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Research Note

Optimizing a Joint Economic Lot Sizing
Problem with Price-Sensitive Demand

M.R. Akbari Jokar1;� and M. Sheikh Sajadieh1

Abstract. This paper considers the problem of a vendor-buyer integrated production-inventory model.
The vendor manufactures the item at a �nite rate and delivers the �nal goods at a lot-for-lot shipment
policy to the buyer. We relax the assumption of uniform demand in the hitherto existing joint economic
lot sizing models and analyze the problem where the end customer demand is price-sensitive. The relation
between demand and price is considered to be linear. The model proposed, based on the integrated expected
total relevant pro�ts of both buyer and vendor, �nds out the optimal values of order quantity and mark-up
percentage, using an analytical approach. Some numerical examples are also used to analyze the e�ect of
the price-sensitivity of demand on the improvements in joint total pro�t over individually derived policies.
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INTRODUCTION

In the cases where no coordination exists between
supply chain members, the vendor and the buyer will
act independently to maximize their own pro�t. This
independent decision behavior usually cannot assure
that the two parties, as a whole, reach the optimal
state. In traditional inventory management, the opti-
mal inventory and shipment policies for manufacturer
and buyer in a two-echelon supply chain are managed
independently. As a result, the optimal lot size for the
purchaser may not result in an optimal policy for the
vendor and vice versa. To overcome this di�culty, the
integrated vendor-buyer model is developed, where the
joint total relevant cost for the purchaser as well as the
vendor is minimized. Consequently, determining the
optimal policies, based on integrated total cost function
rather than buyer or supplier individual cost function,
results in a reduction of the total inventory cost of the
system.

The integrated vendor-buyer problem is called the
Joint Economic Lot Sizing (JELS) problem and can be
considered as the building block for wider supply chain
systems. The global supply chain can be very complex
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and link-by-link understanding of joint policies can be
very useful.

Goyal [1] was the �rst who introduced the idea
of a joint total cost for a single-vendor and a single-
buyer scenario, under the assumption of having an
in�nite production rate for the vendor and a lot for
lot policy for the shipments from the vendor to the
buyer. Banerjee [2] relaxed the in�nite production
rate assumption. Then, Goyal [3] contributed to
the e�orts of generalizing the problem by relaxing
the assumption of lot for lot. He assumed that the
production lot is shipped in a number of equal-size
shipments. Later, Goyal [4] developed a model where
the shipment size increases by a factor equal to the
ratio of production rate to demand rate. He formulated
the problem and developed an optimal expression for
the �rst shipment size as a function of the number of
shipments. Hill [5] generalized the model of Goyal [4]
by taking the geometric growth factor as a decision
variable. He suggested a solution method based on
an exhaustive search for both the growth factor and
the number of shipments in certain ranges. Later,
Hill [6] relaxed the assumptions of the shipment policy
and developed an optimal solution of the problem. He
showed that the structure of the optimal policy includes
shipments increasing in size, according to a geometric
series, followed by equal-sized shipments.

Joint economic lot sizing models have been ex-
tended in many di�erent directions. It is beyond
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the scope of this paper to discuss all works in detail
here. Broadly speaking, the existing literature on
JELS may be divided into di�erent categories such as
quality (e.g. [7]), controllable lead-time (e.g. [8]), setup
and order cost reduction (e.g. [9]) and transportation
(e.g. [10]). Readers are referred to [11] for a compre-
hensive review of the JELS problems.

Despite the large amount of research extending
di�erent dimensions of JELS problems, most of them
are limited to deterministic conditions in which none of
the parameters are dependent on each other. However,
in practice, there may be some negative or positive
coordination between di�erent parameters (e.g. price-
sensitive demand, time-dependent demand, stock-
dependent demand, lot-size dependent lead-times, etc).
In this paper, we develop an integrated production-
inventory system consisting of a single vendor and
single buyer, where the lot from the vendor is trans-
ferred to the buyer in a lot-for-lot shipment policy.
Unlike previous work in the literature, the demand is
considered to be price-sensitive. Here, we analyze how
the coordination between two supply chain members
will be a�ected when the end customer demand is price-
sensitive.

