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Nonlinear FE Analysis of Reinforced Concrete

Structures Using a Tresca-Type Yield Surface

M. Nazem!*, I. Rahmani? and M. Rezaee-Pajand®

Abstract.

This paper presents a monlinear analysis of reinforced concrete structures. Various yield

surfaces of concrete are reviewed in the beginning and then a recently proposed yield surface for concrete is
introduced. The yield surface considers the behavior of concrete in a three-dimensional stress state. Based

on the yield surface, a nonlinear finite element formulation is provided to facilitate a three-dimensional

analysis of reinforced concrete structures. An eight-node brick element is used in the analysis. Several

numerical examples are given to show the ability of the yield surface in solving nonlinear reinforced

concrete problems.
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INTRODUCTION

Concrete is a material widely used nowadays in struc-
tures such as tall buildings, nuclear power plants and
dams. An analysis of such structures is not possible by
classical methods and moreover experimental studies
are costly. Recent advances in numerical techniques
have developed the finite element method by which the
concrete structures can be studied. As a matter of fact,
there are some limitations within implementing finite
element methods for reinforced concrete structures.
The main reason for these limitations is the complex
behavior of concrete and subsequently its modeling.
The complexity is caused by:

1. Nonlinear stress-strain relation of concrete under
multi-axial stress conditions;
2. Strain softening and anisotropic stiffness reduction;

3. Progressive cracking caused by tensile stresses and
strains;

4. Bond between concrete and reinforcements;
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5. Aggregation interlocks and dowel action of rein-
forcements;

6. Time-dependant behaviors as creep and shrinkage.

Presenting a convenient model that can predict
the behavior of concrete in all situations has been an
active research subject for a long time and still is. The
starting point to a materially nonlinear analysis of a
structure is introducing a yield function that can pre-
dict the behavior of material under an imposed stress
state. Several yield criteria have been suggested for
concrete. A brief review of concrete yield surfaces will
be presented in the following and a recently proposed
yield surface will be represented. The yield surface
is used in a finite element formulation to solve some
nonlinear problems of reinforced concrete structures.

GENERAL YIELD CRITERIA OF
CONCRETE

The strength of concrete under three-axial stress is a
function of stress tensor. This strength is dependant on
compressive, tensile and shear stress in concrete. The
fracture criteria of concrete under a three-dimensional
stress state will be studied in this paper. A general
definition for fracture must be presented for this pur-
pose. A concrete element is fractured when it reaches
the ultimate load bearing capacity and can tolerate
no more loads. There are two kinds of fracture for
concrete, named ductile and brittle. A brittle fracture
is initialized by tensile cracks, and concrete loses its
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strength in the normal direction to cracking. This
fracture occurs when concrete is under high tensile
stress. Ductile fracture, on the other hand, starts with
compressive micro-cracking, and concrete loses most
of its strength. Stress carried by concrete reduces
as the strains increase. Several criteria have been
suggested for concrete. These criteria are divided into
five different groups based on their assumptions. These
are: one-parameter, two-parameter, three-parameter,
four-parameter and five-parameter groups.

The one-parameter models require only one ma-
terial parameter to define the yield surface of concrete
which can be either the compressive or tensile strength
of the concrete. Rankine and Tresca are such mod-
els. According to Rankine’s criterion, the fracture
in concrete starts when one of the principal stresses
(01, 02 or o3) reaches the tensile strength (f/). This
criterion neglects the effect of shear stresses in concrete.
In Tresca’s yield criterion, fracture occurs when the
maximum shear stress reaches a critical value as K,
being the yield stress of concrete in pure shear. This
parameter can be obtained by a uniaxial test for ductile
materials.

The strength of concrete in tension and compres-
sion is not the same. Therefore, the yield surface of
concrete does not possess three axes of symmetry. In
other words, one-parameter models cannot predict the
behavior of concrete in a general state of stress and
models with more parameters are required. Two well-
known two-parameter models are the Mohr-Columb
criterion and the Drucker-Prager criterion. According
to the Mohr-Columb criterion, the shear strength
of a material is a function of cohesion and normal
stresses. For concrete, the Mohr-Columb criterion may
be expressed in terms of compressive strength (f.) and
tensile strength (f/) by the following equation:

!
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where ¢ and o9 are, respectively, the major and minor
principal stresses. The Mohr-Columb criterion has
provided good results in the analysis of beams and
slabs where the shear is critical. The corners of a
Mohr-Columb criterion usually cause complexity in the
numerical integration of stress-strain relations and re-
turning the stress state onto the yield surface. Drucker
and Prager overcame this drawback by presenting the
following criterion:

fh, o)y =al ++/Jo — K =0, (2)

where Iy is the first invariant of the stress tensor, J5
represents the second invariant of the deviatoric stress
tensor and o and K are material parameters (see [1]
for more details).
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The relation between octahedral shear stress
(Toct) and octahedral normal stress (ooct) is linear
in the Drucker-Prager model and the failure surface
represents a circle on the 7 plane. The experimental
results, however, show that this relation is not linear
and the failure surface is not a circle. Therefore, three-
parameter models have been introduced. William and
Warnke [1] introduced a three-parameter criterion for
the tensile region of concrete with low compressive
stresses. The failure surface on the 7 plane is an ellipse
in this criterion and the corners of the yield surface are
curvilinear and continuous. Moreover, the yield surface
possesses three axes of symmetry.

