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An E�cient Procedure for Computing an Optimal
(R,Q) Policy in Continuous Review Systems with

Poisson Demands and Constant Lead Time

N. Yazdan Shenas1, A. Eshraghniaye Jahromi1;� and M. Modarres Yazdi

Abstract. In this paper, a continuous review inventory system is considered in which an order in
a batch of size Q is placed immediately after the inventory position reaches R. Transportation time is
constant and demands are assumed to be generated by a stationary Poisson process with one unit demand
at a time. Demands not covered immediately from the inventory are backordered. In a recent paper, the
exact evaluation of batch-ordering policies for two-level inventory systems was derived. This evaluation is
based on a recursive procedure for determining the exact policy costs in case of one-for-one replenishment
policies. In this paper, we show how this result can be applied to �nd the optimal solution of a (R;Q)
policy. To obtain the optimal policy for this system, considering a one-for-one policy, we will �rst solve
the base stock model by setting the inventory position at the supplier to a certain value. By considering
ordering cost, we next derive the cost function of the de�ned (R;Q) model and �nd the optimal solution
for the exact value of the expected system costs using a search method. In demonstrating the applicability
of the proposed method, we resort to solving an example.

Keywords: Inventory; Continuous review; (R;Q) model; Base stock model; Poisson demand; Optimal
solution; Backordered demand; Constant lead time.

INTRODUCTION

Stochastic inventory model have received considerable
attention in inventory literature. We consider one of
the most common practical stochastic inventory control
problems, known as the continuous (R;Q) model. In
this system, a batch of size Q is ordered when the
inventory position declines to R. The model and
some of its variants have been analyzed by several
authors [1,2].

The basic assumptions of the classical (R;Q) can
be found in Hadley and Whitin [3]. The optimal
solution of this problem and other related problems
can be determined by various techniques [4,5]. In
practice, however, it is most common to use a simple
two-step approximation. In the �rst step, the batch
quantity Q is determined in a deterministic model.
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One such approach is to determine the order quantity
according to the standard EOQ model. Axs�ater [6]
and Gallego [7] have derived bounds for approximation
errors when using such techniques.

In a (R;Q) inventory system with backordering,
there are several approximations to the average inven-
tory level. Lau and Lau [8] presented a comparison of
di�erent methods for estimating the average inventory
level in this type of system.

Axs�ater [9] considered a (R;Q) policy with con-
stant lead time. The demand during lead-time demand
is assumed to be normally distributed. There are
standard ordering and holding costs as well as a so-
called �ll rate constraint. The problem is to determine
the reorder point R and the order quantity Q so that
the total expected costs are minimized. He suggested
another equally two-step approach and both R and Q
were assumed to be continuous variables.

Axs�ater [10] also considered a warehouse facing
a compound Poisson customer demand. Normally,
the warehouse replenishes from an outside supplier,
according to a continuous review reorder point policy.
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However, it is also possible to use emergency orders.
Such orders incur additional costs, but have a much
shorter lead time. He considered standard holding
and backorder costs as well as ordering costs. A
heuristic decision rule for triggering emergency orders
was suggested.

Modularization and customization have made en-
terprises face multi-item inventory problems and the
interaction between those items. A powerful and
a�ordable information technology system can make the
continuous review inventory policy more convenient,
e�cient and e�ective. Others have introduced di�er-
ent aspects of cost into their models such as design
problems or 
exibility in the assembly sequence. The
aforementioned considerations make models more com-
plex and the closed form solutions cannot be obtained.
Thus, iterative algorithms must be used to �nd a near
optimal solution. Several studies have presented some
e�cient solution procedures to obtain the approximat-
ing decision rules for such problems [11,12].

Wang and Hu [13] developed a (R;Q) model to
�nd the optimal lot size and reorder point for a multi-
item inventory with interactions between necessary and
optional components. In order to accurately approxi-
mate costs, the service cost is introduced and de�ned
as a proportion of the service level. In addition, the
service and purchasing costs are taken simultaneously
and are treated as a budget constraint for executives to
consider because the �rm's strategy could in
uence the
choice of service level. They formulated the proposed
model as a nonlinear optimization problem, when the
service level is nonlinear.

