Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield Surface

M. Nazem1,*, I. Rahmani2 and M. Rezaee-Pajand3

Abstract. This paper presents a nonlinear analysis of reinforced concrete structures. Various yield surfaces of concrete are reviewed in the beginning and then a recently proposed yield surface for concrete is introduced. The yield surface considers the behavior of concrete in a three-dimensional stress state. Based on the yield surface, a nonlinear finite element formulation is provided to facilitate a three-dimensional analysis of reinforced concrete structures. An eight-node brick element is used in the analysis. Several numerical examples are given to show the ability of the yield surface in solving nonlinear reinforced concrete problems.

Keywords: Finite element method; Yield surface; Nonlinear analysis; Reinforced concrete.

INTRODUCTION

Concrete is a material widely used nowadays in structures such as tall buildings, nuclear power plants and dams. An analysis of such structures is not possible by classical methods and moreover experimental studies are costly. Recent advances in numerical techniques have developed the finite element method by which the concrete structures can be studied. As a matter of fact, there are some limitations within implementing finite element methods for reinforced concrete structures. The main reason for these limitations is the complex behavior of concrete and subsequently its modeling. The complexity is caused by:

1. Nonlinear stress-strain relation of concrete under multi-axial stress conditions;
2. Strain softening and anisotropic stiffness reduction;
3. Progressive cracking caused by tensile stresses and strains;
4. Bond between concrete and reinforcements;
5. Aggregation interlocks and dowel action of reinforcements;
6. Time-dependant behaviors as creep and shrinkage.

Presenting a convenient model that can predict the behavior of concrete in all situations has been an active research subject for a long time and still is. The starting point to a materially nonlinear analysis of a structure is introducing a yield function that can predict the behavior of material under an imposed stress state. Several yield criteria have been suggested for concrete. A brief review of concrete yield surfaces will be presented in the following and a recently proposed yield surface will be represented. The yield surface is used in a finite element formulation to solve some nonlinear problems of reinforced concrete structures.

GENERAL YIELD CRITERIA OF CONCRETE

The strength of concrete under three-axial stress is a function of stress tensor. This strength is dependant on compressive, tensile and shear stress in concrete. The fracture criteria of concrete under a three-dimensional stress state will be studied in this paper. A general definition for fracture must be presented for this purpose. A concrete element is fractured when it reaches the ultimate load bearing capacity and can tolerate no more loads. There are two kinds of fracture for concrete, named ductile and brittle. A brittle fracture is initialized by tensile cracks, and concrete loses its
strength in the normal direction to cracking. This
fracture occurs when concrete is under high tensile
stress. Ductile fracture, on the other hand, starts with
compressive micro-cracking, and concrete loses most
of its strength. Stress carried by concrete reduces
as the strains increase. Several criteria have been
suggested for concrete. These criteria are divided into
different groups based on their assumptions. These
are: one-parameter, two-parameter, three-parameter,
four-parameter and five-parameter groups.

The one-parameter models require only one ma-
terial parameter to define the yield surface of concrete
which can be either the compressive or tensile strength
of the concrete. Rankine and Tresca are such mod-
els. According to Rankine’s criterion, the fracture
in concrete starts when one of the principal stresses
(σ1, σ2 or σ3) reaches the tensile strength (f′ t). This
criterion neglects the effect of shear stresses in concrete.
In Tresca’s yield criterion, fracture occurs when the
maximum shear stress reaches a critical value as K,
being the yield stress of concrete in pure shear. This
parameter can be obtained by a uniaxial test for ductile
materials.

The strength of concrete in tension and compres-
sion is not the same. Therefore, the yield surface of
concrete does not possess three axes of symmetry. In
other words, one-parameter models cannot predict the
behavior of concrete in a general state of stress and
models with more parameters are required. Two well-
known two-parameter models are the Mohr-Coulumb
criterion and the Drucker-Prager criterion. According
to the Mohr-Coulumb criterion, the shear strength
of a material is a function of cohesion and normal
stresses. For concrete, the Mohr-Coulumb criterion
may be expressed in terms of compressive strength
(f′ c) and tensile strength (f′ t) by the following equation:

\[\frac{f_c}{f_t} \sigma_1 - \sigma_2 = f_t, \]

(1)

where σ1 and σ2 are, respectively, the major and minor
principal stresses. The Mohr-Coulumb criterion has
provided good results in the analysis of beams and
slabs where the shear is critical. The corners of a
Mohr-Coulumb criterion usually cause complexity in
the numerical integration of stress-strain relations and
returning the stress state onto the yield surface. Drucker
and Prager overcame this drawback by presenting the
following criterion:

\[f(I_1, J_2) = \alpha I_1 + \sqrt{J_2 - K} = 0, \]

(2)

where I1 is the first invariant of the stress tensor, J2
represents the second invariant of the deviatoric stress
tensor and α and K are material parameters (see [1]
for more details).

