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Theory of Optimal Mixing in
Directly Modulated Laser Diodes

S. Khorasani1;� and B. Cabon2

Abstract. Using a simple nonlinear model based on rate equations, and by employing a harmonic
balance method, we develop a theory of optimal mixing in directly modulated semiconductor laser diodes.
We perform a consistent numerical solution to the mixing in laser diodes to the arbitrary accuracy and
intermodulation index (m;n). Through numerical computations we demonstrate that there is an optimal
bias in mixing, corresponding to a relaxation frequency, fr, coinciding with the subcarrier frequency, f1,
at which the mixing power is maximized nearly simultaneously for all intermodulation products, fmn. In
terms of increasing the signal's current amplitude, it will be shown that it would result in a monotonic
increase in the optical power of all intermodulation products, as is normally expected. More generally
and for the �rst time to the best of our knowledge, the condition for optimal mixing power is found as
fmn = kfr = mf1 +nf2. Applications are in data transmission beyond the resonant frequency of the laser
diode as needed in future communication standards.
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INTRODUCTION

Recently, there has been a growing interest in the
next generation of Ultra Wide Band (UWB) optical
networks, which employ higher subcarrier frequencies,
since future UWB systems will explore higher fre-
quency bands, such as the millimeter wave (MMW)
band [1]. This requires wide-band frequency up-
conversion of the usual MB-OFDM UWB signal occu-
pying the 3.1-10.6 GHz spectrum, which can be easily
achieved by all-optical mixers and Electrical to Optical
(E/O) and back O/E (Optical to Electrical) converters
that compose an optical link. Optical �ber is of bene�t
to huge available bandwidths suitable for high capacity
networks and at a very low cost, even when higher
frequencies are used in modulation of the optical carrier
transmitted along the optical �ber.

In nearly all communication systems, in which
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nonlinear phenomena in certain devices are exploited
to achieve a power boost or detection, mixers play a
vital role. A very simple and cost e�ective mixing
scheme can be obtained by the inherent nonlinearity
of Laser Diodes (LD); in this case, LD is used as an
E/O converter and microwave mixer, simultaneously.
As will be discussed, nonlinearity stems from the
stimulated emission terms in the rate equations model.
All optical mixing has been demonstrated by several
methods [2], but the less expensive and most simple
method is to use a LD directly modulated by two
RF and Local Oscillator (LO) signals. Extending the
available frequency band is, of course, at the expense of
power, especially if mixing uses the harmonics of input
signals. We have already demonstrated the feasibility
of a frequency up-conversion of UWB signals using a
Vertical Cavity Surface Emitting Laser (VCSEL) [3].
This paper investigates the best conditions for mixing
in laser diodes for the �rst time, to the best of
our knowledge, with possible exploration of frequency
bands far beyond the oscillation frequency of LD.

Two typical setups for the experimental realiza-
tion of mixing in laser diodes are shown in Figure 1.
The conventional way uses an external modulator
(Figure 1a), while in our proposed method, the laser
diode is directly modulated (Figure 1b). In the
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Figure 1. Illustration of mixing in laser-diode
transmitters. (a) standard method using external
modulator; (b) Proposed method using direct modulation
of the laser diode.

theoretical formulations, we ignore the e�ect of mode
competition, with the understanding that the diode
laser under consideration is supposed to be single mode.
Furthermore, the e�ect of gain compression which is
known to be partly due to spatial hole burning has been
neglected for simplicity. Whereas this phenomenon
plays an important role in VCSELs [4], it is usually
negligible for in-plane lasers. We also disregard the
e�ect of thermal variations in cavity, which can be
justi�ed if the typical time-scale of electrical excitations
is shorter than 1 �s [4,5].

THEORY

Here, we show that optimum mixing for a given mixing
product is obtained when its frequency simply matches
to the relaxation frequency of the diode. Starting di-
rectly from the rate equations with linearized gain and
neglecting the spontaneous emission, gain compression
and chirp, we have [6-8]:

dN
dt

= �i
I
qV
� N
�e
� vga(N �Ntr)S; (1a)

dS
dt

= �vga(N �Ntr)S � S
�p
; (1b)

where N and S are, respectively, the spatially-averaged
carrier and photon density, �i is the carrier injection
e�ciency, q is electronic charge, and V is the active cav-
ity volume. Furthermore, �e and �p are, respectively,
electron and photon lifetimes, vg is the group velocity
of light, a is the linear gain coe�cient, Ntr is the
transparency carrier density and � is the con�nement
factor.

