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Response of Pure-Friction Sliding
Structures to Three Components of
Earthquake Excitation Considering

Variations in the Coe�cient of Friction

F. Khoshnoudian1;� and V. Rezai Hagdoust1

Abstract. In the present study, the in
uence of the coe�cient of friction on the seismic response
of sliding base isolated structures is investigated. The building is modeled as a simpli�ed single-story
structure resting on a group of sliding supports. The frictional forces mobilized at the sliding supports
are assumed to have a hysteretic plasticity behavior. Bilateral interaction between the sti�ness of the
two horizontal orthogonal directions of the isolators has been taken into consideration. The results show
that the variations of the coe�cient of friction in
uence the response of a sliding base isolated building.
E�ects of vertical excitation on the normal and frictional forces are considered too. The in
uence of
the bi-directional interaction of frictional forces and vertical excitation on the response is investigated by
comparing the response of the system to mono-directional (excluding vertical component and no interaction
between the two horizontal orthogonal directions), bi-directional (excluding vertical component) and tri-
directional earthquake excitations. It is demonstrated that the response of the sliding isolated structures
is in
uenced signi�cantly by the bi-directional interaction of frictional forces and by incorporation of the
vertical component. Further, the base shear response may be underestimated if the e�ects of the vertical
component are neglected and the sliding structures are designed merely on the basis of single-component
or two-component excitation.

Keywords: Frictional base isolated structure; Three-component earthquake; Velocity-pressure dependent
friction coe�cient; Bi-directional interaction; Vertical component.

INTRODUCTION

Earthquakes have a large potential for disastrous con-
sequences. Apart from the loss of life, they can cause
great economic loss through structural damage. The
conventional design approach of structures in regions
where seismicity is insigni�cant, aims at the design
of structural members in such a way that they can
withstand all static and dynamic loads elastically.
However, in regions where seismic excitation should
be taken into account, this design approach might
lead to economically unacceptable design solutions,
because structural members might become too large.
To prevent this, two alternative design concepts can
be employed. In the �rst alternative design concept,
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plastic deformation is allowed in special parts of the
structure. This strategy is often referred to as the
capacity design method. However, plastic deformation
still results in damage to the structure and, possibly,
its contents. In the second alternative design approach,
mechanical devices are added to the conventional su-
perstructure to enhance its seismic response.

In this study, one special type of passive system
is considered, namely friction-based base isolation sys-
tems. These systems consist of mechanical devices with
friction elements that are placed underneath the super-
structure to decouple it from the potentially hazardous
surrounding ground motion. A signi�cant amount of
recent research on base isolation has focused on the
use of these elements to concentrate the 
exibility
of the structural system and to add damping to the
isolated structure. The most attractive feature of the
frictional base-isolated system is its e�ectiveness for a
wide range of frequency inputs. The other advantage
of a frictional type system is that it ensures the maxi-
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mum acceleration transmissibility equal to maximum
limiting frictional force. Although it is well-known
that these base isolation systems may exhibit (highly)
nonlinear behavior, they are often modeled linearly, in
engineering practices, as prescribed in recent building
codes.

So far, some studies have been performed on
the friction characteristics of sliding bearings with
Steel-PTFE interfaces. All these experimental obser-
vations [1-4] pointed out that the friction coe�cient
increases more than linearly while increasing sliding
velocity, and it decreases with the increase of contact
pressure. Temperature and the number of sliding
reversals also play a negligible role [5].

Many numerical analyses of the seismic response
of structures equipped with sliding isolation systems
have been performed [6-9]. In all these studies, as well
as in the current design practice, it is assumed that the
friction coe�cient complies with the Coulomb friction
law (i.e. the coe�cient of friction remains constant dur-
ing sliding and friction forces are zero. Furthermore,
in almost all these studies, the e�ects of the vertical
component of an earthquake and, in a majority of these
studies, the e�ects of bilateral interaction are neglected
and the structure is analyzed with only one horizontal
earthquake or harmonic component.

A sliding system with oscillating SDOF super-
structures subjected to a harmonic support motion has
been studied by Mostaghel et al. [10] and Westermo
and Udwadia [11]. Mostaghel and Tanbakuchi [6] also
studied a similar sliding system, using a semi-analytical
solution procedure to compute the response of the
system under earthquake ground motions.

