will be selected randomly from a parent
for each item i, i = 1; � � � ;m. Otherwise, P2+i;j is
copied from the parent from which P1;t was selected.



106 F. Kianfar and G. Mokhtari

Mutation

The role of mutation in GA is to restore lost or unex-
pected genetic material into a population to prevent the
premature convergence of GA to sub-optimal solutions.
Any good search algorithm must explore a large search
space in the beginning and the search should then
narrow down as it converges to the solution.

Mutation can possibly trigger a series of changes
in the chromosome in order to maintain its feasibility,
i.e. the restrictions mentioned in Equations 20 and 22
must be satis�ed. For example, if the mutated gene
is from the �rst matrix row and P2+i;j , j = P1;t are
zero, then, P2+i;j , j = P1;t are assigned randomly to
maintain solution feasibility.

We applied four mutation operators as follows.

Single-Bit Mutation
In the single-bit mutation, a unique gene undergoes
mutation. A single gene is randomly selected and its
value is changed by a random amount.

Multi-Bit Mutation
In multi-bit mutation, each gene is mutated with a
speci�c probability. Therefore, several genes of the
mutating chromosome may be changed.

The encoding matrix cells are classi�ed in three
groups: P1;t (the �rst row), P2;t (the second row), and
P2+i;t (rows from 2 to 2+m). The mutation probability
of each gene depends on its group. So, this operator
has three probability values as parameters.

Non-Uniform Mutation
The term\non-uniform" is derived from the Real Coded
Genetic Algorithms (RCGA) literature. In RCGA,
non-uniform means that the size of the gene generation
interval shall be lower with the passing of genera-
tions [39]. The gene generation interval is proportional
to �(t), which is de�ned by:

�(t) = 1� a(1� t
tmax )b ; (23)

where a is a random number in [0, 1], b a constant
parameter, t the time or generation number and tmax
the maximum number of generations the RCGA is
allowed to run. This function gives values in the
range [0, 1] such that the probability of returning
a number close to zero increases as the algorithm
advances.

In this paper, the term \Non-uniform" means that
the probability of mutation is not uniform during the
algorithm execution. The probability of mutation is
calculated by �(t) and it decreases in the �nal stages
of GA. This property causes this operator to make a
uniform search in the initial space when t is small and
very locally at a later stage, favoring local tuning.

Non-uniform mutation is done by selecting a
random period. Starting from the chosen period
and moving to the end or to the beginning of the
chromosome (selected randomly), all the genes are
changed to a random amount.

Single-Bit Inversion
This mutation operator mutates a cell (that is selected
randomly) from the �rst two rows of the encoding
matrix. The value of the selected gene is changed to an
adjacent non-zero gene. If both of neighboring genes
are non-zero, one of them is selected randomly.

Reproduction

This is one of the most important and, surprisingly,
least controversial of the operations. This is where it
is decided which members of the population will be
allowed to survive, and which will perish. It is usually
done via a weighted random selection. The weighting
is done on the �tness of each individual.

That is, the more �t members of the population
have a greater chance of progressing to the next
generation than those less �t.

Elitism is a technique to preserve and use previ-
ously found best solutions in subsequent generations
of GA. In an elitist GA, the statistic of the popula-
tion's best solutions cannot degrade with generation.
Maintaining archives of non-dominated solutions is an
important issue. The �nal contents of the archive rep-
resent (usually) the result returned by the optimization
process.

In this paper, we apply a tournament selection
method. In tournament selection, a number, Tour,
of individuals is chosen randomly from the population
and the best individual from this group is selected as a
parent. This process is repeated as often as there are
individuals to choose. The parameter for tournament
selection is the tournament size, Tour. Tour takes
values ranging from 2 - popsize (number of individuals
in the population).

Experimental Setup

Since the proposed model is a new and original model,
no standard test problems could be found for it, neither
in the literature nor in the OR websites. Thus, we
developed a problem generator program to generate
problems randomly. Four di�erent structures were used
in generating random problems. These structures are
given in Table 2. Ten random problems were generated
using each structure, which means that 40 random
problems were generated.