The paper is organized as follows. In the following
section, the notations and assumptions of the problem
are introduced. Then, a discussion on independent
policies for buyer and vendor as well as on the inte-
grated model is given and the optimal value of decision
variables is also obtained. Later, some numerical ex-
amples and sensitivity analyses are presented. Finally,
the paper �ndings and directions for future research are
summarized.

ASSUMPTIONS

The assumptions of the model are summarized as
follows:

1. The integrated system of single-vendor and single-
buyer for a single product is considered.

2. The buyer faces a linear demand as a function of
the selling price.

3. Selling price is set based on the unit purchasing
price plus a constant percentage mark-up.

4. A �nite production rate for the vendor is consid-
ered, which is greater than the demand rate.

5. The buyer orders a lot of size Q, when the on-hand
inventory reaches the reorder point.

6. The inventory holding cost for the buyer is more
than that for the vendor, i.e. hb > hv.

7. Shipments from the vendor to the buyer use a lot-
for-lot policy.

8. Shortage is not allowed.

MATHEMATICAL MODELING

The optimal order quantity and pro�t margin of the
integrated system is derived in this section. We �rst
obtain the optimal policies if each supply chain member
tries to maximize its bene�t. Then, the policies and
pro�ts are compared with the case of an integrated
system when they cooperate with each other. We
assume that the buyer faces a linear demand, D(�) =
a � b�(a > b > 0), as a function of his/her unit retail
price, which increases as the price decreases. Moreover,
we employ a mark-up pricing policy where the selling
price is set based on the unit purchasing prices, c, plus
a constant percentage mark-up, i.e. � = (1 + �)c.

Since D(�) = a � bc � �bc > 0, the maximum
percentage mark-up is a=bc � 1. The buyer's yearly
pro�t is equal to the gross revenue minus the sum
of the purchasing cost, the order processing cost,
and inventory holding cost. The buyer wishes to
maximize his/her yearly pro�t function, TBP , through
the optimal percentage mark-up, �, and order quantity
Q, i.e.:

TBP (�;Q) = �c(a� bc� �bc)� (a� bc� �bc)Ab
Q

� hbQ
2
: (1)

For the buyer's percentage mark-up, �, which in turn
determines the annual demand, D(�), the buyer's
optimal order size is Q� =

p
2(a� bc� �bc)Ab=hb.

Substituting the optimal order quantity into Equa-
tion 1 and simplifying, we obtain:

TBP (�)=�c(a�bc��bc)�p2(a�bc��bc)Abhb:
Using the approximation used by Qin et al. [12], the
above expression can be rewritten as:

TBP (�) = �c(a� bc� �bc)�p2Abhba

� [d0(1 + �)2c2 + d1(1 + �)c+ d2];

where d0 = (�8 + 4
p

2)(b=a)2, d1 = (12 � 7
p

2)(b=a)
and d2 = 3

p
2� 4.

Substituting c = �(1+�)�1 and taking the second
derivation of TBP with respect to �, we obtain:

@2TBP
@�2 = �2b� 2

p
2Abhbad0:

The above expression is negative if a3 > 11Abhbb2. In
practice, a is usually very large (see [12]) and, thus,
the buyer's pro�t function is concave in �, and its
optimal value is uniquely determined by equating the
�rst derivation of TBP to zero.
@TBP
@�

= a� 2b� + bc�p2Abhba� (2d0� + d1):
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Solving @TBP=@� = 0 and substituting � = c(1 + �),
the optimal percentage mark-up can be obtained as
follows:

�� =
a� bc�p2Abhba[d1 + 2cd0]

2bc+ 2c
p

2Abhbad0
: (2)

Thus, the optimal order quantity can be obtained as:

Q� =
�
b(a� bc)Ab +

p
2AbhbaAb(2ad0 + bd1)

hb(b+
p

2Abhbad0)

� 1
2

:
(3)

If there is no cooperation between supply chain mem-
bers, then the optimal values of order quantity and
mark-up percentage are adopted just based on the
buyer pro�t function. Thus, the orders are received by
the vendor at known intervals, T (Figure 1). Therefore,
the vendor's yearly pro�t function is as follows:

TV P = (a� bc� �bc)
�
c� Av

Q
� hvQ

2P

�
:

Considering the case in which the buyer (purchaser) is
free to choose his/her own pricing and ordering policies,
(�;Q), then it is straightforward that the individually
derived total system pro�t, TIP (�;Q), is equal to the
summation of sub-optimal buyer and vendor pro�ts,
i.e. TIP (�;Q) = TBP + TV P .