The relation between octahedral shear stress
(σoct) and octahedral normal stress (σoct) is linear
in the Drucker-Prager model and the failure surface
represents a circle on the π plane. The experimental
results, however, show that this relation is not linear
and the failure surface is not a circle. Therefore, three-
parameter models have been introduced. William and
Warnke [1] introduced a three-parameter criterion for
the tensile region of concrete with low compressive
stresses. The failure surface on the π plane is an ellipse
in this criterion and the corners of the yield surface are
curvilinear and continuous. Moreover, the yield surface
possesses three axes of symmetry.

The William-Warnke three-parameter criterion
was then modified into a five-parameter one by adding
two degrees of freedom. Doing so, the criterion will
be more effective for the compressive state of stresses.
This criterion is defined by the following equations:

\[\frac{2J_2}{5f_c} = a_0 + a_1 \frac{\sigma_{oct}}{f_c} + a_2 \left(\frac{\sigma_{oct}}{f_c} \right)^2, \text{ (tension)}, \]

\[\frac{2J_2}{5f_c} = b_0 + b_1 \frac{\sigma_{oct}}{f_c} + b_2 \left(\frac{\sigma_{oct}}{f_c} \right)^2, \text{ (compression)}. \]

The unknown parameters, a0, a1, a2, b0, b1 and b2
are obtained from experimental tests. The above
equations intersect on the hydrostatic axis at a known
point, therefore, there are only five-parameters to be
determined.

QUASI-TRESCA YIELD SURFACES

A class of yield surfaces can be found in the literature,
based on the Tresca yield function [2]. The Tresca
yield surface for plane problems can be expressed by
the following equations:

\[F_1 = \sigma_1 - \sigma(k) = 0, \]

\[F_2 = -\sigma_2 - \sigma(k) = 0, \]

\[F_3 = \sigma_1 - \sigma_2 - \sigma(k) = 0, \]

\[F_4 = \sigma_2 - \sigma(k) = 0, \]

\[F_5 = -\sigma_1 - \sigma(k) = 0, \]

\[F_6 = -\sigma_1 + \sigma_2 - \sigma(k) = 0. \]

(5)

The projection of this yield surface on the π plane
represents a hexagon with two axes of symmetry. The
Tresca yield function assumes that the behavior of
the material under tension and compression will
be the same. To overcome this drawback, the first
quasi-Tresca yield surface was proposed by Rezaee-Pajand [3]. Assuming \(a \) to be the ratio between the compressive strength and tensile strength of the material, the following equations can be written for the first quasi-Tresca yield surface:

\[
\begin{align*}
F_1 &= \sigma_1 - \sigma_0 = 0, \\
F_2 &= -\sigma_2 - a\sigma_0 = 0, \\
F_3 &= a\sigma_1 - \sigma_2 - a\sigma_0 = 0, \\
F_4 &= \sigma_2 - \sigma_0 = 0, \\
F_5 &= -\sigma_1 - a\sigma_0 = 0, \\
F_6 &= -\sigma_1 + a\sigma_2 - a\sigma_0 = 0,
\end{align*}
\]

where \(\sigma_0 \) is the yield stress of the material and can be obtained from the uniaxial tensile test. The first quasi-Tresca yield surface is applicable to materials with different compressive and tensile characteristics (Figure 1).

A more generalized form of the first quasi-Tresca yield surface was presented by Weisgerber [4]. Two extra parameters, \(\beta_1 \) and \(\beta_2 \), representing the behavior of material under tension and compression, are used to define the second quasi-Tresca yield surface, as follows:

\[
\begin{align*}
F_1 &= \beta_1\sigma_1 + (1 - \beta_1)\sigma_2 - \beta_1\sigma(k) = 0, \\
F_2 &= (\beta_2 - 1)\sigma_1 - \beta_2\sigma_2 - a\beta_2\sigma(k) = 0, \\
F_3 &= a\sigma_1 - \sigma_2 - a\sigma(k) = 0, \\
F_4 &= (1 - \beta_1)\sigma_1 + \beta_1\sigma_2 - \beta_1\sigma(k) = 0.
\end{align*}
\]

\(F_5 = -\beta_2\sigma_1 + (\beta_2 - 1)\sigma_2 - a\beta_2\sigma_0 = 0, \)

\(F_6 = -\sigma_1 + a\sigma_2 - a\sigma_0 = 0. \)

(7)

Parameters \(\beta_1 \) and \(\beta_2 \) are obtained from experimental tests. Weisgerber used this yield surface with the isotropic hardening rule to solve some plane strain problems of concrete. Almasi [5] analyzed some reinforced concrete problems using a second quasi-Tresca yield surface.