The William-Warnke three-parameter criterion
was then modified into a five-parameter one by adding
two degrees of freedom. Doing so, the criterion will
be more effective for the compressive state of stresses.
This criterion is defined by the following equations:

2J2 Ooct Ooct 2 :
5 fé:ao—i—al f + asg 7 ,  (tension), (3)

2J2 Ooct (Uoct ) 2 .
=by+Db +b , compression).
sy T (rompression,

The unknown parameters, ag, ay, as, by, by and by
are obtained from experimental tests. The above
equations intersect on the hydrostatic axis at a known
point, therefore, there are only five-parameters to be
determined.

QUASI-TRESCA YIELD SURFACES

A class of yield surfaces can be found in the literature,
based on the Tresca yield function [2]. The Tresca
yield surface for plane problems can be expressed by
the following equations:

Fy =0, —0(k) =0,

Fy=—0y—0(k)=0,

Fs=01—09—0(k)=0,

Fy=05—0(k) =0,

Fy=—0y—0(k)=0,

Fs =—01 402 —0(k)=0. (3)
The projection of this yield surface on the 7 plane
represents a hexagon with two axes of symmetry.
The Tresca yield function assumes that the behavior

of the material under tension and compression will
be the same. To overcome this drawback, the first
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quasi-Tresca yield surface was proposed by Rezaee-
Pajand [3]. Assuming a to be the ratio between
the compressive strength and tensile strength of the
material, the following equations can be written for the
first quasi-Tresca yield surface:

F1 =01 — 09 = O,

FQ = —09 — a0y = 0,

F3 =a01 — 09 —aog =0,

F4 = 09 — 09 = 07

Fs=—01 —aoy =0,

FGZ—O'l -|—(10'2—(10'0:07 (6)
where o( is the yield stress of the material and can
be obtained from the uniaxial tensile test. The first
quasi-Tresca yield surface is applicable to materials
with different compressive and tensile characteristics
(Figure 1).

A more generalized form of the first quasi-Tresca
yield surface was presented by Weisgerber [4]. Two
extra parameters, 5, and (35, representing the behavior

of material under tension and compression, are used to
define the second quasi-Tresca yield surface, as follows:

Fi =pioy + (1= B1)oy — Bro(k) =0,
Fy = (f2 — 1)oy — Baoa — aPBro(k) =0,
F3=a01 — 03 —ao(k) =0,

Fy=(1-p1)or+ pros — Pro(k) =0,
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Figure 1. First quasi-Tresca yield surface.
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Fs = —Be01 + (B2 — 1)o2 — apao(k) =0,
Fs = —01 4+ aoy —ao(k) =0. (7)

Parameters 5; and (5 are obtained from experimental
tests. Weisgerber used this yield surface with the
isotropic hardening rule to solve some plane strain
problems of concrete. Alsanusi [5] analyzed some
reinforced concrete problems using a second quasi-
Tresca yield surface.

The second quasi-Tresca yield surface was gener-
alized into three-dimensional stress state by Nazem [6].
The proposed yield surface is shown in Figure 2. The
parameters in the second quasi-Tresca yield surface are
used to define the yield surface. Note that the yield
surface is defined in tension and compression regions
separately according to the equations below:

Tension sides:

T, = abyo1 + a(l — pr)oy — Broz — afro(k) =0,
Ty =a(l — B1)oy — Broa +aBroz —apio(k) =0,
T3 = afio1 — proa +a(l — Bi)os — apro(k) =0,
Ty =a(l = pr)o1 +aproy — rog —aPro(k) =0,
Ts = —pro1 +a(l — Bi)or + afros — afro(k) =0,

Ts = —p101 + apros + a(l — B1)os —apro(k) = 0.
(8)

Compression sides:
C1 = apaor — (1 = B2)og — a0z — apao(k) =0,
Cy = —(1 = By)a1 — Booz + afros — afro(k) =0,

C3 = —afaoy — Poos — (1 — Ba)os — afao(k) =0,

Figure 2. Proposed yield surface on 7 plane.
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Cy=—(1=B2)o1 +aPros — Bros — afro(k) =0,
Cs = =201 — (1 — B2)02 + afa03 — afao(k) = 0,

Cs = =01 + afaos — (1 — B2)os —abao(k) = O.( )
9

The above yield surface was used in the analysis of
some three-dimensional problems by Rezaee-Pajand
and Nazem [2]. The yield function is specifically
suitable for materials showing different behavior under
tension and compression as concrete.