Suppose that both parties decide to cooperate
and agree to follow the jointly optimal integrated
policy. Therefore, the total system pro�t is going to
be maximized, i.e.:

TSP (�;Q) = (1 + �)c(a� bc� �bc)

� (a� bc� �bc)(Ab +Av)
Q

� Q
2

[hb + hv(a� bc� �bc)=P ]: (4)

It can easily be shown that the total system pro�t
is concave in Q for the known values of the buyer

Figure 1. Inventory level against time for buyer and
vendor.

percentage mark-up, �. Therefore, the optimal order
quantity can be obtained as:

Q� =
�

2(a� bc� �bc)(Ab +Av)
hb + hv(a� bc� �bc)=P

� 1
2

: (5)

Substituting the optimal order size into Equation 4 and
simplifying, we obtain:

TSP (�) = (1 + �)c(a� bc� �bc)
�p2(a�bc��bc)(Ab+Av)[hb+hv(a�bc��bc)=P ]:

Using the same approach employed to optimize the
buyer pro�t, the above expression can be rewritten as:

TSP (�) = (1 + �)c(a� bc� �bc)
�p2(Ab +Av)[hb + hv(a� bc� �bc)=P ]a

� [d0(1 + �)2c2 + d1(1 + �)c+ d2]:

Substituting c = �(1 + �)�1 and taking the second
derivation of TSP , with respect to �, we obtain:

@2TSP
@�2 = �2b

�2
p

2(Ab+Av)[hb+hv(a�bc��bc)=P ]ad0:

The above expression is negative and, thus, the total
system pro�t function is concave in � and its optimal
value is uniquely determined by equating the �rst
derivation of TSP to zero.

@TSP
@�

= a� 2b� + bc

�p2(Ab +Av)[hb + hv(a� bc� �bc)=P ]a

� (2d0� + d1):

By solving @TSP=@� = 0 and substituting � = c(1 +
�), the optimal percentage mark-up under the vendor-
buyer coordination can be obtained as follows:

�� =

a�bc�p2(Ab+Av)[hb+hv(a�bc��bc)=P ]a[d1+2cd0]
2bc+ 2c

p
2(Ab +Av)[hb + hv(a� bc� �bc)=P ]ad0

: (6)

Thus, the optimal order quantity can be obtained as:

Q� =
p
Ab +Av

�
b(a� bc) + �!(2ad0 + bd1)

hb(b+ �!d0)

� 1
2

; (7)

where:

�! =
p

2(Ab +Av)[hb + hv(a� bc� �bc)=P ]a:
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NUMERICAL EXAMPLES

We consider an example with the following data, P =
3200/year, Av = $400/setup, Ab = $25/order, hv =
$4/unit/year, hb = $5/unit/year, a = 1500, b = 10,
and c = $60/unit.

The optimal values of � and Q and the total
system pro�t of the individually optimized model are
0.75, 66.9 and 44106.5, respectively. The corresponding
values for jointly optimized model are 0.26, 326.3
and 54310.1. The improvement in joint total pro�t
over individually derived policies is 23.13%, which
should be shared in some equitable manner through
the mechanism of a side payment to the buyer from the
vendor, or a price discount scheme in order to entice
the buyer to change his/her lot size and selling price.