The LD is directly modulated by a two tone
signal, composed of a RF subcarrier and a Local
Oscillator (LO) at di�erent angular frequencies, !1
and !2, respectively. Therefore, in the following, we
suppose that the driving current of LD is composed
of two sinusoids biased at some DC level I0, such
that I(t) = I0 + I1 exp(j!1t) + I2 exp(j!2t), in which
I1 and I2 are the corresponding current amplitudes.
The nonlinearity arises from NS product terms on
the right-hand-side of Equation 1, so that the to-
tal carrier and photon densities may be expanded
as: N(t) =

P
Nmn exp[j(m!1 + n!2)t] and S(t) =P

Smn exp[j(m!1 + n!2)t]. Here, Nmn and Smn
correspond to the amplitudes of the intermodulation
product's frequency, !mn = m!1 + n!2, in the total
carrier and photon densities, respectively. After some
rearrangement we get:
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where Imn = I0�m;0�n;0 + I1�m;1�n;0 + I2�m;0�n;1 in
which �mn is the Kronecker's delta, and nonlinear
term Umn is given by Umn =

P
Sm�p;n�qNp;q =P

SpqNm�p;n�q. We take out the linear terms in Nmn
and Smn on the right hand side of Equation 2 to get:
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Here, Vmn retains the nonlinear terms in Nmn and Smn,
which, as long as m and n are not simultaneously zero,
may be expressed as Vmn = Umn�SmnN00�S00Nmn.
Clearly, N00 and S00 represent DC values which can be
found by setting m = n = 0 in Equation 4, and making
the rough approximation, U00 = S00N00. This would
result in the nonlinear system of equations:

 
1
�e vga(N00 �Ntr)
0 1
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(4)

which can be readily solved to obtain the well-known
expressions N00 = Ntr + 1

��pvga , and S00 = ��p �iqV (I �
Ith). Here, the threshold current density is given by
Ith = qV N00=�i�e.
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Now, Nmn and Smn are inversely proportional
to the determinant �(!mn) of the 2 � 2 matrix of
coe�cients at the left-hand-side of Equation 3, in which
�(!mn) = !2

r � !2
mn + j!mn, with !2

r = 1
�e�p +

vga
h
S00
�p � �

�e (N00 �Ntr)
i

and  = 1
�e + 1

�p +vga[S00�
�(N00 �Ntr)]. Clearly, !r is the relaxation frequency
given as !2

r = vgS00
a
�p = ��ivg a

qV (I � Ith).
If  < !r, which is the usual case at bias

currents well above the threshold, then j�(!)j reaches
a minimum at ! = !p = (!2

r � 1
2

2) 1
2 . This shows

that, as a crude approximation, a peak of photon
and carrier density at the harmonic, !mn, appears
when m!1 + n!2 = !p � !r. This completes our
assertion. Finally, by selecting ! = !1 = !2, it can
be easily seen that this conclusion is also in agreement
with the previous results on the harmonic content of a
single-frequency modulated laser diode where maxima
in the harmonic powers are expected to occur at ! =
!r=n [6,7].

NUMERICAL RESULTS

Frequency Domain Simulation

Solutions of Equation 3 are obtained by an iterative
scheme. To increase the speed of convergence, we
employ a perturbation method. For every scanning
parameter, the known set of Nmn and Smn obtained
in the last step are used as initial values to start the
next point. This enabled us to reduce the computation
time signi�cantly and also to improve convergence.
Numerical values of parameters are given in Table 1.
Hence, we get Ith = 3:1 mA.

Figures 2 and 3 display a variation of optical
output mixing power in dBm at frequency fmn, as a
function of bias current, Ib, of the LD, while input
frequency, f1, is �xed. This way, by varying Ib, the
relaxation frequency, fr, is varied as well. For both
cases current amplitudes are equal and set to 0.1 mA.

Figure 2 clearly shows that optimum mixing

Table 1. Numerical values of laser diode parameters.