A recent (R;Q) model was presented by Lau
and Lau [14]. When an order for an out-of-stock
inventory item is received, sometimes a �xed cost
independent of the order size is incurred to expedite
the order. They showed that the current standard
\textbook formulation" for this situation contains a
number of conceptual 
aws. An improved formulation
is presented, followed by explanations of computation
procedures and numerical illustrations.

There are several studies in which the (R;Q)
policy is applied in multi-echelon inventory systems.
Axsater [15] considered an inventory system with one
warehouse and some identical retailers. Lead times
are constant and the retailers face independent Poisson
demand. When the retailers need to replenish their
stocks, they order batches from the supplier and, in
the same way, the warehouse replenishes its stock
by ordering batches from an outside source. Solving
the mentioned inventory system, Axs�ater extended
his previous results in [16], where replenishments are
a one-for-one policy. He provided simple recursive
procedures for determining the holding and shortage
costs of di�erent one-for-one policies.

Here, we consider the continuous review inven-

tory system that is controlled using a (R;Q) pol-
icy. Demands are assumed to be generated by a
stationary Poisson process with one unit demand at
a time. Un�lled demand is backordered and the
cost for a backorder is proportional to the delay
until delivery takes place. The transportation time is
constant.

As mentioned before, Axs�ater [15,16] derived the
procedures for determining the best solution for a
one-for-one and a batch-ordering policy in a two-level
inventory system. Setting the inventory position at
the supplier to a certain value, we show how these
procedures can be used for �nding the optimal solution
of base stock and (R;Q) policies.

Our approach uses an inventory cost function
that re
ects costs incurred on an average unit. The
relative advantage of the approach in this paper is
that it focuses directly on evaluating the average costs
associated with a stockage policy. Earlier approaches
focus on characterizing the steady-state behavior of
the inventory levels and then use the steady state
distribution (or an approximation thereof) to deter-
mine the average costs associated with the stockage
policy. Axs�ater [16] mentions that this approach is
more e�cient and direct at �nding the optimal stock
policy for the assumed (traditional) cost function; it
appears to be the only available approach when the
cost is given by a nonlinear function of either the delays
experienced by the customer or the unit's storage time
at each of the facilities.

The rest of the paper is organized as follows:
In the next section, the one-for-one replenishment
policy and its assumptions are described and a problem
formulation is presented in detail. Then, we show
how the result of the one-for-one replenishment policy
in a two-level inventory system can be used for the
exact evaluation of the base stock policy. Following
that, the batch-ordering policy in a two-level inventory
system is extended by considering order costs for both
retailer and supplier. Setting the inventory position
at the supplier to a certain value, a search algorithm
for �nding the optimal solution of a (R;Q) policy is
presented. Then, for demonstrating the applicability of
the proposed method, we resort to solving an example.
Finally, some remarks concerning possible extension
are made.

DESCRIPTION AND PROBLEM
FORMULATION

Consider an inventory system that consists of one sup-
plier and one retailer, as shown in Figure 1. The retailer
faces stationary and independent Poisson demand with
one-unit demand at a time. Un�lled demand is
backordered and the shortage cost is considered just
for the retailer. The retailer and the supplier carry
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Figure 1. Inventory system.

inventory and replenish their stock according to a
one-for-one policy, i.e. when a demand occurs, one
unit is immediately ordered from the supplier and the
supplier orders one unit at the same time. It means
essentially that it is assumed that ordering costs are
low and can be disregarded. Delayed demands and
delayed orders are satis�ed on a �rst come, �rst serve
basis. The transportation time from the supplier to
the retailer and the replenishment lead time from the
outside source to the supplier are constant (i.e. the
outside source has ample capacity).

A one-for-one replenishment policy is completely
characterized by determination of the inventory posi-
tions at the retailer and at the supplier.

Considering the one-for-one policy, we will solve
the base stock model by setting the inventory position
at the supplier to a certain value and then �nding the
optimal solution for this model.