We need to assume a distribution function for the
supply lead time of each item. For this purpose, three
discrete random variables were considered. Table 3
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Table 2. Parameters range in four structures.

Parameter Structure 1 Structure 2 Structure 3 Structure 4

T Uniform [6,20] Uniform [6,20] Uniform [6,20] Uniform [6,20]

m Uniform [5,30] Uniform [5,30] Uniform [5,30] Uniform [5,30]

�t Uniform [1,6] Uniform [10,15] Uniform [1,6] Uniform [10,15]

�t Uniform [10,15] Uniform [1,6] Uniform [10,15] Uniform [1,6]

ait Uniform [3,8] Uniform [6,11] Uniform [3,8] Uniform [6,11]

bit Uniform [6,11] Uniform [3,8] Uniform [6,11] Uniform [3,8]

�1t Uniform [7,12] Uniform [7,12] Uniform [7,12] Uniform [7,12]

�2t Uniform [10,15] Uniform [10,15] Uniform [10,15] Uniform [10,15]

dt Uniform [50,150] Uniform [50,150] Uniform [50,150] Uniform [50,150]


i Uniform [1,4] Uniform [1,4] Uniform [1,4] Uniform [1,4]

hi Uniform [1,6] Uniform [1,6] Uniform [7,12] Uniform [7,12]

h 8 8 8 8

� 0 0 0 0

shows the probability mass function of these variables.
In the problem generator program, a probability mass
function is randomly chosen and assigned to each
item.

A computer program was developed using Turbo
Pascal programming language to implement GA. This
program includes 14 functions for calculating the �tness
of individuals and 5 functions and 22 procedures for
reading test problems (the genetic algorithm itself) and
creating output data �les. Using modular program-
ming, we ensure program traceability and reliability.

The genetic algorithm requires a number of pa-
rameters to be speci�ed. We kept the population
size equal to 70 chromosomes in most experiments.
The number of generations was 700. In tournament
selection, we tested the algorithm performance with
Tour 2 f2; 3; 4g. Elitism size was set to 1.

When the best-known solutions are not available
for comparison, they could also be obtained with the
meta-heuristic itself, either by using di�erent starting
points or allowing for long runs [38]. We used this
approach in this paper. Each test problem was solved
almost 1100 times (in all of the algorithms) and the
best solution found in these runs was used as an
(approximately) optimum solution.

Table 3. Probability mass functions of supply lead time.

Lead Time
(as an integer multiple
of planning periods)

0 1 2 3 4

Random Variable 1 0.1 0.3 0.4 0.1 0.1

Random Variable 2 0.2 0.4 0.2 0.1 0.1

Random Variable 3 0.6 0.1 0.1 0.1 0.1

Experimental Results

This section is devoted to the presentation and dis-
cussion of experimental data produced in the test
phases. 111 di�erent algorithms were designed and
tested using 40 test problems to select the appropriate
algorithm.

The con�gurations of tested algorithms are pre-
sented in Table 4. In this table, the ID column
denotes the algorithm code; the Tour column denotes
the tournament selection parameter and the Gens
column shows the total number of solutions generated
in each algorithm. If an algorithm uses more than
one crossover or mutation operator, the probability
of applying each operator is given in parentheses.
At most, one mutation operator is applied to each
o�spring. For example, in algorithm G92, period and
uniform crossover operators are used with probability
of 0.3 and 0.5, respectively.

In Table 4, the terms NU-Random and Inversion
denote non-uniform mutation and single-bit inversion,
respectively. The non-uniform mutation was used
uniformly in some of the algorithms, which are shown
by U-Random.

Each algorithm was run 10 times for each test
problem using 3 computers with the following con�gu-
ration:

CPU: AMD(tm) 64 � 2 Dual Core Processor 3600+
2.01 GHz,
RAM: 1 GB

In each run of each algorithm, the following
information was reported and analyzed:

� Average �tness of the initial population,
� Standard deviation of the initial population,
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Table 4. Algorithms design.