In order to gain insight into the e�ect of some
factors such as the price-sensitivity of demand, holding
costs and ordering costs, di�erent sets of parameter
speci�cations have been considered:

1. Four levels for a : a 2 [1300; 1500; 1700; 1900].

2. Six levels for b : b 2 [1; 3; � � � ; 11].

3. Seven levels for buyer holding cost: hb 2
[1; 5; 10; 20; 30; 40; 50].

4. Three levels for buyer ordering cost: Ab 2
[12:5; 25; 50].

5. Seven levels for proportion of vendor setup cost to
buyer ordering cost: Av=Ab 2 [1; 2; 4; 8; 12; 16; 20].

To represent improvements in joint total pro�t
over individually derived policies, we de�ne the per-
centage improvement, PI, as (TSP � TIP )=TIP �
100. Looking at the results in Table 1, we see that
the optimal mark-up percentage is higher in supply
chains in which each party tries to maximize his own
bene�t (non-cooperative), compared with the case of
a joint system when they cooperate. Since then, the
selling prices to end customers will be higher in a
non-cooperative situation. Therefore, based on the
negative relation between selling price and demand,
the incoming demand is less than that in a cooperative
situation. As can be seen in Table 1, the demand is

Table 1. Cooperative optimization vs. non-cooperative optimization.

Parameter Non-Cooperative Vendor-Buyer Cooperative Vendor-Buyer

a b � Q D TIP � Q D TSP

1 10.34 78.7 619.8 418017.1 9.85 308.1 649.2 420708.6
3 3.11 74.8 559.5 134711.1 2.62 307.8 647.6 139043.1

1300 5 1.67 70.6 499.1 76745.6 1.18 307.5 646.1 82711.1
7 1.05 66.2 438.7 50979.0 0.56 307.2 644.5 58569.4
9 0.71 61.5 378.2 35952.5 0.22 306.9 642.9 45158.0
11 0.49 56.4 317.6 25815.1 0.00 306.3 640.0 36623.7

1 12.00 84.8 719.9 557735.0 11.51 327.5 749.2 560555.0
3 3.67 81.2 659.5 181084.2 3.18 327.3 747.7 185556.1

1500 5 2.00 77.4 599.2 104439.1 1.51 327.0 746.2 110557.3
7 1.29 73.4 538.8 70657.5 0.80 326.7 744.7 78415.6
9 0.89 69.2 478.4 51169.0 0.40 326.4 743.2 60559.5
11 0.64 64.6 417.9 38182.5 0.15 326.1 741.7 49197.0

1 13.67 90.5 819.9 717470.7 13.18 345.1 849.3 720407.6
3 4.22 87.2 759.6 234144.2 3.73 344.9 847.8 238742.0

1700 5 2.34 83.6 699.3 136155.5 1.85 344.6 846.4 142409.7
7 1.53 79.9 638.9 93219.6 1.04 344.4 844.9 101125.1
9 1.08 76.1 578.5 68638.6 0.59 344.1 843.5 78189.6
11 0.79 72.0 518.1 52404.5 0.30 343.9 842.0 63594.7

1 15.34 95.9 919.9 897221.1 14.85 361.1 949.3 900265.2
3 4.78 92.7 859.6 293887.1 4.29 360.9 947.9 298599.5

1900 5 2.67 89.4 799.3 171890.2 2.18 360.7 946.5 178267.2
7 1.76 86.0 739.0 118659.3 1.27 360.5 945.1 126696.8
9 1.26 82.4 678.6 88353.6 0.77 360.3 943.7 98047.0
11 0.94 78.6 618.3 68471.6 0.45 360.1 942.3 79815.6
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22.69% lower in non-cooperative vendor-buyer supply
chains, on average. Additionally, there is not a
signi�cant demand variation in joint optimization as
price sensitivity change. However, the demand for
individual/non-cooperative optimization shows a 40%
reduction, as moving from b = 1 to b = 11, on
average.

Some other facts can also be discerned from
Table 1. The optimal order quantity is considerably
higher in joint optimization versus individual optimiza-
tion. The main reason is that since the setup cost of the
vendor is higher than the ordering cost of the buyer,
the model enlarges the order quantity to lessen the
number of ordering and setups. Based on the results
shown in Table 1, the order quantity of the cooperative
model is almost 4.3 times bigger than that in the non-
cooperative model.