DERIVING THE COST FUNCTION AND
FINDING THE OPTIMAL SOLUTION FOR
THE BASE STOCK MODEL

In the base stock model, when a demand occurs at
the retailer, one unit is immediately ordered from
the outside source. We denote the base stock policy
by (RB ; 1), i.e. when inventory position declines
to RB one unit is ordered. This base stock policy
is completely characterized by determination of the
retailer's reorder point. The ordering cost per time
unit in all base stock policies with one unit demand at
a time is constant, and thus is not considered in the
analysis. In this section, we try to �nd the optimal
value of RB as a decision variable.

We convert the assumed one-for-one model to
the de�ned base stock model (Figure 2). To �nd the
optimal value of RB , our approach uses the optimal
retailer inventory position in the inventory system with
the one-for-one policy, when setting the value of the
inventory position at the supplier to 0.

Lemma 1.
A one-for-one replenishment system with S, S0 = 0, L
and L0 is the same as a base stock system with lead
time L+ L0 and RB = S � 1.

Figure 2. The equivalent systems based on Lemma 1.

Proof
When a demand occurs at the retailer, one unit is
immediately ordered from the supplier and the supplier
orders one unit at the same time. When demand
occurs, the supplier is empty; because the inventory
position at the supplier is zero, the supplier receives
the ordered unit after L0 time units (all the outstanding
orders are assigned before they arrive at the supplier
and the supplier must order new one to assign to the
new one ordered), and it is received by the retailer L
time units away. Therefore, an order placed by the
retailer arrives after L0 + L time units.

Based on Lemma 1, if S� minimizes the cost
function of the assumed one-for-one replenishment
system, R�B = S� � 1 will minimize the cost function
of the base stock system. It is easy to conclude that
we can disregard policies with a negative inventory
position for the retailer in the assumed one-for-one
ordering system when looking for the optimal solution.
Therefore, con�ne ourselves to the case where S � 0
for the base stock model.

To evaluate the total holding and shortage costs
per time unit when applying one-for-one ordering
policies (i.e. c(S0; S)), we use the method introduced
by Axs�ater [15,16] (see Appendix).

The total cost of the assumed one-for-one replen-
ishment system can be calculated by Equation A13:

c(0; S) = �(�S(0) + 
(0)): (1)

Considering Equations A4 and A8, it is easy to simplify
Expression 1 as:

c(0; S) = ��S(L0): (2)

It means that if S� minimizes �S(L0), it will minimize
c(0; S). In order to optimize �S(L0), we need to
determine the S that minimizes �S(L0).
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Based on Equations A5 and A6, we can derive:

�1(L0)� �0(L0) = e��(L+L0)h+ �
�
� �
�
; (3)

�S+1(L0)� �S(L0) = �S(L0)� �S�1(L0)+

e��(L+L0)h+ �
�

(L+ L0)S�S

S!
; S > 0: (4)

Using Equation 4, it is easy to conclude that �S(L0)
is convex in S. Furthermore, we obtain the following
expression:

�S+1(L0)� �S(L0) =
h+ �
�

SX
k=0

e��(L+L0)

(L+ L0)k�k

k!
� �
�

=
h+ �
�

P (S; �(L+ L0))� �
�
;

S � 0: (5)

Based on convexity speci�cations, the optimal value of
S that minimizes �S(L0) will be the minimum value of
S that is valid for:

P (S; �(L+ L0)) � �
� + h

: (6)

Therefore, the optimal value of RB in a base stock
system with lead time L+ L0 will be S� � 1 where S�
minimizes the cost function of the assumed one-for-one
replenishment system.

DERIVING THE COST FUNCTION AND
FINDING THE OPTIMAL SOLUTION FOR
THE LOT SIZE-REORDER POINT MODEL

In this section, we try to �nd the optimal value of the
reorder point and lot size as decision variables. In the
�rst part of this section, the cost function for a lot
size-reorder point model is developed and extended by
considering the order cost for the retailer. In the second
part of this section, for a given lot size, the optimal
value of the retailer's reorder point will be found, and
�nally in the last part of this section, a search method
to �nd the optimal solution of the lot size-reorder point
model will be provided. These three sub sections are
presented as follows:

Cost Function for the Lot Size-Reorder Point
Model

The cost function for a serial system that consists of
a retailer and a supplier is developed in Axs�ater [15].