Row ID Crossover Mutation Tour Gens

1 G111 Uniform-Cross (0.8) Single-Bit (0.25) 3 49000

2 G46 Uniform-Cross (0.8) Single-Bit (0.25) 2 49000

3 G89 Uniform-Cross (0.8) Single-Bit (0.7) 3 49000

4 G103 Period-Cross (0.8) Single-Bit (0.5) 3 49000

5 G105 Uniform-Cross (0.8) Single-Bit (0.5) 3 49000

6 G92
Period-Cross (0.3),

Uniform-Cross (0.5)
Single-Bit (0.7) 3 49000

7 G99 Uniform-Cross (0.8) Single-Bit (0.8) 3 49000

8 G102 Uniform-Cross (0.8) Multi-Bit (0.01,0.01,0.02) 3 49000

9 G104 Period-Cross (0.8) Multi-Bit (0.01,0.01,0.02) 3 49000

10 G106 Uniform-Cross (0.8) Multi-Bit (0.02,0.02,0.05) 3 49000

11 G90 Uniform-Cross (0.8) Multi-Bit (0.03,0.03,0.01) 3 49000

12 G76 Uniform-Cross (0.8) Multi-Bit (0.05,0.05,0.02) 3 49000

13 G70
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 2), Single-Bit (0.5) 3 49000

14 G97
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 1), Single-Bit (0.5) 3 49000

15 G83 Uniform-Cross (0.8) NU-Random (b = 1), Single-Bit (0.5) 3 49000

16 G75
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 1), Single-Bit (0.5) 3 63000

17 G80
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 0:5), Single-Bit (0.5) 3 42000

18 G81
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 0:5), Single-Bit (0.5) 3 35000

19 G82
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 0:5), Single-Bit (0.5) 3 28000

20 G88
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 1), Single-Bit (0.7) 3 49000

21 G84
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 0:5), Single-Bit (0.5) 3 21000

22 G85
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 0:5), Single-Bit (0.5) 3 14000

23 G86
Period-Cross (0.3),

Uniform-Cross (0.5)
NU-Random (b = 0:5), Single-Bit (0.5) 3 49000

24 G87 Period-Cross (0.8) NU-Random (b = 0:5), Single-Bit (0.5) 3 49000

25 G63 Period-Cross (0.8)
NU-Random (b = 1), Single-Bit (0.3),

Inversion (0.2)
3 49000

26 G65
Period-Cross (0.3),

Uniform-Cross (0.5)

NU-Random (b = 1), Single-Bit (0.5),

Inversion (0.2)
2 49000

27 G67
Period-Cross (0.3),

Uniform-Cross (0.5)

NU-Random (b = 1), Single-Bit (0.5),

Inversion (0.2)
2,3 49000

28 G69
Period-Cross (0.3),

Uniform-Cross (0.5)

NU-Random (b = 1), Single-Bit (0.3),

Inversion (0.2)
3 49000
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Table 4. Algorithm design (continued).

Row ID Crossover Mutation Tour Gens

29 G36 Uniform-Cross (0.8)
Multi-Bit (0.05,0.05,0.02) 0.1, U-Random (0.1),
Inversion (0.05), Single-Bit (0.1)

3 49000

30 G38
Period-Cross (0.1),
Uniform-Cross (0.8)

Multi-Bit (0.05,0.05,0.02) 0.02, U-Random (0.1),
Inversion (0.02), Single-Bit (0.2)

2 49000

31 G71
Period-Cross (0.3),
Uniform-Cross (0.5)

U-Random (0.10), Single-Bit (0.25),
Inversion (0.15)