The necessity of considering the vertical compo-
nent of an earthquake in the design of buildings with a
sliding support is pronounced by Liaw et al. [12] during
a two-dimensional study. They considered a constant
friction coe�cient and stated that the frictional stress
is a function of the vertical reaction which is produced
by the supporting element on the foundation mat.
Hence, both vertical and frictional forces vary when
there is vertical motion on the sliding system. As
an example, they used the El Centro earthquake
records on a two-dimensional structural model to verify
the e�ect of the vertical component on the lateral
response of the system. Lin and Tadjbakhsh [13] also
evaluated the e�ect of vertical ground motion on the
horizontal response of a two-dimensional P-F system.
They indicated that the e�ect of vertical motion is
only signi�cant in the cases of harmonically excited
foundations. Evaluation of the e�ect of the vertical
component of ground excitation on the response of
the resilient friction base isolator (R-FBI) system is
studied by Mostaghel and Khodaverdian [14]. They
demonstrated that, in the case of the El Centro 1940
earthquake, the contribution of the vertical excitation

to the horizontal response quantities was generally less
than 1%. However, as they had used a two-dimensional
system, they could not incorporate the e�ect of inter-
action between the stresses in the principal directions.

The interaction between the orthogonal compo-
nents of the frictional forces mobilized at the sliding
interface is investigated experimentally by Mokha et
al. [15]. Jangid [8] also studied the response of a struc-
ture with sliding support to bi-directional (i.e. two-
horizontal components) earthquake ground motion.
He incorporated the coupling e�ects due to circular
interaction between the frictional forces and stated that
the design sliding displacement may be underestimated
if the bi-directional interaction of frictional forces is
neglected.

Vafai et al. [16] investigated the numerical mod-
eling of MDOF structures with sliding supports using
a rigid-plastic link. Shakib and Fuladgar [13] studied
the e�ects of a three-component earthquake on the re-
sponses of a pure-friction system. They supposed that
the sliding base had Coulomb friction characteristics
(it was supposed that the sliding base had an almost
in�nity initial sti�ness and a zero post-yield sti�ness).
The friction force was either zero or its maximum
value. The coe�cient of friction was assumed to be
constant in all cases. The absolute acceleration and
base displacement responses were investigated. They
stated that the maximum absolute acceleration of the
low period superstructures (Ts < 0.7 sec) may be
underestimated if the three-component earthquake is
not considered. However, in moderate and high period
superstructures, no signi�cant di�erence was seen in
the maximum absolute acceleration and the maximum
base displacement of the sliding system for two and
three components of earthquake excitations.

Takahashi et al. [17] and Iemura et al. [18]
performed a set of shaking table tests to study the
e�ects of rocking motion and the vertical component
of an earthquake on the seismic responses of a two-
dimensional (one horizontal and one vertical direction)
base isolated rigid deck with a Resilient Sliding Isola-
tion (RSI) system. The isolation system consisted of
a number of sliding supports and rubber bu�ers which
were arranged parallel to each other. They stated that
the rocking motion contributes to the hysteretic loops
of each sliding support, but its e�ect nulli�es when
considering total responses. It was also observed that
vertical acceleration a�ects the maximum normal and
friction forces of the isolation system, but its a�ect is
negligible on the maximum base displacement.

In the present paper, the response of sliding
structures is studied under three components of earth-
quake excitation. The e�ects of interaction between
the sti�ness of two orthogonal directions and verti-
cal acceleration on the seismic responses of sliding
base isolated structures are investigated. The iso-
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lation system is modeled considering non-Coulomb
(hysteretic plasticity) behavior, which is observed in
experiments on sliding supports, and makes it possible
to introduce phenomenon like stick-slip. Based on
recent experiments on the frictional characteristics of
sliding bearings, a new formula is proposed which
accounts for the e�ects of sliding velocity and contact
pressure on the friction of these bearings. Using this
formula, a program for the investigation of sliding
isolated structures was developed. The response of the
structure in the case of a constant friction coe�cient
and velocity-dependent friction coe�cient is compared
with the response when the friction coe�cient is a
function of sliding velocity and contact pressure in
order to evaluate the accuracy of the �rst two cases.