In this system, both facilities apply a lot size-reorder
point policy, where Rw and Qw are in units of Q. The
average cost per time unit, that is valid for Rw � �1,
is determined by averaging over the individual units in
a warehouse batch:

C =
1

QwQ

RW+QwX
j=Rw+1

R+QX
k=R+1

c(jQ; k); Rw � �1: (7)

In developing the model, Axs�ater [15] made a few
assumptions. He assumed that the order lot sizes at the
retailer and the supplier are given and �xed, therefore
the order costs have been eliminated from the cost
function (Equation 7). It means that the ratio of order
cost to unit holding cost at the supplier and the ratio
of order cost to unit holding and shortage costs at the
retailer are negligible. In cases where shipping and
handling are signi�cant, this assumption is violated.

We extend the model by considering the order
costs of both the retailer and the supplier (Figure 3).
By considering the rates of orders, the expected total
holding and shortage and order costs per time unit can
be written as:

C 0 =
�A0

QwQ
+
�A
Q

+

1
QwQ

RW+QwX
j=Rw+1

R+QX
k=R+1

c(jQ; k); Rw � �1: (8)

Lemma 2
A serial system that consists of one retailer and one
supplier and the retailer applies the (R;Q) policy and
the supplier applies (Rw; Qw) where Rw and Qw are in
units of Q with Rw = �1; Qw = 1; A0 = 0; L and L0
is the same as a lot size-reorder point system with lead
time L+ L0 where the retailer applies (R;Q).

Figure 3. The equivalent systems based on Lemma 2.



132 N. Yazdan Shenas et al.

Proof
When the inventory position at the retailer reaches
R, one order (of size Q) is immediately ordered from
the supplier and the supplier orders one order (in the
same size) at the same time. When demand occurs,
the supplier is empty because the inventory position at
the supplier is zero, the supplier receives the ordered
unit after L0 time units (all the outstanding orders
are assigned before they arrive at the supplier and the
supplier must order new ones to assign to the new one
ordered), and it is received by the retailer L time units
away. Therefore, an order placed by the retailer arrives
after L0 + L time units.

So, if Rw; Qw and A0 are replaced with speci�ed
values in Lemma 2, we will have:

TC(Q;R) =
�A
Q

+
1
Q

R+QX
k=R+1

c(0; k): (9)

Optimal Value of the Retailer's Reorder Point
for a Given Lot Size

In order to optimize the lot size-reorder point model
for a given lot size, we need to determine the R that
minimizes the system costs, according to Equation 9.
Note that, for a given Q, we can optimize TC(Q;R) by
optimizing

PR+Q
k=R+1 c(0; k) with respect to R. Further-

more, it is possible to show that optimal policies for lot
size-reorder point models are such that R � �Q. For
k � 0, it was proven that c(0; k) is convex in k. Using
Equations A5 and A6 in the same way, it is easy to
show that c(0; k) is convex at all values of k. Therefore,PR+Q
k=R+1 c(0; k) will be convex in R.

The optimal retailer's reorder point for a given lot
size Q is denoted by R�Q. As shown in Figure 4, R�Q
is a point wherein there is a set of Q sequential points

Figure 4. R�Q and the optimal set of Q sequential points
are exactly after this point.

exactly after this point, where the sum of the values of
c(0; k) for all members of this set is the minimum of
the sum of the values of c(0; k) for all members of any
set of Q sequential points.