3 49000

32 G73
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 1), Single-Bit (0.3),
Inversion (0.2) Pop-Size=100

3 49000

33 G74
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 1), Single-Bit (0.3),
Inversion (0.2) Pop-Size=50

3 49000

34 G95 Uniform-Cross (0.8)
NU-Random (b = 1), Single-Bit (0.5),
Inversion (0.2)

3 49000

35 G96 Uniform-Cross (0.8)
NU-Random (b = 1), Single-Bit (0.3),
Inversion (0.2)

3 49000

36 G98
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 0:5), Single-Bit (0.3),
Inversion (0.2)

3 49000

37 G91
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 0:5), Single-Bit (0.5),
Inversion (0.15)

3 49000

38 G101
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 0:5), Single-Bit (0.5),
Inversion (0.15)

3 42000

39 G107
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 0:5), Single-Bit (0.5),
Inversion (0.15)

3 35000

40 G109
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 0:5), Single-Bit (0.5),
Inversion (0.15)

3 28000

41 G110
Period-Cross (0.3),
Uniform-Cross (0.5)

NU-Random (b = 0:5), Single-Bit (0.5),
Inversion (0.15)

3 21000

� Average �tness of the last population,
� Standard deviation of the last population,
� Average of all of the solutions generated throughout

the algorithm,
� The generation which found the best solution,
� The best solution found,
� Run time of each problem.

The results of the algorithms performance are
given in Table 5. Table 6 shows the average and
maximum run time for each run of each problem.

Comparing the average �tness of the initial and
last population shows the improvement made by the
GA. The average and standard deviation of the �rst
population �tness for most of the algorithms is about
1.22 and 12000, respectively. In other words, the aver-
age discrepancy of the �rst populations from optimum
solutions is approximately 22-27%. This is reduced to
1-3% for the last populations.

The standard deviation of the initial and last
population was used to analyze the diversity of popula-
tions. Smaller standard deviation means more similar
solutions exist in the population. Standard deviation
information, along with the generation number which
found the best solution, shows whether the algorithm
has a premature convergence. For example, if the
average number of generations (for which test problem
and algorithm �nd the best solution) is about 200, it
means that this algorithm has a rapid convergence to
a solution (note that the total generations is 700).

The best solutions are generated by algorithm
G91 with the following speci�cations:

� Crossover: Period-Cross (0.3), Uniform-Cross (0.5),

� Mutation: NU-Random (b = 0:5), Single-Bit (0.5),
Inversion (0.15),

� Selection: Tournament Selection (with 3 partici-
pants),
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Table 5. Algorithms results.

Solution Final Population Population
Row ID Discrepancy Solution Discrepancy Standard