The second quasi-Tresca yield surface was generalized into three-dimensional stress state by Nazem [6]. The proposed yield surface is shown in Figure 2. The parameters in the second quasi-Tresca yield surface are used to define the yield surface. Note that the yield surface is defined in tension and compression regions separately according to the equations below:

Tension sides:

\[
\begin{align*}
T_1 &= a\beta_1\sigma_1 + a(1 - \beta_1)\sigma_2 - \beta_1\sigma_3 - a\beta_1\sigma(k) = 0, \\
T_2 &= a(1 - \beta_1)\sigma_1 - \beta_1\sigma_2 + a\beta_1\sigma_3 - a\beta_1\sigma(k) = 0, \\
T_3 &= a\beta_1\sigma_1 - \beta_1\sigma_2 + a(1 - \beta_1)\sigma_3 - a\beta_1\sigma(k) = 0, \\
T_4 &= a(1 - \beta_1)\sigma_1 + a\beta_1\sigma_2 - \beta_1\sigma_3 - a\beta_1\sigma(k) = 0, \\
T_5 &= -\beta_1\sigma_1 + a(1 - \beta_1)\sigma_2 + a\beta_1\sigma_3 - a\beta_1\sigma(k) = 0, \\
T_6 &= -\beta_1\sigma_1 + a\beta_1\sigma_2 + a(1 - \beta_1)\sigma_3 - a\beta_1\sigma(k) = 0.
\end{align*}
\]

(8)

Compression sides:

\[
\begin{align*}
C_1 &= a\beta_2\sigma_1 - (1 - \beta_2)\sigma_2 - \beta_2\sigma_3 - a\beta_2\sigma(k) = 0, \\
C_2 &= -(1 - \beta_2)\sigma_1 - \beta_2\sigma_2 + a\beta_2\sigma_3 - a\beta_2\sigma(k) = 0, \\
C_3 &= -a\beta_2\sigma_1 - \beta_2\sigma_2 - (1 - \beta_2)\sigma_3 - a\beta_2\sigma(k) = 0,
\end{align*}
\]

Figure 1. First quasi-Tresca yield surface.

Figure 2. Proposed yield surface on \(\pi \) plane.
\[
\begin{align*}
C_4 &= -(1 - \beta_2)\sigma_1 + a\beta_2\sigma_2 - \beta_2\sigma_3 - a\beta_2\sigma(k) = 0, \\
C_5 &= -\beta_2\sigma_1 - (1 - \beta_2)\sigma_2 + a\beta_2\sigma_3 - a\beta_2\sigma(k) = 0, \\
C_6 &= -\beta_2\sigma_1 + a\beta_2\sigma_2 - (1 - \beta_2)\sigma_3 - a\beta_2\sigma(k) = 0.
\end{align*}
\]

The above yield surface was used in the analysis of some three-dimensional problems by Rezaee-Pajand and Nazem [2]. The yield function is specifically suitable for materials showing different behavior under tension and compression as concrete.

ANALYSIS METHOD

In this study, the yield surface introduced by Rezaee-Pajand and Nazem [2] is used in solving reinforced concrete problems. The analysis benefits the incremental theory of plasticity in which a yield surface is initially defined and then a hardening rule is introduced. A flow rule is also required that determines the direction of plastic strains. An associative flow rule is used here, which assumes the yield function and plastic potential to be the same. The analysis performed is three-dimensional using eight-node brick elements representing the concrete and truss elements for reinforcement.

A program, based on object-oriented methodology using C++ language, was developed to analyze the nonlinear reinforced concrete problems. The time-stepping algorithm is based on the modified Newton-Raphson method in which the global system of equations is solved only once at each increment. The nonlinear finite element equation to be solved is [7]:

\[
[K']\{U\} = \{R^{t+\Delta t}\} - \{F\},
\]

in which \(K \) is the stiffness matrix; \(R \) represents the vector of external nodal forces; \(F \) is the vector of internal nodal forces; \(U \) denotes the displacement vector; and \(t \) specifies the time.