The new contributions of the present investigation
are:

1. Variation of friction coe�cient in functions of ve-
locity and pressure simultaneously;

2. Study of wide range of parameters on the seismic
behavior of isolated structures considering variation
of V and P ;

3. Developing a new program for considering variation
of friction in function of velocity and pressure
simultaneously.

FORMULATION

Consider an elastic one-storey structure with a group
of sliding bearings between the base mass and the
foundation as shown in Figure 1. This model of a
sliding structure has been widely studied under uni-
lateral [10,11,19] support motions and with a constant
friction coe�cient.

The force-displacement relations of the utilized
sliding element is described as:

fsz1 =

(
kz1uz1 , vz1 < 0
0, vz1 � 0

(1)

Figure 1. (a) Physical model; (b) Driven mathematical
model.

fsx1 = jfsz1�jzx; (2)

fsy1 = jfsz1�jzy; (3)

in which fsz1 is the normal force; fsx1 and fsy1 are
the frictional forces of the sliding element in x and
y directions, respectively; uz1 is the displacement of
the base mass in the z direction; kz1 is the sti�ness of
the sliding element in the z direction; � is the friction
coe�cient of the sliding interface; and zx and zy are
dimensionless internal hysteretic variables which can
be calculated by the following di�erential equations:

Y _zx + 
j _ux1zxjzx + � _ux1z
2
x + 
j _ux1zyjzx+

� _uy1zxzy �A _ux1 = 0; (4)

Y _zy + 
j _uy1zyjzy + � _uy1z
2
y + 
j _uy1zxjzy+

� _ux1zyzx �A _uy1 = 0: (5)

_ux1 and _uy1 are velocities of the base mass in the x and
y directions, Y represents the elastic deformation of the
frictional element prior to the initiation of sliding, and
A, � and 
 are dimensionless constants, which must
satisfy the condition A=(� + 
) = 1. Constantinou et
al. [20] suggested the use of A = 1, � = 0:1, 
 = 0:9,
and Y = 0:25 mm or less. These values are used in
this study too. The relation between the coe�cient of
friction and the sliding velocity can be expressed by the
following equation [15]:

� = �max � (�max � �min)e��j _uj; (6)

where �max and �min are the maximum and minimum
coe�cients of friction in the same order measured on
a particular interface under given con�ning pressure; �
is a parameter that controls the intensity of change in
the friction coe�cient from �min to �max; and _u is the
resultant sliding velocity:

_u =
q

_u2
x1

+ _u2
y1
: (7)

This coe�cient has a minimum value, �min, at zero
velocity and a maximum value, �max, at a very high
velocity of sliding. In the present study, the following
regressions were obtained, based on the experimental
results of Dolce et al. 2005 [4], to describe the vari-
ations of the coe�cient of friction with the con�ning
pressure:

�max = c1 � (c1 � c2)e��1jpj; (8)

�min = c3 � (c3 � c4)e��2jpj; (9)

� = �1 + �2jpj; (10)
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where c1 and c2 are the minimum and maximum values
of �max, respectively; c3 and c4 are the minimum
and maximum values of �max, respectively; �1 is a
parameter that controls the intensity of change in the
�max from c1 to c2; and �2 is a parameter that controls
the intensity of change in the �min from c3 to c4. �1 and
�2 determine � and, therefore, govern the intensity of
change in the friction coe�cient and p is the con�ning
interfacial pressure in MPa. Parameters utilized in
Equations 8 to 10 were calculated by a regression
analysis as given in Table 1. So, the coe�cient of
friction can be calculated by substituting Equations 8
to 10 into Equation 6. The governing equations are:

M �u+ C _u+Ku = P: (11)

M;C;K: Mass, damping and sti�ness matrices, respec-
tively.
u; _u; �u: Displacement, velocity and acceleration, re-
lated to degree of freedom.�

[M1] 0
0 [M2]

�
: (12)

[Mi]: Mass matrix of ith 
oor, which is equal to:

[Mi] =

24mi 0 0
0 mi 0
0 0 mi

35 : (13)

K: Sti�ness matrix

K =
�
k1 �k1�k1 k1 + k2

�
: (14)

ki: Sti�ness matrix of 
oor

[ki] =

24kxi 0 0
0 kyi 0
0 0 kzi

35 :
C: Damping matrix, which could be obtained from the
following equation:

C = M
X

a[M�1K]b: (15)

P : Force matrix
The previous equation is solved using a constant

average acceleration method.