For simplicity, we set R�1 = R�B . Based on c(0; k)
convexity, it is obvious that R�1 +1 2 [R�Q+1; R�Q+Q],
therefore we have:

R�1 �Q+ 1 � R�Q � R�1: (10)

If R � �1, by using Equation 5, we get:

R+Q+1X
k=R+2

c(0; k)�
R+QX
k=R+1

c(0; k) =

(h+ �)
R+QX
k=R+1

P (k; �(L+ L0))�Q�: (11)

The optimal value of R that minimizes
PR+Q
k=R+1 c(0; k)

will be the minimum value of R that is valid for:

R+QX
k=R+1

P (k; �(L+ L0)) � Q�
(h+ �)

; R � �1: (12)

If R < �1, by using Equations A5 and A6, it can be
shown:

R+Q+1X
k=R+2

c(0; k)�
R+QX
k=R+1

c(0; k) =

(h+ �)
R+QX
k=0

P (k; �(L+ L0))�Q�: (13)

The optimal value of R that minimizes
PR+Q
k=R+1 c(0; k)

will be the minimum value of R that is valid for:

R+QX
k=0

P (k; �(L+ L0)) � Q�
(h+ �)

; R < �1: (14)

Therefore, for a given order size Q, the optimal value of
R that minimizes TC(Q;R) will be found by examining
values of R starting from R�1 �Q+ 1 to the �rst value
of R that is valid for Equation 14 (for the values less
than -1), and then Equation 12 (for the values greater
than or equal to -1), respectively.

Furthermore, it may also be of interest to utilize
R�Q�1 for �nding R�Q (Figure 5). Note that, when we
have R�Q�1, we found the set of Q�1 sequential points
exactly after this point, where the sum of the values
of c(0; k) for the all member of this set, is minimum.
When we try to �nd R�Q, we try to add one member
(except the selected Q � 1 points) to this set, where
the values of c(0; k) for the new member is minimum.
Based on the convexity of c(0; k), the new member will
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Figure 5. Utilizing R�Q�1 for �nding R�Q.

be a point exactly before or after the selected Q � 1
sequential points. Considering the R�Q de�nition, it
can be concluded that:

R�Q 2 [R�Q�1 � 1; R�Q�1]: (15)

If R�Q = R�Q�1, it means that R�Q�1+Q is added to (Q�
1) members that minimize

PR�Q�1+Q�1
k=R�Q�1+1 c(0; k) and, if

R�Q = R�Q�1�1, it means that R�Q�1 is the Qth member
of this set. Therefore, we get:

c(0; R�Q�1) � c(0; R�Q�1 +Q)! R�Q = R�Q�1 � 1;

c(0; R�Q�1) > c(0; R�Q�1 +Q)! R�Q = R�Q�1: (16)

A Search Method to Find the Optimal
Solution of the Lot Size-Reorder Point Model

To �nd the optimal solution of the lot size-reorder
point model, it is necessary to determine R and Q that
minimize the system costs, according to Equation 9.
This cost function is comprised of two parts. The �rst
part is a decreasing function on Q which is smaller than
or equal to �A, and the second part is an increasing
function on Q (where R = R�Q), that is larger than or
equal to c(0; R�1 + 1).

Let Qu denote the minimum value of Q that is
valid for:

�A+ c(0; R�1 + 1) � 1
Qu

R�Qu+QuX
k=R�Qu+1

c(0; k): (17)

Considering the increasing function speci�cations and
Expression 17, for Q � Qu, we have:

TC(1; R�1) =�A+ c(0; R�1 + 1) � 1
Q

R�Q+QX
k=R�Q+1

c(0; k)

<
�A
Q

+
1
Q

R�Q+QX
k=R�Q+1

c(0; k) = TC(Q;R):
(18)

It means that Qu is an upper bound for Q. In the
calculations, it may also be of interest to utilize that:

�S(L0) =
h+ �
�

S�1X
k=1

P (k; �(L+ L0))

+ �
�
L+ L0 � S

�

�
; S > 0; (19)

which follows directly from Equation A5. Meanwhile
from Equations 9 and 16, it is possible to conclude that:

TC(Q+ 1; R�Q+1) = (Q� TC(Q;R�Q)+

min(c(0; R�Q); c(0; R�Q +Q+ 1)))=Q+ 1): (20)

Finally, we can provide a search method, based on
the suggested relations, to �nd the optimal solution
of the lot size-reorder point policies (Figure 6). This
method is described by the following 
owchart shown
in Figure 6.