Eight-Node Brick Element

Choosing an element type is a very important issue in the finite element method. The time spent for setting up the stiffness matrix can be reduced if the stiffness matrix of each individual element is calculated explicitly. Precision, on the other hand, is important to reduce the error of analysis. In the finite element study performed here, an eight-node brick element is used that has six perpendicular sides and which is shown in Figure 3. Selby [8] has shown that this type of element can provide good results in the analysis of concrete structures. Axes of Cartesian coordinates are parallel to element sides and, for simplicity, the origin is chosen at the centre of the element. This element includes eight nodes with three displacement degrees of freedom at each node.

Modeling of the Reinforcement

To model the reinforcing bars, truss elements are used in this study which consist of two nodes with three translational degrees of freedom at each node. In this model, the compatibility of displacements between the bars and the concrete is satisfied at nodal points. Where required, the truss elements are added between nodal points on the concrete elements, being embedded with the finite element mesh to represent the reinforcing bars. This kind of modeling is widely used by researchers, as it provides a bond between the reinforcement and the concrete at nodes and does not permit any slip between the two materials [9]. The only shortcoming of the model, which usually occurs in complicated reinforced structures, is that the truss elements have to pass through concrete elements. However, for problems solved in this study, this drawback is not necessarily considered as an issue.

The stress-strain relation of steel is defined by the following equations:

\[
\begin{align*}
\sigma_s &= E_s\varepsilon_s, \quad 0 \leq \varepsilon_s \leq \varepsilon_y, \\
\sigma_s &= f_y, \quad \varepsilon_y \leq \varepsilon_s \leq \varepsilon_h, \\
\sigma_s &= f_y + \frac{f_h - f_y}{\varepsilon_u - \varepsilon_h}(\varepsilon_s - \varepsilon_h), \quad \varepsilon_h \leq \varepsilon_s \leq \varepsilon_u.
\end{align*}
\]

in which \(f_s \) and \(\varepsilon_s \) are, respectively, the axial stress and the strain in steel bars; \(f_y \) and \(\varepsilon_y \) denote the yield stress and yield strain of steel; \(\varepsilon_h \) depicts the strain beyond which the strain-hardening of steel begins in a one-dimensional tension test; and \(f_h \) and \(\varepsilon_u \) represent, respectively, the ultimate stress and the ultimate strain that can be reached by a steel bar. The three equations in Equations 11 define three regions in a
one-dimensional stress-strain space: an elastic region, a perfectly plastic region and a strain-hardening region, respectively. Such a trilinear function is very popular in the analysis of reinforced concrete structures by the finite element method [10].

Incremental Theory of Plasticity

According to the theory of plasticity, the constitutive equations governing the elastoplastic behavior of a material are usually derived based upon the following assumptions:

- The incremental strain tensor, $\dot{\varepsilon}$, can be decomposed into an elastic part, ε^e, and a plastic part, ε^p. Note that a superimposed dot represents the time derivative of a variable.

$$\dot{\varepsilon} = \varepsilon^e + \varepsilon^p.$$ \hspace{1cm} (12)

- The elastic domain is described by a yield surface of the form $f(\sigma, \kappa) = 0$ where σ is the Cauchy stress tensor and κ represents a set of hardening parameters.

- Once plastic yielding occurs, the consistency condition requires that the state must remain on the yield surface as the plastic deformation occurs, such as:

$$\dot{f} = \frac{\partial f}{\partial \sigma} \dot{\sigma} + \frac{\partial f}{\partial \kappa} \dot{\kappa} = 0.$$ \hspace{1cm} (13)

- The direction of plastic strains is normal to a surface called the plastic potential, g. This rule is known as the associated flow for $f = g$ and non-associated flow for $f \neq g$, and is expressed as:

$$\varepsilon^p = \lambda \frac{\partial g}{\partial \sigma}$$ \hspace{1cm} (14)

where λ is a positive scalar called the plastic multiplier.

- With the decomposition of the strains, the stress rate can be expressed by:

$$\dot{\sigma} = C^e \dot{\varepsilon}^e,$$ \hspace{1cm} (15)

where C^e represents the elastic stress-strain matrix.