MODEL VERIFICATION

In order to provide validation of the developed pro-
gram, the comparison of numerical and experimen-
tal results on sliding bearings under simultaneous
compression and high velocity bi-directional motion
is presented in this section. Circular, elliptical and
8-shaped motions (Figure 2) were imposed. Force-
displacement loops are considered and the numerical
results of the computer program are compared with the
experimental results of Mokha et al. [15]. In Table 2
the conditions considered in the experimental tests are
listed.

Force-displacement loops of imposed circular mo-
tion which are obtained from the developed program
and experimental results are shown in Figure 3. It is
demonstrated that there is good agreement between
the results obtained from the developed program and
experimental tests.

Table 1. Calculated constants of friction coe�cient.

c1 c2 c3 c4 �1 �2 �1 �2

(MPa�1) (MPa�1) (sec/mm) (MPa�1.sec/mm)

8.43e-2 3.17e-1 9.02e-3 1.02e-1 9.06e-2 5.09e-2 1.60e-2 2.14e-4

Table 2. Experimental program conditions.

x-Direction Motion y-Direction Motion
Test Motion Load Pressure Maximum Maximum Frequency Maximum Maximum Frequency

(KN) (MPa) Displacement Velocity (rad/s) Displacement Velocity (rad/s)
(mm) (mm/s) (mm) (mm/s)

1 Circular 2 � 45.4 3.58 45.5 22.9 0.5 43.7 21.8 0.50

2 Elliptical 2 � 44.7 3.52 45.5 22.9 0.5 28.9 14.5 0.50

3 8-shaped 2 � 45.8 3.61 45.5 22.9 0.5 43.9 43.9 1.00

4 Circular 2 � 45.8 3.62 45.5 100.8 2.22 43.4 96.5 2.22

5 Elliptical 2 � 46.5 3.67 45.5 100.8 2.22 29.2 64.5 2.22

6 8-shaped 2 � 48.0 3.79 45.2 100.3 2.22 43.9 195.1 4.44



E�ect of Friction Coe�cient on Isolated Structure 433

Figure 2. Recorded motion in bi-directional circular,
elliptical and 8-shaped tests.

Figure 4 illustrates force-displacement loops of
imposed elliptical motion. This �gure is di�erent
from the previous �gure only by the amplitude of
displacement in the y-direction. The results validate
the developed program too.

Figure 5 shows force-displacement loops of an
imposed 8-shaped motion from the developed program
and experimental results. There is a good agreement
between results obtained from the two methods.

The developed program has also been controlled
with the experimental results of Dolce et al. [4].

NUMERICAL STUDY

The response of isolated structures are the struc-
tural shears (Rsx = fsx2 , Rsy = fsy2 and Rs =q
R2
sx +R2

sy) and the base shears or friction forces

(Rbx = fsx1 , Rby = fsy1 and Rb =
q
R2
bx +R2

by),
which are important in the design of superstructure
and the components which are connected to the iso-
lation system, respectively, and the relative sliding
displacements of the base mass (ux1 , uy1 and u =q
u2
x1

+ u2
y1

). The latter is displacement between the
isolated structure and the ground, which is crucial in
the design of sliding systems.

As known, an important duty of a base isolation
system is the dissipation of energy exerted on a struc-
ture due to an earthquake. So, another parameter on
hand is the energy dissipated by the sliding bearings.
But, the magnitude of dissipated energy alone cannot
show the e�ciency of an isolation system. The ratio of
the total dissipated energy to the input energy shows
the percentage of energy absorbed by the isolation
system and energy transmitted through isolators to the
structure; thus, giving a more realistic index to show
the e�ciency or capacity of di�erent isolation systems
in controlling structural damage.