Roptimium and Qoptimium are the optimal values
of the reorder point and lot size in a (R;Q) policy,
respectively.

EXAMPLE

In this section, we will try to show the applicability
of our search method by solving a test problem.
We have assumed that the value of the parameters
A;L;L0; h; h0; � and � are constant and for instance
are as:

A = 10; L = 1; L0 = 1; h = 1;

h0 = 0:1; � = 10 and � = 1:

For a base stock model, the optimal value of RB with
lead time L+L0 will be S��1, where S� is the minimum
value of S that is valid for Expression 6, i.e.:

P (4; 1� (1 + 1)) � 10
10 + 1

! S� = 4! R�B = 3:

Based on Equation 9, for computing TC(Q;R), we
need to calculate the values of c(0; k). Using Equa-
tions 2, 19 and A6, these values can be found easily.
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Figure 6. The suggested method to �nd the optimal solution of lot size-reo point problems.

As an example, we have:

c(0;�1) = 30; c(0; 0) = 20; c(0; 1) = 11:4887;

c(0; 2)=5:9548; c(0; 3)=3:3982; c(0; 4)=2:8266;

c(0; 5) = 3:2474:

As said before, R�1 = R�B , therefore R�1 = 3. Using
Expression 16, we can get R�2:

c(0; R�1) > c(0; R�1 + 2)! R�2 = R�1 = 3:

In the same way, we can calculate R�Q for any value of
Q. Using Expression 17, the upper bound for Q can be
determined:

TC(1; R�1) = 1� 10 + c(0; 4)

= 12:8266 � 1
28

�1+28X
k=�1+1

c(0; k)

= 13:0714! Qu = 28; R�Qu = �1:

Finally, from Equation 20, we can compute TC(Q;R�Q)
for any value of Q from 1 to Qu.

TC(2; R�2) = 8:0370;

TC(3; R�3) = 6:4907;

TC(4; R�4) = 5:8843; � � � ;
TC(28; R�28) = 13:4286:
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The minimum value of TC(Q;R�Q) will determine the
optimal policy in the above example, i.e.:

Roptimum = 2; Qoptimum = 5;

TC(Qoptimum; Roptimum) = 5:7105:

CONCLUSION

In this paper, we considered a continuous review
inventory system that was controlled using a (R;Q)
policy. Demands were assumed to be generated by a
stationary Poisson process with one unit demand at
a time. Un�lled demand was backordered and the
cost for a backorder was proportional to the delay
until delivery took place. The transportation time was
constant.

First, we solved the base stock model. To derive
the cost function of the system, the one-for-one model
in a two-level inventory system was converted to this
base stock model. For �nding the optimal value of the
retailer's reorder point in the base stock model, our
approach used the optimal retailer inventory position
in the inventory system with the one-for-one policy,
when setting the value of the inventory position at the
supplier to 0.

Then, the batch-ordering policy in a two-level
inventory system was extended by considering two
order costs for retailer and supplier. Setting the
inventory position at the supplier to a certain value,
a search algorithm for �nding the optimal solution of a
(R;Q) policy was provided.

Earlier approaches focus on characterizing the
steady-state behavior of the inventory levels of a stock-
age policy and then use the steady state distribution
(or an approximation thereof) to determine the average
costs associated with the stockage policy. The proposed
approach is more e�cient and direct at �nding the op-
timal stockage policy for the traditional cost function.
For this reason, the proposed approach can be used
when the cost is given by a nonlinear function of either
the delays experienced by the customer, or the unit's
storage time at the retailer.