Moreover, Table 1 shows that as the price-
sensitivity of demand, b, increases, mark-up percent-
ages decrease in both joint and individual optimiza-
tions. That is because the models try to condense
the e�ect of selling prices and control the demand
reductions.

Figure 2 shows the percentage improvement in
joint total pro�t over individually derived policies for
a range of a and b. As can be seen in Figure 2,
PI increases for cases where demand is more price-
sensitive. This result con�rms that it will be more
bene�cial for the buyer and vendor to cooperate
with each other in competitive environments where
end customers have a number of purchasing choices
and can easily shift to other less expensive supply
chains.

Furthermore, the increase in the total system
pro�t shows an exponential behavior where the change
in PI is 1.84%, moving from b = 1 to b = 3, while this
value is equal to 9.95%, moving from b = 9 to b = 11,
on average.

We also endeavor to examine whether the buyer

Figure 2. E�ect of price-sensitivity on the bene�ts of
vendor-buyer coordination.

holding cost has any e�ect on the bene�ts of vendor-
buyer coordination. As can be seen in Figure 3, the
improvement percentage, PI, increases by buyer hold-
ing costs. However, this increase in the improvement
percentage is of a diminishing kind, with most of the
saving obtained from an initial increase. The reason
is that as buyer holding costs increase, the optimal
order quantity in the non-cooperative model decreases
as well, much faster than that in the joint model. Thus,
the total pro�t of non-cooperative models reduces and,
consequently, cooperation becomes more attractive for
supply chain members.

Figure 4 illustrates the e�ect of the proportion of
vendor to buyer ordering cost on PI. As illustrated,
the improvement percentage increases by Av=Ab. In
other words, it will be more bene�cial for supply chains
to cooperate with each other, as their ordering and
setup costs are far from each other. However, the
improvement in PI is negatively a�ected by buyer
ordering cost decreases. For example, PI improvement
is 7.8%, moving from Av=Ab = 1 to Av=Ab = 20 (from
19.30% to 27.10) when Ab = 50, but it is 3.65% when
Ab = 12:5.

Figure 3. E�ect of buyer's holding cost on PI.

Figure 4. E�ect of setup cost to ordering cost proportion
on the bene�ts of vendor-buyer coordination.
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CONCLUSION AND DIRECTIONS FOR
FUTURE RESEARCH

We developed an integrated production-inventory
model in which the objective is to maximize the joint
total pro�t of the buyer and the vendor by optimizing
the ordering and pricing policies. The developed model
is a JELS model, where the lot from the vendor is
transferred to the buyer in a lot-for-lot shipment policy.
Unlike previous works in the literature, the demand
is considered to be price-sensitive. Here, we used an
analytical approach to �nd the optimal order quantity
and mark-up percentage. Moreover, we analyzed how
the coordination between two supply chain members
will be a�ected when the end customer demand is price-
sensitive.

We also compared the case of a cooperative
system, when supply chain members cooperate with
each other, over individually derived policies. The
numerical example results showed that when demand is
more price-sensitive, the system pro�t achieved by joint
optimization is signi�cantly larger than that obtained
by individual optimization. Therefore, when demand is
more price-sensitive, the supplier should employ some
coordination mechanisms such as volume discount,
to achieve higher channel coordination. This result
con�rms that it will be more bene�cial for the buyer
and vendor to cooperate with each other in competitive
environments, where end customers have a number of
purchasing choices and can easily shift to other less
expensive supply chains, i.e. demand is more price-
sensitive.

One of the future research directions is to extend
this study for other shipment policies such as non-
delayed, equal-sized shipment policies. Developing the
model to the multi-supplier case is also proposed for
future research. Moreover, in this paper, we considered
a linear price-demand relation, however, it might be
useful to analyze other demand functions (e.g. log-
linear) as well.

NOMENCLATURE

D demand rate as a function of unit
selling price

P production rate of the vendor
Q buyer's order quantity
c the buyer unit purchasing price
� the buyer unit selling price
� mark-up percentage
Av vendor's setup cost
Ab buyer's ordering cost

hv inventory holding cost for the vendor
per unit time

hb inventory holding cost for the buyer
per unit time
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