In the present study, the natural period of the
superstructure as a �xed base is considered to be equal
in the x- and y-directions (i.e. Ts = 2�

p
m2=kx2 =

2�
p
m2=ky2 where kx2 and ky2 are sti�ness of su-

perstructure in x and y directions, respectively; the
ratio of the natural period of the superstructure in
a z-direction to x- or y-directions is selected as 0.2
(2�
p
m2=kz2 = 0:2 Ts). The damping ratio of the

structure is taken as 5% of the critical, and the mass
ratio, m1=m2, is assumed to be unity. In the sliding
surface, the normal sti�ness of the sliding element is
taken as kz1 = 3:5 � 109 N/m. It is assumed that
the building has nine sliding bearings with a radius of
50 mm.

Three cases of friction coe�cient are assumed. In
the �rst case, the coe�cient of friction is constant,
in another case, it is a function of velocity and in
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Figure 3. Loops of frictional force and displacement in circular motion case from the developed computer program (right)
and from tests (left).

Figure 4. Loops of frictional force and displacement in elliptical motion case from the developed computer program
(right) and from tests (left).
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Figure 5. Loops of frictional force and displacement in 8-shaped motion case from the developed computer program
(right) and from tests (left).

the last case, it is a function of velocity and pres-
sure. In the cases when the coe�cient of friction is
constant or is velocity-dependent, it is assumed that
the pressure is due to the structural weight. Moreover,
for the �rst case, in order to gain a constant friction
coe�cient, a zero sliding velocity is substituted in
Equation 6.

Also, three combinations of earthquake compo-
nents are considered; the response of the system with
and without vertical components is referred to as
the response to three-component and two-component
earthquakes, respectively. The response of the system
is also obtained for two orthogonal directions (i.e. x-
and y-directions) acting independently in each direc-
tion. In this case, there is not any interaction between
the frictional forces in the two orthogonal directions
and this condition can be referred to as a single-
component earthquake.

Three earthquake records are considered and ap-
plied to the sliding structure. The El Centro 1940
earthquake is chosen, as it has been used widely in
previous investigations of pure-friction base-isolated
structures. The Tabas 1978 and Northridge 1994
earthquakes are selected as they have a strong vertical
component.

EFFECTS OF FRICTION COEFFICIENT

Maximum Structural Shear

Figure 6 shows the maximum structural shear versus
the period of the superstructure under Northridge
earthquakes. The �gure clearly indicates that the slid-
ing support is quite e�ective in reducing the seismic lat-
eral response of the superstructure subjected to three
components of earthquake excitations, simultaneously.
Further, the maximum structural shear of the system
with a sliding base is less sensitive to the period of the
superstructure in comparison with a �xed base system.
It also indicates that the maximum structural shear
is less for the case of a constant friction coe�cient in
comparison with a case when the friction coe�cient is
a function of the sliding velocity and contact pressure.
The maximum structural shear in a velocity dependent
friction coe�cient case, in the majority of periods, is
more than in a case when the friction coe�cient is a
function of the sliding velocity and contact pressure.
The maximum di�erence between these two cases is
about 45% under Northridge and Tabas earthquakes
and occurs in periods near zero. Note that Ts = 0 is a
case of a rigid structure with a sliding interface.
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Figure 6. Maximum structural shear versus period of
superstructure for di�erent coe�cient of friction.

Maximum Base Displacement

Figure 7 illustrates the variation of the maximum
base displacement of the sliding system against the
structural period for constant velocity dependent and
velocity-pressure dependent friction coe�cient cases.
The �gure demonstrates that the maximum base dis-
placement is signi�cantly higher for a constant friction
coe�cient case, in comparison with a velocity-pressure
dependent friction coe�cient case. The maximum base
displacement of a velocity dependent friction coe�cient
case, in the majority of periods of a superstructure,
is less, in comparison with a case when the friction
coe�cient is a function of sliding velocity and contact
pressure. However, the di�erence between these two
cases is slight (the di�erence is 16%).

Figure 7. Maximum base displacement versus period of
superstructure for di�erent coe�cient of friction.