- According to a mixed hardening rule which is a combination of isotropic hardening and kinematic hardening, the rate of transition of the yield surface in stress space, $\dot{\alpha}$, is defined by:

$$\dot{\alpha} = H(1 - m)\dot{\varepsilon}^p,$$ \hspace{1cm} (16)

where H is a constant and m represents the contribution of each of the isotropic and kinematic hardening rules into the mixed hardening rule. Note that, if $m = 1$, the hardening rule will be isotropic and for $m = 0$ a kinematic hardening rule will be obtained. The plastic strain rate can now be decomposed into an isotropic part, $\dot{\varepsilon}^p(i)$, and a kinematic part, $\dot{\varepsilon}^p(k)$, as:

$$\dot{\varepsilon}^p = \dot{\varepsilon}^p(i) + \dot{\varepsilon}^p(k),$$

$$\dot{\varepsilon}^p(i) = m\dot{\varepsilon}^p,$$

$$\dot{\varepsilon}^p(k) = (1 - m)\dot{\varepsilon}^p.$$ \hspace{1cm} (17)

The standard elastoplastic constitutive relation is obtained by:

$$\dot{\sigma} = C^p \dot{\varepsilon},$$ \hspace{1cm} (18)

where C^p represents the elastoplastic stress-strain matrix. Given a strain increment, Equation 18 must be integrated during each time step to find out the stress increment.

NUMERICAL EXAMPLES

To show the ability of the finite element formulation suggested in this study, three numerical examples are presented in this section. These examples are: a reinforced concrete deep beam, a reinforced concrete slab and a reinforced concrete shear panel.

Reinforced Concrete Deep Beam

The first problem is a reinforced concrete deep beam. This problem was solved by Cervera [11]. This deep beam and its reinforcement are shown in Figure 4; the beam carries a uniform load on the top. The compressive and tensile stress of the concrete are assumed to be 14 MPa and 2.5 MPa, respectively. The yield stress of reinforcement is 320 MPa and the modulus of elasticity of bars is 2×10^5 MPa. The finite

![Figure 4. Reinforced concrete deep beam.](image-url)
element mesh used in this analysis is shown in Figure 5. Only one half of the beam is considered in the analysis due to symmetry. Figure 6 illustrates the plot of the applied force versus the displacement of the midspan of the beam. Good agreement between previous analyses and the current analysis can be seen.

Reinforced Concrete Slab

The second example includes a reinforced concrete slab, which has been solved by Cervera [11]. The slab is composed of two reinforcement meshes at the top and the bottom. A concentrated load is applied at the centre of the slab, at point A, as depicted in Figure 7. The compressive and tensile strength of concrete is taken as 34 MPa and 2.5 MPa, respectively. The yield stress and Young’s modulus of steel are assumed to be 670 MPa and 201000 MPa. One quarter of the slab is considered in analysis due to symmetry and the slab is divided into four layers, each including 25 elements. 120 truss elements are used for modeling the reinforcement at the top and bottom of the slab. The finite element mesh of the slab is shown in Figure 8. The plot of the applied concentrated load versus the displacement of a node under the applied load, obtained from nonlinear analysis, is shown in Figure 9. The results show the ability of the proposed model for the analysis of reinforced concrete structures.

Shear Panel

Vecchio and Collins [12] studied the behavior of reinforced concrete shear panels. They tested 30 panels with different loadings and ratios of reinforcements. One of these panels is selected in this paper and is shown in Figure 10. The reinforcement consists of perpendicular bars with a ratio of 0.01785 and the panel is under shear stresses (Figure 10). The compressive and tensile strength of concrete are 20.5 MPa and 2.4 MPa, respectively. The Poisson ratio of concrete is taken as 0.15. The yield stress and Young’s modulus of reinforcement are 442 MPa and 2×10^6 MPa, respectively. The finite element mesh for this example includes 25 brick elements and 80 truss elements as illustrated in Figure 11. The diagram of the shear stress versus the shear strain of the specimen is plotted.
models, was used in the analysis and considerable results were obtained. The reinforcements were modeled using simple truss elements. The current formulation is simple and can be implemented into a finite element code easily. Eight-node brick elements were used and their capability in the three-dimensional finite element analysis was demonstrated. Results indicate that the quasi-Tresca yield surface proposed by Rezaee-Pajand and Nazem [2] can be used in the nonlinear analysis of reinforced concrete structures.

REFERENCES

CONCLUSIONS

A nonlinear three-dimensional analysis of reinforced concrete structures was presented in this paper. A recently proposed yield surface, based on quasi-Tresca