Parameter Description Value

�i Injection e�ciency 100%

V Cavity volume 1.4 �m3

Ntr
Transparency
carrier density

7:5� 1016 cm�3

a Di�erential gain 1:33� 10�16 cm2

� Con�nement factor 0.15

vg Group velocity 1010 cm/s

�e Carrier lifetime 100 ps

�p Photon lifetime 3.8 ps

Figure 2. Variation of output optical power
corresponding to the intermodulation products versus bias
current (f2 = f1=10; f2 = 11:6 GHz).

Figure 3. Variation of output optical power
corresponding to the intermodulation products versus bias
current (f1 = f2 = 6:5 GHz).

power is achieved near the relaxation frequency. In this
example f1 = 11:6 GHz and f2 = f1=10 = 1:16 GHz.
As is evident, all intermodulation products reach a
maximum when the bias current is selected in such
a way that the corresponding relaxation frequency
matches the subcarrier at f1, the corresponding value
of Ib is, here, 7 mA. There is a slight shift in the
maxima of intermodulation product powers when n 6=
0, with respect to the dashed line that represents the
bias current coinciding with a relaxation frequency of
fr = f1. This displacement towards higher frequencies
can be attributed to the fact that one would expect the
peaks to occur when fmn = fr = mf1 + nf2 roughly
holds in agreement with the theory. Through the same
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method for the input frequencies of f1 = 6:5 GHz and
f2 = f1=10 = 0:65 GHz, we �nd that the optimum
bias is reached at Ib = 5 mA, giving fr = 6:5 GHz,
coinciding again with fr = f1.

In Figure 3, f2 = f1 = 6:5 GHz are selected.
Again, there is an optimal bias current around 5 mA
corresponding to a relaxation frequency of 6.5 GHz
and maximizing mixing power. Therefore, as a rule
of thumb in mixing, we can conclude that there exists
an optimal bias current corresponding to a relaxation
frequency equal to the subcarrier frequency, at which
the maximum mixing can be attained. Since both
frequencies are chosen to be the same, curves corre-
sponding to the pairs of (m;n) and (n;m) coincide
when m 6= n.

In both Figures 2 and 3, it may be noticed that the
intermodulation product maxima happen at a slightly
higher bias current, deviated from the theoretical op-
tima. This can be understood in the weakly nonlinear
regime if we observe that the maxima happen roughly
at the zeros of the derivative of the following expression:

@
@!1

Y
mn

j�(!mn)j = @
@!1

�����Y
mn

�(m!1 + n!2)

����� = 0;
(5)

which represent the denominator of the total transfer
function. The general solution to the above equation
is obviously very complicated, but it can be greatly
simpli�ed by investigating the particular case of ! =
!1 = !2, and noting that zeros of Equation 5 almost
coincide with the roots of:

Re

(Y
mn

�[(m+ n)!]

)
= 0; (6)

due to the fact that 2 << !2
r (for the diode concerned

at Ib = 7 mA, we have 2 � 0:15 !2
r). Then, ignoring

all intermodulation products of order three and the
above results in:

Re
�

�(!)2�(2!)
	 � 0: (7)

The approximate roots of this equation, correct to
the second order in , and close to the resonant
frequency (obtained by Mathematica) are given by
! � !r + 1

2(=!r � 1). For the considered laser
diode at the bias current of 7 mA, this gives a 20%
di�erence with regard to the relaxation frequency;
this is while a full numerical solution incorporating a
higher number of harmonics predicts an 8.5% di�erence
for dominant poles. In Figures 2 and 3, one could
observe, respectively, a 6% and 7% deviation from the
bias current corresponding to the relaxation resonant
frequency. This could at least partially show that one
could expect the maxima to happen at a di�erent,
but close, bias current corresponding to the relaxation

resonant frequency. In practice, it has been found that
up-conversion slightly beyond the relaxation frequency
is possible [3].

Consequently, an extension of the condition for
maximum mixing power is found as:

fmn = kfr = mf1 + nf2; (8)

where again fmn is the mixing frequency at which the
maximum mixing power is obtained and k, m, and n
are integers. Of course at the expense of power, higher
harmonic mixing is obtained and the mixing frequency,
fmn, is shifted far beyond the resonance frequency, fr,
of the LD. For example, in Figure 3, m = n = 1 gives a
mixing frequency at 13 GHz twice the fr value (k = 2,
m = n = 1), while (k;m; n) = (4; 1; 3) gives a mixing
frequency of 26 GHz with a mixing power 20 dB lower,
under the same optimum bias conditions.