Maximum Base Shear

Figure 8 shows the maximum base shear versus the pe-
riod of the superstructure under di�erent earthquakes.
The constant friction coe�cient case has the least value
of base shear. It is due to the fact that, in this
case, a zero sliding velocity is used to �nd the friction
coe�cient and we know that less sliding velocity results
in less friction coe�cient. So, it is anticipated that, if
a much greater value of sliding velocity was used to
�nd the friction coe�cient, it would lead to a base
shear which would be the greatest. This trading-o�
phenomenon is commonly observed in other vibration
control systems. The velocity dependent friction coef-
�cient case has the greatest maximum base shear. The
maximum base shear in a velocity-pressure dependent
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Figure 8. Maximum base shear versus period of
superstructure for di�erent coe�cient of friction.

friction coe�cient case is in between. The base shear
(friction force) is equal to a normal force multiplied by
the coe�cient of friction.

So, it is expected that the maximum value occurs
when the normal force is maximum. At this time,
because the normal force is maximum, the contact
pressure is maximum and, as known, the greater the
contact pressure, the less the friction coe�cient. On
the other hand, the velocity dependent friction coe�-
cient is independent of pressure. So, at the immediate
vicinity of the time when the base shear has its maxi-
mum value, the velocity dependent friction coe�cient is
greater than the velocity-pressure dependent coe�cient
of friction, but the normal forces of these two cases are
almost the same. It is the reason why the maximum
base shear of the velocity dependent friction coe�cient
case is greater.

Total Dissipated Energy

Figure 9 shows the ratio of the total dissipated energy
to the input energy, versus the period of superstructure
under earthquakes. It can be seen that, for all cases
with an increase in the period of superstructure, this
ratio decreases. It demonstrates that, by increasing
the period of the superstructure, the e�ciency of the
isolation system decreases. For a rigid superstructure,
this ratio is almost equal to one. In other words,
for a rigid superstructure, the input energy is totally
dissipated by the isolation system. In this case, the
system coincides with a system with a concentrated
mass resting on a frictional interface, and we know that,
if someone pulls such a mass, almost all exerted energy
will dissipate due to the e�ect of friction.

The ratio of the total dissipated energy to the

Figure 9. Ratio of the total dissipated energy to the
input energy versus period of superstructure for di�erent
coe�cient of friction.
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input energy for the constant friction coe�cient case
is the greatest at all periods of superstructure and for
all earthquake excitations, which shows that this case
overestimates the energy dissipated by the isolation
system. This ratio is almost the same for velocity
dependent and velocity-pressure dependent friction
coe�cient cases.

EFFECTS OF VERTICAL COMPONENT OF
EARTHQUAKE AND BILATERAL
INTERACTION

Maximum Structural Shear

Figure 10 shows the maximum structural shear
force versus the period of the superstructure under
Northridge, Tabas and El Centro earthquakes. The

Figure 10. Maximum structural shear versus period of
superstructure considering single-, two- and
three-components of earthquake.

�gure clearly indicates that the sliding support is quite
e�ective in reducing the seismic lateral response of
the superstructure subjected to three components of
the earthquake excitations. In addition, for high-rise
buildings, sliding isolation systems are less e�ective in
decreasing the maximum structural shear. Further, the
maximum structural shear force of the system with a
sliding base in comparison with a �xed base system, is
less sensitive to the period of the superstructure.

It also indicates that the maximum structural
shear force is higher for the case of a single component
excitation, in comparison with cases of two-component
and three-component excitations. This is due to the
fact that, in the case of a single component earthquake,
there is no interaction between the lateral sti�ness
of the two orthogonal directions of the isolator. So,
this system is laterally sti�er than the two other
cases and thus has the greatest maximum structural
shear. The maximum di�erence between this case and
the two other cases is 50 percent. The maximum
structural shear force for the case of two-component
excitations is greater or less than three-component
excitations, depending on the natural period of the
superstructure. Their maximum di�erence is about
25% under Northridge and Tabas earthquakes.

Maximum Base Displacement

Figure 11 illustrates the variation of the maximum
base displacement of the sliding system against the
structural period for single-, two- and three-component
earthquake excitations. This �gure demonstrates that
the maximum base displacement is lower for the case
of a single-component excitation in comparison with
the other two cases. The maximum base displacement
of two-component excitation may be greater or less
than three-component excitations depending on the
period of the superstructure and the input motion. The
di�erence between these two cases is negligible 8%.