ANALYSIS METHOD

In this study, the yield surface introduced by Rezaee-
Pajand and Nazem [2] is used in solving reinforced
concrete problems. The analysis benefits the incre-
mental theory of plasticity in which a yield surface
is initially defined and then a hardening rule is intro-
duced. A flow rule is also required that determines
the direction of plastic strains. An associative flow
rule is used here, which assumes the yield function
and plastic potential to be the same. The analysis
performed is three-dimensional using eight-node brick
elements representing the concrete and truss elements
for reinforcement.

A program, based on object-oriented methodol-
ogy using C++ language, was developed to analyze
the nonlinear reinforced concrete problems. The time-
stepping algorithm is based on the modified Newton-
Raphson method in which the global system of equa-
tions is solved only once at each increment. The
nonlinear finite element equation to be solved is [7]:

[K{U} = {R""27} — {F'}, (10)

in which K is the stiffness matrix; R represents the
vector of external nodal forces; F is the vector of
internal nodal forces; U denotes the displacement
vector; and ¢ specifies the time.

Eight-Node Brick Element

Choosing an element type is a very important issue
in the finite element method. The time spent for
setting up the stiffness matrix can be reduced if the
stiffness matrix of each individual element is calculated
explicitly. Precision, on the other hand, is important
to reduce the error of analysis. In the finite element
study performed here, an eight-node brick element is
used that has six perpendicular sides and which is
shown in Figure 3. Selby [8] has shown that this type
of element can provide good results in the analysis of
concrete structures. Axes of Cartesian coordinates are
parallel to element sides and, for simplicity, the origin
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Figure 3. Eight-node brick element.

is chosen at the centre of the element. This element
includes eight nodes with three displacement degrees
of freedom at each node.

Modeling of the Reinforcement

To model the reinforcing bars, truss elements are used
in this study which consist of two nodes with three
translational degrees of freedom at each node. In
this model, the compatibility of displacements between
the bars and the concrete is satisfied at nodal points.
Where required, the truss elements are added between
nodal points on the concrete elements, being embedded
with the finite element mesh to represent the rein-
forcing bars. This kind of modeling is widely used
by researchers, as it provides a bond between the
reinforcement and the concrete at nodes and does not
permit any slip between the two materials [9]. The
only shortcoming of the model, which usually occurs
in complicated reinforced structures, is that the truss
elements have to pass through concrete elements. How-
ever, for problems solved in this study, this drawback
is not necessarily considered as an issue.

The stress-strain relation of steel is defined by the
following equations:

fs :Es~557 OSES §€y7
fS:fyv 5y§€s§€h7
— fu_fy
fs=1y+ m(es —¢n),  en<es<ey, (11)

in which f, and e, are, respectively, the axial stress
and the strain in steel bars; f, and ¢, denote the yield
stress and yield strain of steel; e, depicts the strain
beyond which the strain-hardening of steel begins in a
one-dimensional tension test; and f, and ¢, represent,
respectively, the ultimate stress and the ultimate strain
that can be reached by a steel bar. The three
equations in Equations 11 define three regions in a
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one-dimensional stress-strain space: an elastic region, a
perfectly plastic region and a strain-hardening region,
respectively. Such a trilinear function is very popular
in the analysis of reinforced concrete structures by the
finite element method [10].

Incremental Theory of Plasticity

According to the theory of plasticity, the constitutive
equations governing the elastoplastic behavior of a
material are usually derived based upon the following
assumptions:

e Theincremental strain tensor, £, can be decomposed
into an elastic part, £€°, and a plastic part, &°.
Note that a superimposed dot represents the time
derivative of a variable.

£ =&+ & (12)

e The elastic domain is described by a yield surface
of the form f(o,k) = 0 where o is the Cauchy
stress tensor and k represents a set of hardening
parameters.

e Once plastic yielding occurs, the consistency condi-
tion requires that the stress state must remain on
the yield surface as the plastic deformation occurs,
such as:

:  Of . of .

f=—o0o+—

=9 5= 0. (13)

e The direction of plastic strains is normal to a surface
called the plastic potential, g. This rule is known as
the associated flow for f = ¢ and non-associated
flow for f # g, and is expressed as:

. ag

el = A

= A (14)

where A is a positive scalar called the plastic
multiplier.

e With the decomposition of the strains, the stress
rate can be expressed by:

o = C &, (15)

where C¢ represents the elastic stress-strain matrix.

e According to a mixed hardening rule which is a
combination of isotropic hardening and kinematic
hardening, the rate of transition of the yield surface
in stress space, «&, is defined by:

& = H(1 —m)eP, (16)

where H is a constant and m represents the con-
tribution of each of the isotropic and kinematic
hardening rules into the mixed hardening rule. Note
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that, if m = 1, the hardening rule will be isotropic
and for m = 0 a kinematic hardening rule will
be obtained. The plastic strain rate can now be
decomposed into an isotropic part, ép(i), and a
kinematic part, e¥®), as:

&P = gpli) + ‘;:P(k)7
&P — meP,

ePh) = (1 —m)éP. (17)

The standard elastoplastic constitutive relation is ob-
tained by:

6 =CPe, (18)

where C®9 represents the elastoplastic stress-strain
matrix. Given a strain increment, Equation 18 must
be integrated during each time step to find out the
stress increment.

NUMERICAL EXAMPLES

To show the ability of the finite element formulation
suggested in this study, three numerical examples are
presented in this section. These examples are: a
reinforced concrete deep beam, a reinforced concrete
slab and a reinforced concrete shear panel.

Reinforced Concrete Deep Beam

The first problem is a reinforced concrete deep beam.
This problem was solved by Cervera [11]. This deep
beam and its reinforcement are shown in Figure 4;
the beam carries a uniform load on the top. The
compressive and tensile strength of the concrete are
assumed to be 14 MPa and 2.5 MPa, respectively.
The yield stress of reinforcement is 320 MPa and the
modulus of elasticity of bars is 2 x 105 MPa. The finite
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Figure 4. Reinforced concrete deep beam.
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element mesh used in this analysis is shown in Figure 5.
Only one half of the beam is considered in the analysis
due to symmetry. Figure 6 illustrates the plot of the
applied force versus the displacement of the midspan of
the beam. Good agreement between previous analyses
and the current analysis can be seen.

Reinforced Concrete Slab

The second example includes a reinforced concrete
slab, which has been solved by Cervera [11]. The
slab is composed of two reinforcement meshes at the
top and the bottom. A concentrated load is applied
at the centre of the slab, at point A, as depicted in
Figure 7. The compressive and tensile strength of
concrete is taken as 34 MPa and 2.5 MPa, respectively.
The yield stress and Young’s modulus of steel are
assumed to be 670 MPa and 201000 MPa. One
quarter of the slab is considered in analysis due to
symmetry and the slab is divided into four layers, each
including 25 elements. 120 truss elements are used for
modeling the reinforcement at the top and bottom of
the slab. The finite element mesh of the slab is shown

Ny

Z'6voVv
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e e - b

Figure 5. Finite element mesh of deep beam.
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Figure 6. Load-displacement plot of deep beam.
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Figure 7. Reinforced concrete slab.

in Figure 8. The plot of the applied concentrated load
versus the displacement of a node under the applied
load, obtained from nonlinear analysis, is shown in
Figure 9. The results show the ability of the proposed
model for the analysis of reinforced concrete structures.

Shear Panel

Vecchio and Collins [12] studied the behavior of rein-
forced concrete shear panels. They tested 30 panels
with different loadings and ratios of reinforcements.
One of these panels is selected in this paper and is
shown in Figure 10. The reinforcement consists of per-
pendicular bars with a ratio of 0.01785 and the panel
is under shear stresses (Figure 10). The compressive
and tensile strength of concrete are 20.5 MPa and
2.4 MPa, respectively. The Poisson ratio of concrete
is taken as 0.15. The yield stress and Young’s modulus
of reinforcement are 442 MPa and 2 x 10° MPa,
respectively. The finite element mesh for this example
includes 25 brick elements and 80 truss elements as
illustrated in Figure 11. The diagram of the shear
stress versus the shear strain of the specimen is plotted

pd Z <z L 2
Z =z "
P Z Z 1
dv%
4
%
|
¥
%
L
4
|
%
%
/

|| 170 |||140|“105|l|70|| ||35

(all dimensions in mm)

Figure 8. Finite element mesh of slab.
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Figure 11. Finite element mesh of shear panel with
boundary conditions.

in Figure 12. The results show reasonable agreement
between the current analysis and experimental testing.

CONCLUSIONS

A nonlinear three-dimensional analysis of reinforced
concrete structures was presented in this paper. A
recently proposed yield surface, based on quasi-Tresca

M. Nazem, I. Rahmani and M. Rezaee-Pajand
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Figure 12. Shear stress versus shear strain of specimen.

models, was used in the analysis and considerable re-
sults were obtained. The reinforcements were modeled
using simple truss elements. The current formulation
is simple and can be implemented into a finite element
code easily. Eight-node brick elements were used and
their capability in the three-dimensional finite element
analysis was demonstrated. Results indicate that the
quasi-Tresca yield surface proposed by Rezaee-Pajand
and Nazem [2] can be used in the nonlinear analysis of
reinforced concrete structures.
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