NOMENCLATURE

RB retailer's reorder point in an inventory
system with base stock policy,

S0 supplier inventory position in an
inventory system with a one-for-one
ordering policy,

S retailer inventory position in an
inventory system with a one-for-one
ordering policy,

L transportation time from the supplier
to the retailer,

L0 transportation time from the outside
source to the supplier,

� demand intensity at the retailer
h holding cost per unit per time unit at

the retailer,
h0 holding cost per unit per time unit at

the supplier,
� shortage cost per unit per time unit at

the retailer,
R the retailer reorder point,
Q the retailer batch size,
Rw the warehouse reorder point (in units

of retailer batches),
Qw the warehouse batch size (in units of

retailer batches),
A �xed order cost at the retailer,
A0 �xed order cost at the supplier,

�S(S0) the expected retailer inventory carrying
and shortage costs, which is incurred
to �ll a unit of demand at the retailer
when applying one-for-one ordering
policies with S0 and S as the supplier
and the retailer inventory positions,
respectively,


(S0) the average warehouse holding cost
per unit when applying one-for-one
ordering policies with S0 as the
supplier inventory positions,

�S(L0) the expected retailer inventory
carrying and shortage costs which is
incurred to �ll a unit of demand at
the retailer when applying one-for-one
ordering policies with S as the retailer
inventory positions and L0 as the delay
encountered at the supplier level,

c(S0; S) the total holding and shortage costs per
time unit when applying one-for-one
ordering policies with S0 and S as
the supplier and the retailer inventory
positions, respectively,

TC(Q;R) the total cost per time unit for the
retailer when the retailer applies a
(R;Q) policy with lead time L+ L0,

p(u; �) probability mass function of Poisson
with mean �,

P (u; �) cumulative probability distribution
function of Poisson with mean �.
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APPENDIX

Evaluation of the One-for-One Ordering
Policies

This Appendix is a summary of Axs�ater [15,16]. Con-
sider S0 and S as the supplier and the retailer inventory
positions, respectively. We de�ne (as in Axs�ater's
papers for one retailer and where S0 � 0) the following
notations:

gS0(t) = Density function of the Erlang (�; S0) distri-
bution of the time that the warehouse orders a unit
to it is demanded by the retailer, for the one-for-
one corresponding system with Poisson demand (see
Axs�ater [16] page 65),

GS0(t) = Cumulative distribution function of gS0(t).
thus:

gS0(t) =
�S0tS0�1

(S0 � 1)!
e��t; (A1)

and:

GS0(t) =
1X

k=S0

(�t)k

k!
e��t: (A2)

The average warehouse holding cost per unit is:


(S0) =
h0S0

�
(1�GS0+1(L0))

� h0L0(1�GS0(L0)); S0 > 0; (A3)

and for S0 = 0,


(0) = 0: (A4)

Given the value of random delay at the warehouse is
equal to t(S0 � 0 ! 0 � t � L0), the conditional
expected cost per unit at the retailer is:

�S(t) = e��(L+t)h+ �
�

S�1X
k=0

(s� k)
k!

(L+ t)k�k

+ �
�
L+ t� S

�

�
; S > 0; (A5)

(0! = 1 by de�nition) and:

�S(t) = �
�
L+ t� S

�

�
; S � 0: (A6)

The expected retailer inventory carrying and shortage
costs, which was incurred to �ll a unit of demand at
the retailer, is:

�S(S0) =
L0Z
0

gS0
0 (L0 � t)�S(t)dt

+ (1�GS0(L0))�S(0); S0 > 0; (A7)
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and:

�S(0) = �S(L0): (A8)

Furthermore, for S > 0 and for large values of S0 we
have:

�S(S0) � �S(0): (A9)

The procedure starts by determining �S0 such that:

G �S0(L0) < "; (A10)

where " is a small positive number.
The recursive computational procedure is:

�S(S0 � 1) =�S�1(S0) + (1�GS0(L0))

�(�S(0)� �S�1(0)); S0 > 0; (A11)

and for S � 0 it is possible to show that:

�S(S0) =GS0(L0)�L0 �GS0+1(L0)�
S0

�

+�
�
L� S

�

�
; S0 > 0: (A12)

The sum of the expected total holding and shortage
costs per time unit in an inventory system with a one-
for-one ordering policy is:

c(S0; S) = �(�S(S0) + 
(S0)): (A13)