Maximum Base Shear

Figure 12 shows the variations of the maximum base
shear (friction force) against the period of super-
structure under Northridge, Tabas and El Centro
earthquakes. For the single- and two-components of
Northridge and Tabas earthquake excitations, the max-
imum base shear remains nearly constant in di�erent
natural periods, but they vary under the El Centro
earthquake. Under Northridge and Tabas earthquakes,
the base shear response of a single-component earth-
quake may be greater or less than the response in
the case of a three-component earthquake excitation,
but under the El Centro earthquake, the response
of a single-component earthquake excitation is always
greater. The variation of the base shear response is
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Figure 11. Maximum base displacement versus period of
superstructure considering single-, two- and
three-components of earthquake.

almost the same for all three cases under the El Centro
earthquake.

The response of the two-component earthquake
excitation is the least. It is due to the fact that,
in this case, the interaction between the sti�ness of
the two orthogonal directions of the sliding plane was
considered. So, in the �rst case, the system has a
laterally more 
exible sliding element and, therefore, its
base shear would be greater. The base shear (friction
force) is equal to the normal force multiplied by the
coe�cient of friction. In both cases of two- and three-
component earthquake excitations, the interaction be-
tween the sti�ness of the two-orthogonal directions
is considered, hence, they are not di�erent in this
aspect. But, on the other hand, the maximum normal
force of the isolated structure under three-component
earthquake excitation is greater and the maximum base

Figure 12. Maximum base shear versus period of
superstructure considering single-, two- and
three-components of earthquake.

shear (friction force) occurs in the neighborhood of the
time when the maximum normal force response occurs.
So, the base shear response of this case would be
greater than in the case of a two-component earthquake
excitation.

It is mentioned that the base shear of a single-
component earthquake excitation may be greater or
less than that of three-component earthquake excita-
tions under Northridge and Tabas earthquakes, but
under the El Centro earthquake, the response of
a single-component earthquake excitation is always
greater. The di�erence between these two cases is that
the latter has a greater maximum normal force at the
base and because the maximum base shear occurs in
the immediate vicinity of the time when the maximum
normal force occurs. This increases the base shear
response in the case of a three-component earthquake



440 F. Khoshnoudian and V. Rezai Hagdoust

excitation, but on the other hand, in the case of a three-
component earthquake excitation, there is interaction
between the sti�ness of the two-horizontal-orthogonal
directions, which in turn decreases the base shear
response of this case.

The combination of these two phenomena, in some
periods, causes the base shear of a single component
earthquake to be greater and, in some periods, to be
less for a strong ground motion, such as Northridge
and Tabas earthquakes. But, the base shear of a single
component earthquake is always greater under the El
Centro earthquake. It shows that, for an earthquake
with a medium PGA, the di�erence between the max-
imum normal forces of these two cases is not so much
and, in this case, the interaction factor has the upper
hand.

Also, it was mentioned that the base shear (fric-
tion force) is equal to the normal force multiplied by
the coe�cient of friction. For the single-component and
two-component systems, the normal force never varies
and is always equal to the weight of the system. The
contact pressure is constant too, because the normal
force is constant. So, the coe�cient of friction is only
a function of the sliding velocity for these two cases.
We know that, as the sliding velocity increases, the
friction coe�cient increases too, although, after a large
sliding velocity (e.g. 0.5 m/s), this increase is negligible
and the coe�cient of friction remains almost constant.
During the occurrence of a strong earthquake, such
as Northridge and Tabas earthquakes, the maximum
sliding velocity would be high at all periods. So, the
maximum friction coe�cient would be almost constant
at all periods and, therefore, the base shear would be
constant. But, for a medium earthquake, like the El
Centro earthquake, the maximum sliding velocity is at
no time high enough to set the friction coe�cient as
constant. In fact, for this earthquake excitation, the
maximum sliding velocity is never more than 0.3 m/s.

Additionally, it may be noted that, for a rigid
structure (Ts = 0), the maximum base shear response
is exactly twice the structural shear response. The
reason is that, for a rigid structure, shear distribu-
tion is directly proportional to the cumulative mass
distribution, because for such a structure, the absolute
acceleration of each mass is exactly the same.