from Generation from Optimum Deviation
Optimum First Last Total First Last

1 G111 0.727% 255 22.856% 1.072% 1.782% 12026 4376

2 G46 0.922% 327 26.809% 1.312% 2.480% 11569 3477

3 G89 0.652% 186 22.804% 1.772% 2.290% 12245 7032

4 G103 0.886% 214 22.858% 1.607% 2.364% 12318 6295

5 G105 0.661% 175 22.804% 1.414% 1.954% 12272 6142

6 G92 0.758% 201 22.839% 1.830% 2.414% 12175 7036

7 G99 0.760% 201 22.808% 2.157% 2.634% 12216 7523

8 G102 0.873% 184 22.819% 1.584% 2.111% 12149 7365

9 G104 0.934% 231 22.835% 1.641% 2.340% 12321 7274

10 G106 0.988% 269 22.814% 3.063% 3.563% 12213 11896

11 G90 1.087% 187 26.767% 2.115% 2.848% 11473 7470

12 G76 0.923% 241 27.166% 3.049% 3.694% 11725 9870

13 G70 0.699% 325 27.263% 1.500% 5.952% 12034 5088

14 G97 0.714% 375 22.787% 1.443% 6.557% 12175 6464

15 G83 0.758% 365 22.825% 1.487% 6.594% 12144 6526

16 G75 0.692% 421 22.808% 1.410% 6.415% 12193 6601

17 G80 0.747% 386 22.798% 1.498% 8.004% 12219 6741

18 G81 0.779% 339 22.833% 1.558% 8.185% 12223 6429

19 G82 0.845% 300 22.783% 1.561% 8.412% 12258 5896

20 G88 0.740% 401 22.849% 1.888% 6.994% 12232 7725

21 G84 0.873% 245 22.783% 1.609% 8.731% 12046 6251

22 G85 1.109% 177 22.824% 1.848% 9.406% 12209 5378

23 G86 0.648% 419 22.808% 1.401% 7.850% 12191 6713

24 G87 0.800% 434 22.803% 1.548% 8.096% 12092 6300

25 G63 1.160% 428 26.897% 1.584% 7.911% 11753 4113

26 G65 0.979% 574 27.174% 1.953% 11.320% 11884 5393

27 G67 0.821% 503 27.227% 1.661% 9.224% 12330 5423

28 G69 0.762% 415 27.149% 1.206% 7.361% 11921 4409

29 G36 1.063% 202 26.639% 3.174% 3.824% 11209 24727

30 G38 1.132% 267 27.923% 3.421% 4.600% 11459 24469

31 G71 0.961% 301 26.877% 3.157% 3.963% 11747 26727

32 G73 0.928% 302 26.111% 1.395% 8.817% 11367 4161

33 G74 0.950% 526 26.183% 1.413% 8.611% 11408 4469

34 G95 0.772% 347 22.785% 1.545% 6.570% 12224 6567

35 G96 0.742% 378 22.777% 1.165% 6.272% 12171 5032

36 G98 0.784% 403 22.786% 1.197% 7.634% 12142 5042

37 G91 0.610% 424 22.821% 1.347% 7.819% 12145 6253

38 G101 0.629% 385 22.804% 1.386% 7.984% 12282 6592

39 G107 0.758% 332 22.801% 1.468% 8.162% 12177 5919

40 G109 0.831% 298 22.808% 1.554% 8.376% 12337 6424

41 G110 0.937% 245 22.818% 1.613% 8.748% 12105 5634
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Table 6. Run times (for each run of each problem).

Row Algorithm Average Run Time
(minutes)

Maximum Run Time
(minutes)

1 G111 0.3075 0.85

3 G89 0.285 0.7

4 G103 0.2875 0.752

5 G105 0.2925 0.753

6 G92 0.2825 0.7

7 G99 0.2825 0.75

8 G102 0.3025 0.75

9 G104 0.2925 0.71

10 G106 0.3025 0.72

14 G97 0.4 1

15 G83 0.3975 1

16 G75 0.5075 1.2

17 G80 0.3775 0.95

18 G81 0.3225 0.75

19 G82 0.2625 0.65

21 G84 0.205 0.5

22 G85 0.145 0.35

23 G86 0.4118 1

24 G87 0.4325 1.05

34 G95 0.4 1

35 G96 0.4125 1

36 G98 0.4375 1.15

37 G91 0.435 1.1

38 G101 0.3775 0.9

39 G107 0.325 0.85

40 G109 0.2625 0.65

41 G110 0.205 0.52

� Generations Number: 700.

CONCLUSION

This work presents a new and original mathematical
model for lot sizing in a two-level assembly system.
This model determines lot sizes and the periods within
which supplies will start. This model shows bet-
ter performance in production systems where supply
and manufacturing lead times are relatively high and
stochastic. The structure of the model was based on
a manufacturing system which produces construction
equipment. Construction equipment manufacturing is
an industry with high (and stochastic) lead times. The
results show that stochastic lead times could not be
ignored in such cases.

A genetic algorithm is developed to solve the
model. An innovative mutation operator (non-

uniform) is combined with single-bit mutation to avoid
the local minimum trap. On the basis of the test runs,
the genetic algorithm works satisfactorily.

Possible extensions to this work could be classi�ed
in modeling and solution methods. In the modeling
view, the proposed model could be extended to consider
capacities as a constraint. In the solution method
view, a parallel genetic algorithm may show better
performance than a standard genetic algorithm.
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