In Figure 4, we investigate the e�ect of variations
of the current amplitude. The frequency and amplitude
of the RF subcarrier are �xed, respectively, at f1 =
fr = 9:34 GHz and 3 mA. The frequency of the LO
signal is also kept �xed at f2 = f1=10 = 0:934 GHz,
but its amplitude is varied between 10 �A and 1 mA. As
normally expected, the trend is a monotonic increase
in the power of all intermodulation products versus the
current amplitude of the LO signal.

When Figure 4 is redrawn with the current
amplitude on the horizontal axis in dBm given by
I(dBm) = 20 log10 (I=1 mA) as illustrated in the
inset in Figure 4, then one could recover the stan-
dard slopes for the second-, third- and fourth-order
intermodulation products, respectively, as 1.05 dB/dB,
2.12 dB/dB and 3.18 dB/dB. Here, no saturation in
the harmonic powers could be expected due to the

Figure 4. Optical output power of intermodulation
products versus signal amplitude at �xed frequency. The
inset shows the intermodulation products versus input
current amplitude on the logarithmic scale.
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over-simpli�ed model, which exploits linear gain with
no gain compression. This also partially justi�es the
validity of the harmonic balance model.

Time-Domain Simulation

In order to observe the behavior of the system, one
may alternatively integrate the governing equations in
the time-domain and perform a Fourier transform to
observe the output. We have done this for the input
current:

I(t) = Ib + I1 cos(2�f1t) + I2 cos(2�f2t); (9)

with Ib = 7 mA, I1 = I2 = 3 mA, f1 = 2:5 GHz and
f2 = 3:53 GHz. The input current to the diode which
consists of two frequencies, biased at 7 mA, is shown in
Figure 5. The simulated carrier density response in the
cavity of the laser diode is shown in Figure 6 over the
�rst 10 nsec time span of the output. There is a delay in
the average carrier density, which is clearly associated
with the step response to the input DC bias. In
Figure 7, the optical output power from the laser diode
under mixing has been shown. Photodiodes have a
greater linear response over a relatively wide frequency
range, and it can be assumed that the amplitude of the
detected current at the receiver is proportional to the
optical output power. After integration for 1000 cycles
and doing a fast-Fourier transform, the spectrum of
the detected output power is obtained, which clearly
shows the peaks corresponding to the mixing products,
as shown in Figure 8.

Clearly, if the input signal at f1 is not single-
frequency, then the peaks would broaden. The avail-
able bandwidth of mixing would be, therefore, strongly
dependent on the choice of the mixing product of
interest and the distance to the neighboring dominant

Figure 5. Two-frequency input current to the laser diode.

Figure 6. Simulated carrier density response in the
cavity of the laser diode.

Figure 7. Simulated optical output power from the laser
diode under mixing.

mixing products. For instance, if (m;n) = (1; 1) is
chosen as the desired intermodulation product, then
the available bandwidth would be simply given by
�f = 1

2 jf1 � f2j. Clearly, this limitation is even
dependent on the strength of signals. For instance,
if we choose identical carrier and signal frequencies,
f1 = f2, then all intermodulation products with
n + m = 2 would coincide with (m;n) = (1; 1).
For comparable amplitudes of the signal and carrier,
this would normally result in a signi�cant crossover
among products and, therefore, loss of data. However,
typically the signal amplitude is much weaker than
the subcarrier frequency, and the e�ect of overlapping
intermodulations of a higher order could be neglected.
The available bandwidth in that case would be, prac-
tically, �f = 1

2f1.
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Figure 8. Spectrum of output power detected via a
photo-diode.

CONCLUSION

We developed a nonlinear harmonic balance method to
describe the mixing in directly modulated laser diodes.
We have shown the existence of an optimal opera-
tion point through theory and numerical simulations.
Frequency- and time-domain numerical tests for the
nonlinear model were in reasonable agreement with
theoretical predictions. This enables one to achieve
maximum mixing power through a proper choice of
diode and/or operating parameters. This can be
exploited in future UWB standards where there is a
need for converting UWB in a 60 GHz range and
where very low cost optical solutions, based on inno-
vative microwave-photonics concepts, can address the
challenges of low-cost Wireless-Personal Area Networks
(WPANs).
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