The e�ects of a vertical component of earth-
quake excitation can be observed when comparing
the results under two-component and three-component
earthquake excitations. It can be seen that the e�ects
of a vertical component is far more pronounced on
the base shear response, in comparison with other
responses (structural shear, base displacement, dis-
sipated energy, etc). The results were obtained by
Takahashi et al. [17] and also Iemura et al. [18], using
experimental tests. This may be due to the fact that,
among all responses, only the base shear (friction force)

is directly proportional to the normal force, thus, the
e�ects of normal force is more accentuated.

Total Dissipated Energy

Figure 13 presents the ratio of the total dissipated
energy to the input energy versus the period of super-
structure under earthquakes. It can be seen that for
all cases, by increasing the period, this ratio decreases.
It demonstrates that by increasing the period the
e�ciency of the isolation system decreases. For a rigid
structure, this ratio is almost equal to one. In other
words, for a rigid structure, the input energy is totally
dissipated by the isolation system, because in this case,
the superstructure is rigid and the system coincides
with a system with a concentrated mass resting on a
frictional interface. It is obvious that, if someone pulls
the mass, almost all the exerted energy will dissipate
due to the e�ect of friction and will convert to thermal
energy.

Figure 13. Ratio of the total dissipated energy to the
input energy versus period superstructure considering
single-, two- and three-components of earthquake.
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The ratio of the total dissipated energy to the
input energy for two-component earthquake excitations
is the least at all periods and for all earthquake
excitations, showing that this case underestimates the
value of the energy dissipated by the isolation system.
This ratio is almost the same for cases of two- and
three-component earthquake excitations.

CONCLUSIONS

Symmetric isolated structures with pure friction iso-
lators were studied under single-, two- or three-
component earthquakes. Variation of the friction
coe�cient in the function of velocity and pressure is the
main subject of the current paper and, for this purpose,
a program was developed. Several important structural
parameters were investigated using the developed pro-
gram. Results of these studies can be expressed in the
following conclusions:

1. If the coe�cient of friction is assumed constant,
responses of the system can be di�erent from real
responses (the case of velocity-pressure friction
coe�cient for a three-component system). The
maximum structural shear, the maximum base
shear and the energy ratio are less in the case of a
constant friction coe�cient in comparison with real
values. These e�ects are opposite on the maximum
base displacement.

2. When the coe�cient of friction is only a function of
velocity and the system has been excited by a three
component earthquake, the maximum structural
shear and maximum base shear responses can be
much more than their real values.

3. The vertical component of an earthquake can a�ect
lateral responses considerably.

4. If bilateral interaction between the sti�ness of the
two orthogonal directions of the isolator is consid-
ered, but the vertical component of the earthquake
is neglected, depending on the structural period and
type of earthquake excitation, structural shear and
base shear can be greatly underestimated.

5. There is negligible di�erence between the maximum
base displacements of isolated structures under two-
component and three-component earthquakes.

6. If bilateral interaction between the sti�ness of the
two orthogonal directions of the isolator is neglected
(isolated structures under a single component
earthquake), structural shear and base shear can be
considerably larger and the base displacement can
be considerably less than that of two-component
systems in which the bilateral interaction between
the sti�ness of the two orthogonal directions is
included.

NOMENCLATURE

fsz1 normal force,
fsx1 ; fsy1 frictional forces of the sliding element

in x and y directions,
uz1 displacement of the base mass in z

direction,
kz1 sti�ness of sliding element in z

direction,
� friction coe�cient of sliding interface,
zx; zy dimensionless internal hysteretic

variables in x and y directions,
_ux1 ; _uy1 velocity of the base mass in x and y

directions,
Y elastic deformation of the frictional

element prior to the initiation of
sliding,

A; �; 
 dimensionless constants,
�max; �min maximum and minimum coe�cients

of friction measured on a particular
interface under given con�ning
pressure,

� a parameter which controls the
variation rate in the friction coe�cient
from �min to �max,

_u resultant sliding velocity,
c1; c2 minimum and maximum value of �max,
c3; c4 minimum and maximum value of �min,
�1 a parameter which controls the

variation rate in the �max from c1 to
c2,

�2 a parameter which controls the
variation rate in the �min from c3 to
c4,

�1; �2 parameters which determine �,
p the con�ning interfacial pressure in

MPa.
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